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FUNCTIONAL k-GENERALIZED ¢-HILFER FRACTIONAL DIFFERENTIAL EQUATIONS IN
b-METRIC SPACES

SALIM KRIM, ABDELKRIM SALIM*, SATD ABBAS, AND MOUFFAK BENCHOHRA

ABSTRACT. This paper deals with some existence results for a class of k-generalized «-Hilfer implicit fractional
differential equations in b-metric spaces. The results are based on the ov — ¢-Geraghty type contraction and the
fixed point theory. We illustrate our results by an example in the last section.

1. INTRODUCTION

Fractional differential equations have recently been applied in various areas of engineering, mathe-
matics, physics, and other applied sciences. Considerable attention has been given to the existence of
solutions of initial and boundary value problems for fractional differential and integral equations; see the
publications [1,3,4,15,18,21,22,25-31].

The notion of b-metric was proposed by Czerwik [11,12]. Following these initial papers, the existence
fixed point for the various classes of operators in the setting of b-metric spaces have been investigated
extensively; see [2,9,10,13,23], and the related references therein.

In [19], the authors considered the following conformable impulsive problem:

TIX(Q) =R (Cxe. TPx(Q) . C€Qip=0,1,....8
AX|C=C] :TJ(X<;)7 j:1727"'7B7
x(€) = u(C), ¢ € (—00,,

where 0 < sr = (p < (1 < -+ < (g < (g41 = x < 00, 723)((() is the conformable fractional derivative
oforder 0 < ¥ < 1, X : @ x QxR — Ris a given continuous function, Q := [s, %], Qo = [, (],
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Q,:=((,Glso=1,2,...,8, p: (00,2 = Rand T, : Q — R are given continuous functions, and Q is
called a phase space.

In [20] the authors used the o — ¢-Geraghty type contraction and the fixed point theory to investigate
the following terminal value problem for implicit Katugampola fractional differential equation in b-metric
spaces:

(DG4 9)(7) = (7, 9(7), ("D 0)(7)); 7 € I:= [0, T],
’19(T) =97 € R,

where ? D[, is the Katugampola fractional derivative of order » € (0, 1].

In this paper, we discuss the existence of solutions for the following more general class of initial value
problems of k-generalized +-Hilfer implicit fractional differential equations

(L) (FDrve) () = £ (L o), (FDI0) ) e (a,b)

12) (ja’“f’f)”“%) (a™) = po,

where D}ff;w, ffrk&)’k;w are the k-generalize ¢-Hilfer fractional derivative of order ¥ € (0,1) and type
r € [0,1], and k-generalize y-fractional integral of order k(1 — &) defined in [24] respectively, where { =
+(r(k—9)+9),20 €R, k>0and f € C([a,b] x R%,R).

2. PRELIMINARIES
Let0 <a <b<ooI=][ab],d€(0,1),r€[0,1],k>0and¢ = 1(r(k — )+ ). By C(I,R) we denote
the Banach space of all continuous functions from I into R with the norm
[2]lec = sup{la(t)] : ¢ € I}.

AC™(I,R), C™(I,R) are the spaces of continuous functions, n-times absolutely continuous and n-times
continuously differentiable functions on I, respectively.
Consider the weighted Banach space

Ceww(D) = {0 (@8] > Rit = (6(t) = (@) *p(t) € CUR)},
with the norm
I9llce sy = sup [ (5(1) = (@)~ (1)
and
CP (1) = {p eI p™ € cg,,w(f)} neN,
O (1) = Ce sy (1),

with the norm )
Iollez,, = 3 16D oo + 16 o o
=0
The weighted space C’Z % (1) is defined by
Cerwd) = {@ € Ceaw(D), f D Vp € Cg,k;w(f)} :

