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IMPACT OF MEDIA AWARENESS AND USE OF FACE-MASKS ON INFECTIOUS RESPIRATORY
DISEASE

HENRY M. WANJALA®L*, MARK O. OKONGO?, AND JIMRISE O. OCHWACH?

ABSTRACT. Infectious respiratory diseases have been a threat to our lives and livelihoods. Communities with
a higher population density ultimately are at a higher risk of a rapid spread of infectious disease once they oc-
cur. Mathematical models have extensively been used to analyse the impact of several mitigation measures to
the transmission of infectious diseases. The focus of this study is to determine the impact of media awareness,
use of face-masks alongside quarantine and isolation on the transmission dynamics of a respiratory infection
where there is no available vaccination or treatment plan. The model is based on a system of deterministic ordi-
nary differential equations (ODE’s). By the use of the next generation matrix (NGM), the basic reproduction is
determined. The local stability analysis analysis of the disease free equilibrium (DFE) is obtained by the trace-
determinant approach while it’s global stability was determined by the use of the Lyapunov-Krasovskii method.
It was established that the local DFE was asymptotically stable while it was unstable globally implying that with
application of this intended strategies, the transmission of the disease could be lowered but not eradicated. The
importance of media awareness to any campaign towards reduction of transmission is paramount. Effort should
be geared towards the public having correct information on a given disease. The impact of face mask is depen-
dent on the efficacy of the face - mask and its compliant and consistent use, these two factors are multiplicative.
Numerical simulations were done by the use of Python software and it was established that if quarantine rate
and the isolation rate was to be maximised then the disease would be curtailed. The results of this study gives

valuable information on the intervention strategies to be applied by the public heath officials.

1. INTRODUCTION

Public health goals in any respiratory infectious disease is to lower the infection rate and manage it’s burden
on the health facilities and personnel (Collinson et al., 2015). Mass media has been widely used to dissemi-
nate necessary information on the public health measures to be undertaken with major success (Wakefield
et al., 2011 ). Developing countries have limited medical facilities and personnel and therefore awareness
to a disease is a strategy employed to minimise the health burden (Misra ef al., 2018). Funk ef al. (2009),
noted that there’s a behavioural change in response to a disease outbreak which could be as a result of
media awareness. Individual and community response to the threat of an infectious disease is due to it’s
perception by the public arising from the media campaign (Liu et al., 2007). Media coverage and extensive
flow of information about the epidemic has a great impact on the public to make change on their behaviour
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to avoid infecting others or being infected (Wang & Xiao, 2014). In the initial stages of an epidemic, the
infectious disease might not have been identified or it’s treatment plan and vaccine not developed, these,
informs the need of effective media coverage of the diseases so as to reduce infection and enhance the
application of Non-Pharmaceutical Interventions (NPI's) (Sun et al., 2011; Sahu and Dhar, 2015).

Mathematical models quantitatively explain the epidemiological problem through a written down set of
equations that represent the actual progression and the solution to the parameters (Panovska-Griffiths,
2020). Several mathematical models have been developed to assess the impact of media awareness on
the transmission of diseases. Feng et al. (2020), proposed a deterministic model on the impact of media
awareness on the susceptible, who take precautionary measures to minimise COVID-19 transmission. It
reported that media is an important tool in the prevention of the spread of COVID-19. Kobe, (2020) on his
study on the impact of media awareness on COVID-19 reported that programs to sensitise the public are
key in the reduction of transmission. A deterministic model analysing the impact of media awareness was
developed by Koutou et al. (2020). It reported that media awareness alongside NPI's will be able to curtail
the spread of COVID-19.

The impact of the use of face-masks on the spread of infectious respiratory diseases has been studied. Sri-
vastav et al. (2020) proposed a mathematical model focusing on the use of face-masks on COVID-19 trans-
mission prevention. It reported that the use of face-masks may significantly lower the spread of COVID-19,
however, it should be complemented with other strategies. this conclusion was also established by the
study of Iboi et al. (2020), who reported that for effective control of COVID-19 transmission then, the con-
sistent use of face-mask should be above 80% which is unrealistically tenable. Eikenberry et al. (2020),
reported that face masks are necessary in mitigating the spread of COVID-19 and that the consistent use of
the face-mask and the efficacy of the face-mask are multiplicative. Morciglio et al.(2020), further reiterated
that the use of face-masks was important in the reduction of the transmission of COVID-19 and suggested
that the efficacy of the face-mask is key in eliminating the transmission.

