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SOME APPROXIMATE DIVISION AND SEMIGROUP IDENTITIES FOR THE MITTAG-LEFFLER
FUNCTION

D.P. CLEMENCE-MKHOPE AND ZACHARY DENTON∗

ABSTRACT. It is known that the Mittag-Leffler (ML) function, Eα(z), a non-local extension of the Euler ex-
ponential function ez , does not enjoy the semigroup property while ez does. The purpose of this note is to
show that Eα(z) does, however, for real t, s with s small enough, enjoy the approximate semigroup property,

Eα(t + s) ≈ Eα(t)(1 +
Eα,α(t)

Eα(t)
)s. This follows from an approximation of limh→0+

Eα(±(u+h)α)
Eα(±uα)

, which also

yields related expressions forα→ 1−, and is obtained from a recently proposed universal difference quotient rep-
resentation for fractional derivatives. Graphical demonstrations are presented to show that the approximations
are ‘reasonably accurate’ for 0 < h ≤ 0.1, with virtually no distinction from identity for 0 < h ≤ 0.01.

1. INTRODUCTION

Just as exponential functions are ubiquitous in the theory and application of integer-order derivatives,
so are the one- and two-parameter Mittag-Leffler (ML) functions, Eα(z) and Eα,β(z), respectively defined
by

Eα(z) = Eα,1(z) =

∞∑
k=0

zk

Γ(αk + 1)

and

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
,

in the theory and application of fractional derivatives (FDs). This is reflected, for instance, by its constant
presence in FDE textbooks (e.g., [12]), particularly featured in their solutions [1,2,6,12], and stability analysis
(see, eg., [9], [14]). The intimate connection of Eα(z) to fractional differential equations (FDEs) and integral
equations of Abel type is best summarized in [7] as follows: “. . . it seems important as a first step to develop
their theory and stable methods for their numerical computation”. For a recent survey of the properties and
applications of both Eα(z) and Eα,β(z) as well as other related functions, the reader is referred to [13].

While it is a non-local extension of the Euler exponential function ez , and enjoys some of its properties,
Eα(z) does not enjoy the semigroup property, which ez does; that is, while e(t+s) = etes holds true, the
equality Eα(t + s) = Eα(t)Eα(s) does not similarly follow, that is, Eα(t + s) 6= Eα(t)Eα(s). Consequent to

DEPARTMENT OF MATHEMATICS AND STATISTICS NORTH CAROLINA A&T STATE UNIVERSITY GREENSBORO, NC, 27411 USA
E-mail addresses: clemence@ncat.edu, zdenton@ncat.edu.
Submitted on Dec. 08, 2022.
2020 Mathematics Subject Classification. Primary 26A03, 26A06, 26A33; Secondary 46E25, 20C20.
Key words and phrases. Mittag-Leffler (ML) function, conformable fractional derivative (CFD), Caputo fractional derivative, uni-

versal quotient difference representation (UDQR).
∗Corresponding author.

1

https://doi.org/10.28919/cpr-pajm/3-20


Pan-Amer. J. Math. 3 (2024), 20 2

the semigroup property for ez , there exists the following division formula for eλx:

(1.1)
e±λ(x+h)

α

e±λxα
= e±(λ(x+h)

α−xα).

However, because Eα(z) does not possess the semigroup property, there does not exist a parallel division
formula for the ML function, that is, we have

(1.2)
Eα(±λ(x+ h)α)

Eα(±λ xα)
6= Eα (±λ ((x+ h)α − xα)) .

The need for such a division formula for the ML function arises due to the following general definition for
non-integer derivatives (NIDs), recently proposed in [4], such as in the case where the solution in Definition
1.1 below is f(t, α) = Eα(−tα) (see Table 2.4 of [4]):

Definition 1.1 (Corollary 2.1.7 and Theorem 2.2.1 of [4]). Let f(t, α) denote the unique solution of the initial
value problem for the fractional relaxation equation (FRE):

(1.3) Dα
t Ψα(t) = −Ψα(t), Ψα(0+) = 1, t ≥ 0;α ∈ (0, 1]

forDα
t an arbitrary FD. ThenDα

t has the universal difference quotient representation (UDQR), ∆fC α
0 t f(t, h),

and generalized fractional derivative representation (GFDR) DGC α
0 t , respectively given by:

(1.4) ∆fC α
0 t f(t, h) =

f(t+ h)− f(t)

1− f(t+h,α)
f(t,α)

and

(1.5) DGC α
0 t f(t) = lim

h→0
∆fC α

0 t f(t, h).