)
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Consider the space X7 (a,b), (c € R, 1 < p < co) of those real-valued Lebesgue measurable functions g on
[a, b] for which ||g]| X7 < 00, where the norm is defined by

b P
lgllxz = < / w'<t>|g<t>|pdt> ,

where 1) is an increasing and positive function on [a, b] such that ¢’ is continuous on [a, b] with (0) = 0. In
particular, when ¢(p) = g, the space X} (a, ) coincides with the L,(a, b) space. Recently, in [14], Diaz and
Pariguan have defined new functions called k-gamma and k-beta functions given by

o0 fk
Tp(a) = / t* e ®dt,a >0,
0
and

k
When k — 1 then I'(a) = I'y (), we have also some useful following relations

() = k&0 (%) ,
Ti(a+ k) = alk(a)

(k) =T(1) = 1.

1t
Bi(a,B) = f/ 1511 — ) FLdt.
0

1 a B
Bi(a, B) = EB (k’ k‘)
L (a)Tx(B)
Bi(a, ) = ———=.
k() Li(a+5)
The Mittag-Leffler function can also be refined into the k-Mittag-Leffler function defined as follows
E*B(x) = o _
k (.Z') P Fk(O{Z+5),a7B>O

Definition 2.1. ([24]) (k-Generalized +-fractional Integral) Let g € X i(m b) and [a, b] be a finite or infinite
interval on the real axis R = (—o00,00), () > 0 be an increasing function on (a,b] and ¢'(t) > 0 be
continuous on (a, b) and ¥ > 0. The generalized k-fractional integral operators of a function f (left-sided
and right-sided) of order ¥ are defined by

9, k1) = ! t
Tt P g(t) = krm/a ((
1

9,k b
R0 = g ) (¥(s) = () F

with £ > 0.

Definition 2.2. (k-Generalized -Hilfer Derivative) Let n — 1 < ¢ < nwithn € N, I = [a, )] an interval
such that —co < a < b < oo and ¢,¢ € C™([a, b],R) two functions such that 1) is increasing and ¢’ (t) # 0,
for all t € I. The k-generalized v-Hilfer fractional derivatives (left-sided and right-sided) ng:;w(-) and
kH fo;w(-) of a function g of order ¥ and type 0 < r < 1, with £ > 0 are defined by

H Y30 - r(kn—19),k;yp 1 i " n ~(1—r)(kn—"29),k;¢
k Da+ g(t) - <\7a+ <’(/J/ (t) dt) (k ja—‘,— g)> (t)

- ( k=0 kb g (kn A=) en=0) ki g)) )
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and

Hoydurst o ok (L AN ) (kne) ks
o0 = (7 () (0ol 7))

_ <jbr£kn—19)7k;w(_1)n5$ (knjb(i—r)(kn—ﬂ),k;ibg)) (1),

. 1 d\"
whereéib— (W(t) dt) .

Lemma 2.3. Let £ = w By a solution of the problem (1.1)-(1.2) we mean a function @ € Cg¢ . (I) that
satisfies
oty = (B = v(@)! 1‘f W elgleds
o (P(t) —9(s)) *

_|_
Du(ke) 7 L)
where 0 <9 <1,0<r <landk > 0and g(t) = f(t,p(t),g(t)).

Definition 2.4. [5,6] Let c > 1 and M be a set. A distance function d : M x M — R is called b-metric if
for all p, v, & € M, the following are fulfilled:

e d(u,v) =0if and only if u = v;
o d(p,v) = d(v, p);
o d(p,§) < cld(p,v) +d(v,£)].
The tripled (M, d, c) is called a b-metric space.

Example 2.5. [5,6] Letd : C(I) x C(I) — R% be defined by
(e = 3)? |0 = sup lp(t) = S for all p, 3 € C(I).
It is clear that d is a b-metric with ¢ = 2.
Example 2.6. [5,6] Let X = [0,1] and d : X x X — R be defined by
d(z,y) = |x2 — y2|; forall x,y € X.
It is clear that d is not a metric, but it is easy to see that d is a b-metric space with r > 2.
Let ® be the set of all increasing and continuous function ¢ : R} — R* satisfying the property: ¢(cu) <

co(p) < cp, for ¢ > 1 and ¢(0) = 0. We denote by F the family of all nondecreasing functions A : R} —
[0, %) for some ¢ > 1.