Several shelter in place strategies have been studied to determine their impact on the spread of a respi-
ratory infectious disease. Zeb et al. (2020), proposed that isolation should be applied to all the infected
population to manage transmission, though the strategy is unfeasible. Ahmed et al. (2021) expounded on
the use of quarantine as a strategy to control the spread of COVID-19. It reported that quarantine alongside
effective testing will be able to curtail the transmission. Olaniyi ef al. (2020) suggested that while isolation
would be remarkable in lowering the transmission rate, it was necessary to increase the recovery rate while
minimising the transmission rate.

The aim of this study is to analyse the impact of media awareness, use of face-masks alongside quarantine
and isolation in lowering the transmission of respiratory infectious disease.

2. MODEL FORMULATION AND DEVELOPMENT

The population is split into seven mutually exclusive compartments of susceptible (S(t)), exposed (E(t)),
quarantine (Q(t)), asymptomatic (A(t)), symptomatic (I(t)), isolated (J(t)) and the recovered (R(t)). The entry
into the population is at the rate A. The media efficiency rate is, B, which encourages the susceptibles to
undertake precautionary measures against contracting the disease. The population wears face-masks of an
efficacy e, with a fraction ¢,,, wearing the mask consistently and correctly. The susceptible become exposed
at the rate A with some being quarantined at the rate, q, for a quarantine period, z. A fraction 7 become
asymptomatic after the latency period w, while the rest (1 - n) are symptomatic. After the quarantine period,
z, a fraction p, are confirmed infected and thus isolated, while, the rest, (1-p) return to the susceptible class.
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The symptomatic are isolated at the rate v. The asymptomatic recover at the rate p 4, while p; is the recovery
rate of those isolated. There’s a natural death rate p across the compartments. The model flow chart is

shown in figure 1.
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FIGURE 1. Model Flow Chart

The model equations are represented in equations 2.1
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The force of infection, A is given by equation 2.2:

2.2)

A=B((1—emem)(1—B)(A+eal+eld))/N

The model parameters and the parameter values are shown in the table 1 below
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TABLE 1. Parameter values of SARS-COV-2

Symbol | Parameter Value Source
A Recruitment rate by birth 0.00018 days™ Mwalili et.al., (2020)
U Natural death rate 4563 x10° days? | Mwalili et.al., (2020)
P Fraction of those isolated after | 0.8 Assumed
quarantine
pA Rate of recovery of asymp-|1/7 Tang et.al., (2020)
tomatic patients
Iy Rate of recovery of isolated pa- | 1/28 Balike, (2021)
tients
w Latency period 1/14 Yang et.al., (2020)
¥ rate of isolation of symptomatic | 0.04 Assumed
patients
B Effective contact rate 0.5 days™ Wangari et.al., (2021)
z Quarantine period 1/14 days Balike, (2021)
Cm fraction of population wearing | 0.1 Iboi et.al., (2020)
face masks correctly and consis-
tently
€m Efficacy of face mask 0.5 Iboi et.al., (2020)
€1 Infections by the Exposed 0.48 Wangari et.al., (2021)
€2 infections by the Isolated 0.48 Wangari et.al., (2021)
7 Fraction of those Asymptomatic | 0.7 Mwalili et.al., (2020)
but Infectious
q Rate of transfer of E to Q 2.0138 x10* Ahmed et.al., (2021)
B Efficiency of Media awareness | 0.5 Assumed
program

3.1. Positivity of the Solution. The model system (2.1) deals with living organisms and thus the associated
state variables are non-negative for all the time ¢ > 0. Thus, the solutions to model (2.1) with initial data is

3. MODEL ANALYSIS

positive for all time t > 0.

Theorem 3.1. The region D = {(S(t), E(t), A(t), I(t), Q(t), J(t), R(t)) € R : N(t) < %} is positively invariant

and attracting with respect to model 2.1.

Proof. Solving the first equation of (2.1) for S(t) at time, t > 0, it is obtained that:

ds
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Clearly, S(0) e~ /(A4 is a non- negative function of t, thus S (t) stays positive.
Similar proofs can be established for the positivity of other variables using the corresponding equation of
the system. This shows that the solutions of the system 2.1 with non-negative initial conditions such that ,
E(t) > 0,A(t) > 0,I(t) > 0,Q(t) > 0,J(t) > 0and R(t) > 0 will remain non-negative for all time ¢ > 0.
O

3.2. Invariant Region.

Theorem 3.2. There exists a domain H in which the solution set S(t), E(t), A(t), I(t), Q(t), J(t) and R(t) of model
equation (2.1) is positively invariant.