Definition 2.7. [5, 6] For a b-metric space (M, d, c), an operator T' : M — M is called a generalized o —
¢—Geraghty contraction type mapping whenever there exists oo : M x M — R’ , and some L > 0 such that

for
D(z,y) = max {d(az, y),d(z, T(z)),d(y, T(y)), d(z,T(y)) ;;d(y, T(z)) } ’
and
N(z,y) = min{d(z,y), d(z,T(x)), d(y, T(y))},
we have
(2.1) o, ) O(EA(T (1), T(1))) < Mp(D(, ) (D, v)) + Lp(N (1, 1)));

forall u,v € M, where A € F, ¢ € .
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Remark 2.8. In the case when L = 0 in Definition 2.7, and the fact that
d(z,y) < D(z,y); forall z,y € M,
the inequality (2.1) becomes
22 a(p,)o(d(T (1), T(v)) < Nd(d(, v))d(d(p, v)).

Definition 2.9. [5,6] Let M be a non empty set, T : M — M,and a : M x M — R’ be a given mappings.
We say that 7" is a—admissible if for all ¢, v € M, we have

a(pv) 21 =a(T(p), T(v)) = 1.

Definition 2.10. [5,6] Let (M, d) be a b-metric space and let o : M x M — R’ be a function. M is said to
be a—regular if for every sequence {z, }nen in M such that a(z,,, x,41) > 1 for all n and z,, — z asn — oo,
there exists a subsequence {,, () }ren of {x, },, with a(z, ), ) > 1 for all k.

The following fixed point theorem plays a key role in the proof of our main results.
Theorem 2.11. [5,6] Let (M, d) be a complete b-metric space and T : M — M be a generalized oo — ¢p—Geraghty
contraction type mapping such that

o (i) T is av—admissible;
o (ii) there exists g € M such that o(po, T (po)) > 1;
o (iii) either T is continuous or M is oc—regular.

Then T has a fixed point. Moreover, if
e (iv) for all fixed points p, v of T, either a(p,v) > 1 or a(v,p) > 1,
then T has a unique fixed point.
3. MAIN RESULTS

Let (C¢ ;0 (1), d, 2) be the complete b-metric space with ¢ = 2, such that
d: Cepyp(I) x Ce sy (I) — R is given by:

d(p,3) = (9 = 3)?c = b;lég)tp(l’”lp(f) = ()%
Then (C¢ .4 (1), d, 2) is a b-metric space.

In this section, we are concerned with the existence results of the problem (1.1)-(1.2).

Definition 3.1. Let £ = W By a solution of the problem (1.1)-(1.2) we mean a function p €
Ce iy (1) that satisfies
t) — -1 1 by d
o(t) = W) —vle)™ / ¥ (s)g(s) S
Pk (ke) FU0) Ja (p(t) = w(s)) '

where 0 <9 < 1,0 <r <landk > 0and g(t) = f(¢,p(t),9(t)).

The following hypotheses will be used in the sequel.
(Hy) There exist ¢ € ®,p : C(I) x C(I) = (0,00) and g : I — (0,1) such that for each p, S, p1,37 €
Cerp(I),and t € I

|f(t, 0,3) — f(t, 01,31)] < plp, I)lp — @1] +q(t)|S — 3],



Pan-Amer. J. Math. 2 (2023), 5 6

with
2

+
C

H (¥(t) —¥(a)s !
L (kE)

1 /t P'(s)p(p, I)ds
_9
FEEO) Ja (wh(t) = ()" F (1= gx)
where g,h € Cf ;... (1)
(H3) There exist py € Ce gy (1) and a function 6 : C¢ ., (I) X Ce¢ .y (I) — R, such that

(¥ () = ¥(a)! L[ Y(e)g(s)ds
9( Le(ke) WHM)/ <w<t>—w<s>>1"’3>20’

< o(ll(p = 3)llc),

c

where g € C} ., (I), with g(t) = f(t, o (t), g(t))-
(Hs) Foreacht € I, and u,v € Cg¢ 1. (I), we have:

0(p(t),3(t)) = 0

((t) = (@) L' U(9)g(s)ds
9( Tk (ke) mWFk(ﬁ)/a(w(t)w(s))lﬁ’

(V1) — $(a)<! L[t Y (e)h(s)ds
ri6 P )

where g, h € C¢ ., (I), with g(t) = f(t, p(t), g(t)) and h(t
(Hy) If ey € CI) with p, = vwand 0(p,, prny1) >, then
0(pn, ) > 1.

Theorem 3.2. Assume that hypotheses (Hy) — (Hy4) hold. Then the problem (1.1)-(1.2) has a least one solution
defined on I.

implies

\./|
kﬁ

—~
)
=
—

>

—~
N

Proof. Consider the operator N : C¢ j;y (1) = Cg¢ 1, (1) defined by
(¥(t) = P(a)*!
Np)(t) =
(Ne)t) = oS
where g € C(I), with g(t) = f(¢t,u(t), g(t)).
By using Lemma 2.3, it is clear that the fixed points of the operator N are solutions of (1.1)-(1.2).
Let o : C¢ ;o (I) X Cg gy (I) — (0, 00) be the function defined by:

a(p, ) =1; if 0(p(t),3(t) =0, t €1,
a(p, ) =0; elese.

1 / V/(5)g(s)ds
KER() Ja (y(t) —(s)

%o +

First, we prove that N is a generalized a-¢-Geraghty operator:
For any p, S € C(I) and each ¢t € I, we have

/\

tPA=") (N p)(t) — tPA=") (NS)(2)] (w(trk k£ |@0 — \yo|
/ P'(s \g h(s)|ds
kl“k 1_7

where g,h € C¢ ;.. (I), with

and
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From (H,;) we have

Thus,

where ¢* = sup,¢; |q(?)].
Next, we have

1
) < Mmp )2

Fk(kf
u/ p,%)l(@f%)ZHéds
kfk / () (11— g3)
Thus
alp ) (Np)(H) = (N)(2)]
NEL|IP
< I~ Y llcals H .
2o 1 ’ Y (s)p(p; 3)ds :
TS eatny ’ffk“”/a (W) =)' F (1 =g9)
< litp = 9o (I (9 — 9)llc)-
Hence,

o, (2 d(N (), N(3)) < A(e(d(p, 3))¢(d(p, I)),
where A € F, ¢ € ®, with A(t) = it, and ¢(t) =
So, N is generalized a-¢-Geraghty operator.
Let p, S € C¢ iy (I) such that

Thus, for each ¢t € I, we have
This implies from (H3) that

which gives
a(N(p), N(S)) > 1.
Hence, N is a a-admissible.
Now, from (Hz), there exists g € C¢ k. (I) such that

a(po, N(po)) > 1.
Finally, from (Hy), If pt5,e y € M with p,, — pand a(pn, ftnt1) > 1, then

a(pin, p) > 1.

From an application of Theorem 2.11, we deduce that IV has a fixed point u which is a solution of problem
(1.1)-(1.2).
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4. AN EXAMPLE

Let (C¢ k. ([0, 1]), d, 2) be the complete b-metric space, such that
d: C&k;w([o, 1]) X Cg,k-;d,([o, 1}) — Ri is given by
d(p,3) = ll(p — 9)*[lc-

Consider the following fractional differential problem

i (FD0) (1) = st o), (D2 0) (1): 1 € [0.1],
( ’ ) (jk(l—f):k;d’p) (O) =0
a+ I
e (1+ sinlo())
oy (I 4sin(]p(t et
P00 =S40 F o) 2+ )
Lett € (0,1], and 9,3 € Ce ([0, 1]). If |0(8)] < [v(t)], then

L+sin(fp()]) 1+ sin(|S@))) ’

; tel0,1].