Proof. The total human population can be determined by,

(3.1) N(t)=S@) + E@)+A®) + 1(t) + Q(t) + J(t) + R(t)
Then the time derivatives of N(t) along the solutions of model system (2.1) gives the following:
dN
3.2 — = A-—uN
(5.2) 7 p
In the absence of the disease, in the population,
dN A A
. — < A - N N = — N I Py 17
(33) S AN = N =T (NO) - e

N(0) =5(0)+ E(0) + A(0) + S(0) + Q(0) + J(0) + R(0),

ﬂmmﬂwmg%JMmng%am—%mﬂ%ﬂﬁmﬂi:Kﬂ&EijuHmQMKuR@)e
R N(t) < %} is the feasible solution of model equation (2.1) which implies the total number of human
population is positively invariant. Therefore, the model is biologically meaningful and mathematically well
posed in the region H O

3.3. Basic Reproduction Number. The basic reproduction number (Ry) is the measure of the new infec-
tions by the index patient in a purely susceptible population. The basic reproduction equation is obtained
by the use of the next generation matrix (NGM). The Jacobian matrix derived from the model equations is
used to determine the reproduction number.

Theorem 3.3. The basic reproduction number (R,) for the epidemiological model 2.1 is given by equation 3.4:

mpBonw  mPo(l —n)wer  mPoeapzq

3.4 Ro =
(3:4) 07 Tkiks Erka Ky koks

where:

m=2,
I
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and,
kv =p ko =p+2ks = p+paks=p+v,ks = p+ps, 80 = Bl — emen)(1 — B)

Proof. The basic reproduction number is the spectral radius of the matrix FV—!. By taking the infectious
subsystem of the model system (2.1), we determine the transmission matrix (F) and the transition matrix
(V) as shown in equations 3.5 and 3.6:

0 0 mpBy mBoer mPoer
00 O 0 0
(3.5) F=100 0 0 0
00 O 0 0
0 0 0 0 0
and
—k1 0 0 0 0
q —ky O 0 0
(3.6) V= nw 0 —k3 O 0
l-nw 0 0 —ks O
0 pz 0 v —ks
and
0 0 0 0 0
(3.7) Fv1l=1o0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

_ mBO”]UJ mBO(lfn)Wfl mpo€eapzq
Where, a = ket T + Sk

and
m=%,k1=u,k2=u+z,ks:u+pA,k4=u+%k5:M+0Ja5025(1—%%)(1_3)

Thus, the basic reproduction equation is given in equation 3.8

mpPonw  mpPo(l —n)wer  mPoeapzq

3.8 Ry —
(38) 07 Thiks kyky Ky ok

3.4. Equilibrium Analysis.

3.4.1. Disease Free Equilibrium Point. The DFE of the system 2.1 is obtained by setting all the infectious
classes to zero, so as to obtain equation 3.11:

5/ = (SO7 Eou Q07 Aou IOa JO7 RO)

3.9) A
Sl - (;7 07 Oa 07 07 07 0)
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3.4.2. Stability Analysis of the Disease Free Equilibrium Point. Connelly (2023) provided a theorem to deter-
mine the local stability analysis of a system of ODE’s by the numerical analysis.

Theorem 3.4. Assume the first order partial derivatives of f and g are continuous in some open set containing the
equilibrium point (z,y). Then, the equilibrium is locally asymptotically stable if,

1) Tr(J) <0, and

(2) det (J) >0
where, | is the Jacobian matrix evaluated at the equilibrium. In addition, the equilibrium is unstable if either Tr(]) > 0

or det(]) < 0.

Computing the Jacobian matrix of equation (2.1) at DFE, it yields equation 3.10:

k1 0 (1-p)z —mBy —eimfPy —eamfy 0
0 ke+0Q 0 mfBo  empBy —eamfBy O
0 0 ks 0 0 0 0
(3.10) Jr=] 0 w 0 ka 0 0 0
0 (I-nw 0 0 ks 0 0
0 0 Pz 0 0 ke 0
0 0 0 pA 0 pJ ke

Where: ki = —(u), ke = —(+q), ks = —(p+2), ks = —(n+pa), ks = —(n+7), ke = —(p+p1), k7 = —(1),
m = %, Q = mpo + exmBo + eam Py
From the matrix 3.10 above and the numerical substitution of the parameters, it is determined that:

(1) Tr(Js) <0, and,
(2) Det (J¢)>0

Thus, the DFE is locally asymptotically stable.

3.4.3. Global Stability Analysis of the DFE. We use the Lyapunov - Krasovskii method to analyse the global
asymptotic stability.

Theorem 3.5. Consider the autonomous system defined by & = f(x), with the equilibrium point of interest being
the origin. Let A(x) denote the Jacobian matrix of the system, A(z) = %. If the matrix F = A + AT is negative
neighborhood ), then, the equilibrium point at the origin is asymptotically stable. A Lyapunov function for this
system is

(3.11) V(z) = f"(2)f(z)

If Q is the entire state space and, in addition, V(x) — oo, [||z||] — oo, then, the equilibrium point is said to be
globally asymptotically stable.
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The global stability analysis is performed by constructing the Jacobian matrix of the model system (2.1) and
solving it at the DFE as shown in matrix 3.12

k1 0 (1-p)z —mBy —ermBy —eamfBy 0
0 k4@ 0 mpo eempBy  —eamfBy 0
0 0 ks 0 0 0 0
(3.12) F)=| 0 0 ks 0 0 0
0 1-nw 0 0 ks 0 0
0 0 pz 0 0 ke 0
0 0 0 pA 0 pJ ke

Where: k1 = —(p), k2 = —(p+9), ks = —(n+2), ks = —(n+pa), ks = —(u+7), ke = —(n+ps), k1 = —(n),
m = %, Q = mpBo + exmBy + eamfBy
From the matrix 3.12 above, the transpose (F7 (z)) of F(x) is as shown in matrix3.13:

k1 0 0 0 0 0 0

0 ko+Q 0 nw (1—-mw 0 0

(1-p)z 0 ks 0 0 pz 0

(3.13) Fl(z) = —mBy  mBy 0 ka 0 0 pa
—ermfBy empBy 0 0 ks 0 0

—eomfPy emfy 0 0 0 ke pJ

0 0 0 0 0 0 k7

Where: k1 = —(u), ke = —(+q), ks = —(p+2), ka = —(+pa), ks = —(n+7), ke = —(p+p1), k7 = —(1),
m= %, Q = mpBy + exmfPy + eamfBy

From the matrix above, F'(x) is as shown in matrix 3.14:

(3.14) F(z) = FT(z) + F(x)
This implies that F'(z) is as in matrix 3.15:
(3.15)
2k 0 (1-p)z —mf3 —e1mfBo —eomfBy 0
0 2k2 +2Q 0 nw+mpo (1—nw+embo  empby 0
(1-p)z 0 2k3 0 0 pz 0
Flz)=| -mpy mfy + nw 0 2k 0 0 pa
—eymBy  eymfPo + (1 —n)w 0 0 2ks 0 0
—eamfBy eamfBo 0 0 0 2k pJ
0 0 0 pA 0 p; ks

since, all the eigen values of F'(x) are not negative, then the matrix 3.15 is not negative definite and thus the
DFE is globally asymptotically unstable. It implies that there exists a unique endemic equilibrium point.

4. NUMERICAL SIMULATIONS

A numerical simulation of the system model 2.1 was carried out. The model was fitted with parameter
values from reported studies with a few values estimated so as to give a meaningful analysis for this study.
In this study the parameter values in Table 1 were used for numerical simulations. Numerical values are
simulated at 0 < ¢ < 300 in days where we expect the disease to have fully taken it’s course. A baseline
population of 1000 is used as a representation of the total population. The simulations are performed with
the help of PYTHON software, using the JUPYTER as an IDE and results are presented in graphical form.
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4.1. Media Impact. The variation of the impact of media awareness on the number of asymptomatic is
analysed. In figure 2, it is clear that if the messaging is impact-full, it results to a behaviour change lowering
the infected numbers. It also extends the expected peak day which enables preparation of the medical
facilities and personnel.