(s o(0), (1)) — F(1,S(0),51(0)] = ]

41+ p@®))) 401+ |3(t)|)
+’2(1+@1( 1+|\51 |‘
< i”@(tﬂ = IS+ Z\SIH(W( ) —sin(|S(@)])]
+ % ()| sin([S(@)]) — [S@)]sin([p()])]

< J16(6) = (1) + ] sinlp(0)]) — sin(13 (1))
+ 1 IS sin(ISO) ~ 1) sin(lp ()]
+ o (1) - 31 0)

sin (W)

s 12011501

The case when |J(t)| < |p(t)], we get

[F(t (1), p1() — f(£,3(2), 31(1))] < %(2 + le®llpt) = S@)]+ %Im(t) =S (1)

Hence
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< Jminf2 +p(0)],2+ 13O p(t) ~ S|+ S-lor() - 310

Thus, hypothesis (H,) is satisfied with

1
X — =i e
plp,3) = ymin{2 +|p(t)], 2 + (@)1},
and
q(t) = —e "

Define the functions A(t) = &t, ¢(t) = t, & : Ce i;5([0,1]) X Ce ([0, 1]) — R7 with

a(p,I) =1; if 6(p(t),3(t) >0, t €1,

alp,3) = 0; else,

and 6 : Ce ([0, 1]) % Ce ki ([0, 1) = R with 6(p, 3) = [lp — Sllc-
Hypothesis (H>) is satisfied with po(t) = gpo. Also, (H3) holds from the definition of the function §. Hence
by Theorem 3.2, problem (4.1) has at least one solution defined on [0, 1].

DECLARATIONS

Ethical approval: This article does not contain any studies with human participants or animals performed
by any of the authors.

Competing interests: It is declared that authors has no competing interests.

Author’s contributions: The study was carried out in collaboration of all authors. All authors read and
approved the final manuscript.

Funding: Not available.

Availability of data and materials: Data sharing not applicable to this paper as no data sets were generated
or analyzed during the current study.

REFERENCES

[1] S. Abbas, M. Benchohra, J.R. Graef and J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and
Stability, De Gruyter, Berlin, 2018.

[2] S. Abbas, M. Benchohra and J. Henderson, Caputo fractional g-difference equations in b-metric spaces, Commun. Appl. Nonlinear
Anal. 28 (2) (2021), 1-12.

[3] S. Abbas, M. Benchohra and G. M. N’Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.

[4] S. Abbas, M. Benchohra and G. M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publish-
ers, New York, 2015.

[5] H. Afshari, H. Aydi, E. Karapinar, Existence of fixed points of set-valued mappings in b-metric spaces, East Asian Math. J. 32 (3)
(2016), 319-332.

[6] H. Afshari, H. Aydi, E. Karapinar, On generalized o — ¢—Geraghty contractions on b-metric spaces, Georgian Math. J. 27(1)
(2020), 9-21.

[7] R. Almeida, A. B. Malinowska and T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola
derivative, J. Comput Nonlinear Dyn. 11 (6) (2016), 061017.

[8] Y. Arioua, B. Basti, N. Benhamidouche, Initial value problem for nonlinear implicit fractional differential equations with
Katugampola derivative, Appl. Math. E-Notes. 19 (2019), 397-412.



Pan-Amer. J. Math. 2 (2023), 5 10

[9] M.-E. Bota, L. Guran, and A. Petrusel, New fixed point theorems on b-metric spaces with applications to coupled fixed point

theory, J. Fixed Point Theo. Appl. 22 (3) (2020), 74.

[10] S. Cobzas and S. Czerwik. The completion of generalized b-metric spaces and fixed points, Fixed Point Theory. 21 (1) (2020),
133-150.

[11] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46 (2) 1998,
263-276.