— Media Impact = 0.1
m— Media Impact = 0.8
Media Impact=0.5
Media Impact=05
=== Media Impact = 0.1
~=- Media Impact = 0.8

\

0 50 100 150 200 250 300
Days

125

Fraction of Asymptomatic Population

FIGURE 2. Effect of the Media Awareness on the Asymptomatic

4.2. Impact of Face-Mask. Increase in the efficacy of the face-mask lowers the asymptomatic population
marginally. In figure 3 below, as the efficacy of the face-mask increased the number of asymptomatic re-
duces.

—— Efficacy = 0.1
— Efficacy = 0.8
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FIGURE 3. Effect of mask efficacy on the Asymptomatic

Increase in the consistent and compliant use of the face-mask leads to a drop in the number of asymp-
tomatic as shown in the figure 4 below.

= Compliance = 0.1
—— Compliance = 0.8
Compliance=0.5
Compliance=0.5
=== Compliance = 0.1
~-- Compliance = 0.8

Fraction of Asymptomatic Population

Days

FIGURE 4. Effect of mask compliance on the Asymptomatic
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Eikenberry et al. (2020), postulated that mask compliance and it’s efficacy are multiplicative and it is para-
mount to enhance both. Figure 5 shows that if both the two factors are improved simultaneously, then, the
impact is great.

| ower rates of 10%
= Higher rates of 80%
Average rates of 50%
Average rates of 50%
=== Lower rates of 10%
=== Higher rates of B0%

Fraction of Asymptomatic Population

-

200 20 300

Days

FIGURE 5. Effect of mask compliance and mask efficacy simultaneously on the Asymptomatic

4.3. Effect of Quarantine on the Transmission. If the quarantine rate is increased from the baseline value
of 0.2% to 30%, there’s a reduction of the of the asymptomatic cases from 101 t0 34. If the rate is increased
to 80%, the asymptomatic reduces to 26, as shown in figure 5. If the quarantine period is reduced to 7 days,
there’s an increase in the asymptomatic. Increase of the quarantine to more than 28 days does not reduce
the asymptomatic cases as shown in figure 7.

= Quarantine rate = 30%
= Quarantine rate = 80%
Quarantine rate = 0.2%
Quarantine rate = 0.2%
=== Quarantine rate = 30%
=== Quarantine rate = 80%

Fraction of Asymptomatic Population
=]
g

]

0 50 100 150 200 250 300
Days

FIGURE 6. Effect of variations on quarantine rate to the Asymptomatic

—— Quarantine period = 7 days
= Quarantine period = 28 days
Quarantine period = 14 days
Quarantine period = 14 days
=== Quarantine period = 7 days
=== Quarantine period = 28 days

=1
a8

3

g

&

Fraction of Asymptomatic Population

<]

=

T
0 0 100 150 200 250 300
Days

FIGURE 7. Effect of variations on quarantine period to the Asymptomatic

4.4. Effect of Isolation on the Transmission. Increase in the rate of isolation leads to a reduction in the
number of asymptomatic as shown in the figure 8 below.
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= |solation rate = 1%
= |solation rate = 80%
Isolation rate = 30%
Isolation rate = 30%
=== Isolation rate = 1%
=== Isolation rate = 80%

Fraction of Asymptomatic Population
2

\

200 250 300

FIGURE 8. Effect of variations on isolation rate to the Asymptomatic

5. CONCLUSION

In this paper, a deterministic model is formulated to investigate the spread of a respiratory infectious dis-
ease, taking into account the application of NPI's such as media sensitisation, use of face-mask, quarantine
and isolation. Qualitative analysis and some numerical simulations are conducted on the model. The study
shows that, though NPI" s can lower the transmission rate, elaborate plans should be in place for the med-
ication and the availability of a vaccine. NPI's extend the peak days and therefore give ample time for the
public health officials to increase the medical capacities. It has also been shown that, media plays a major
role in the progression of an infectious disease. Media awareness programs of the facts about an infection
is key in ensuring that the public are sensitised to lower the transmission rate. The study further elaborates
that, the mask efficacy and the consistent and compliant use of a face mask is multiplicative. Increase in
the quarantine rate needs an elaborate contact tracing plan which may not be in place at the onset or some
countries might not have the mechanism to contact trace. Isolation requires the medical facilities to be able
to have isolation rooms or if home based care is applied, then it would be necessary for the governments to
increase the capacity progressively. Generally, the application of NPI’s is necessary since it is at the lowest
cost of managing an epidemic.
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