[12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5-11.

[13] D. Derouiche, H. Ramoul. New fixed point results for F-contractions of HardyA—Rogers type in b-metric spaces with applications.
J. Fixed Point Theory Appl. 22 (4) (2020), 86.

[14] R. Diaz and C. Teruel, q, k-Generalized gamma and beta functions, J]. Nonlinear Math. Phys. 12 (2005), 118-134.

[15] A. Heris, A. Salim, M. Benchohra and E. Karapinar, Fractional partial random differential equations with infinite delay. Results
Phys. 37 (2022), 105557.

[16] U.N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6 (2014), 1-15.

[17] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), 860-865.

[18] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science
B.V., Amsterdam, 2006.

[19] S. Krim, A. Salim, S. Abbas and M. Benchohra, On implicit impulsive conformable fractional differential equations with infinite
delay in b-metric spaces. Rend. Circ. Mat. Palermo (2). (2022), 1-14. https:/ /doi.org/10.1007 /s12215-022-00818-8

[20] S. Krim, S. Abbas, and M. Benchohra and E. Karapinar, Terminal value problem for implicit Katugampola fractional differential
equations in b-metric spaces, J. Funct. Spaces. 2021 (2021), Article ID 5535178.

[21] N. Laledj, A. Salim, J. E. Lazreg, S. Abbas, B. Ahmad and M. Benchohra, On implicit fractional g-difference equations: Analysis
and stability. Math. Methods Appl. Sci. 45 (17) (2022), 10775-10797.

[22] J. E. Lazreg, M. Benchohra and A. Salim, Existence and Ulam stability of k-generalized «-Hilfer fractional problem. J. Innov.
Appl. Math. Comput. Sci. 2 (2022), 01-13.

[23] S.K. Panda, E. Karapinar, and A. Atangana. A numerical schemes and comparisons for fixed point results with applications to
the solutions of Volterra integral equations in dislocated extended b-metric space, Alexandria Eng. J. 59 (2) (2020), 815-827.

[24] S.Rashid, M. Aslam Noor, K. Inayat Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized K-fractional integral
operator for exponentially convex functions, AIMS Math. 5 (2020), 2629-2645.

[25] A.Salim, J. E. Lazreg, B. Ahmad, M. Benchohra and J. J. Nieto, A study on k-generalized ¢-Hilfer derivative operator, Vietnam J.
Math. (2022). https:/ /doi.org/10.1007 /s10013-022-00561-8.

[26] A.Salim, M. Benchohra, J. E. Lazreg and ]. Henderson, On k-generalized ¢-Hilfer boundary value problems with retardation and
anticipation. Adv. Theory Nonlinear Anal. Appl. 6 (2022), 173-190.

[27] A. Salim, M. Benchohra, J. E. Lazreg and E. Karapinar, On k-generalized -Hilfer impulsive boundary value problem with
retarded and advanced arguments. J. Math. Ext. 15 (2021), 1-39.

[28] A. Salim, S. Abbas, M. Benchohra and E. Karapmar, Global stability results for Volterra-Hadamard random partial fractional
integral equations. Rend. Circ. Mat. Palermo (2). (2022), 1-13. https:/ /doi.org/10.1007 /s12215-022-00770-7.

[29] A.Salim, S. Abbas, M. Benchohra and E. Karapinar, A Filippov’s theorem and topological structure of solution sets for fractional
g-difference inclusions. Dyn. Syst. Appl. 31 (2022), 17-34.

[30] S.G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach,
Amsterdam, 1987, Engl. Trans. from Russian.

[31] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer,
Heidelberg; Higher Education Press, Beijing, 2010.

[32] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.


https://doi.org/10.1007/s12215-022-00818-8
https://doi.org/10.1007/s10013-022-00561-8
https://doi.org/10.1007/s12215-022-00770-7

	1. Introduction
	2. Preliminaries
	3. Main Results
	4. An Example
	Declarations
	References