In fact, it is shown in [11], using a Laplace transform argument, that Eα(λz) possesses the semigroup
property only if α = 1 or λ = 0. Following a conclusion that this lack of the semigroup property “seems to
tell us that any equality relationship involving Eα(λtα), Eα(λsα), and Eα ((λ(s+ t)α) should be of memory
and hence characterized by integrals”, the following result is proven in [11]:

Theorem 1.2 (Theorem 1 of [4]). For every real λ there holds that∫ t+s

0

Eα(λxα)

(t+ s− x)
α dx−

∫ t

0

Eα(λxα)

(t+ s− x)α
dx−

∫ s

0

Eα(λxα)

(t+ s− x)α
dx

= α

∫ t

0

∫ s

0

Eα(λuα)Eα(λvα)

(t+ s− u− v)1+α
dudv, t, s ≥ 0.

However, the identity of Theorem 1.2 does not involve Eα (λ(s+ t)α), and therefore does not resolve
the lack of a division formula for Eα(λz) that parallels Eqn. (1.1). The main purpose of this note is to
present formal and graphical arguments that the following h-approximate division property holds in lieu
of equality in Eqn. (1.2):

(1.6) lim
h→0

Eα(±(u+ h)
α

)

Eα(±uα)
= lim
h→0

(
1± 1

α

Eα,α(± uα)

Eα(±uα)
((u+ h)α − uα)

)
From property (1.6), it follows that the approximate semigroup property (1.7) below holds for s > 0 small
enough:

(1.7) Eα ((t+ s)) ≈ Eα(t)

(
1 +

1

α

Eα,α(t)

Eα(t)
s

)
,

and an α-approximate division property is obtained relating Eα(λtα), Eα,α(λtα), Eα (λ(s+ t)α), and the
exponential function. The remainder of this article is organized as follows. In Section 2, the CFD and
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Caputo FD are recalled and properties of the UDQR for NIDs are presented, along with the consequent
CFD and Caputo FD relationships with the integer derivative. Section 3 presents formal derivation of the
proposed ML function approximate identities. Results of the numerical comparison of the approximate
ML identities are presented in Section 4, with some observations and remarks in Section 5 concluding the
article.

2. PRELIMINARIES

Together with the universal DQR and GFD for non-integer derivatives given in Definition 1.1, two frac-
tional derivatives (FDs) will be used in deriving the new approximate identities, the conformable FD (CFD)
and the Caputo FD. The CFD was introduced in [8] and is defined as

(2.1) Tαt (f)(t) = lim
ε→0

f
(
t+ εt1−α

)
ε

, α ∈ (0, 1],

and the solution to the conformable FRE, that is, Eqn. (1.3) with CFD, is

(2.2) Tαt (f)(t) = t1−α
d

dt
f(t).

The Caputo FD, introduced in [3], is defined as

(2.3) DC α
0 t (f(t)) =

1

Γ(1− α)

∫ t

0

(t− x)
−α d

dx
f (x) dx,

and the solution to the Caputo FRE, that is, Eqn. (1.3) with Caputo FD, is

Ψα(t) = Eα(−tα).

Among its properties is the following relationship with the CFD,

(2.4) DC α
0 t (f(t)) =

Eα(−tα)

Eα,α(−tα)
Tαt (f)(t),

which is concluded from the following result derived in [10]:

Theorem 2.1 (see Eqns. (1), (7), (13) of [10]). The initial value problem for the Caputo FRE with constant coeffi-
cient, IVP (1.3), is equivalent to that for the first order ODE with varying coefficient,

(2.5)
d

dt
Ψ (t) = −r (t) Ψ (t) , Ψ

(
0+
)

= 1, t ≥ 0,

if and only if

(2.6) r(t) = r(t, α) =
tα−1Eα,α(−tα)

Eα(−tα)
.

The identity (2.4) can then be obtained by substituting Eqn. (2.6) into Eqn. (2.5) and comparing the result
with Eqn. (1.3). The identity (2.4) can also be derived from Theorem 2 below, which gives the properties
of a recently proposed universal quotient difference representation (UQDR) of NIDs, and also relates all
Caputo type fractional derivatives to the integer derivative.

Theorem 2.2 (Theorem 2.1.6 of [4]). Let α ∈ (0, 1] and assume that ∆f α
0 t f(t), ∆f α

0 t g(t) exist at a point t in
(0,∞). Then, for all constants A,B,C the generic DQR expressions in Definition 2 has properties (1)-(4) below while
the generic GFD expression has properties (5)-(6):

(1) ∆f α
0 t (Af(t) +Bg(t)) = A ∆f α

0 t f +B ∆f α
0 t g

(2) ∆f α
0 t (fg) = g ∆f α

0 t f + f ∆f α
0 t g

(3) ∆f α
0 t

(
f
g

)
= 1

g2

(
g ∆f α

0 t f − f ∆f α
0 t g

)
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(4) ∆f α
0 t C = 0

(5) If f(t0, t, y0) is first order differentiable, then the following holds:

Df α
0 t (tp) = −f(t, α)

1
df(t,α)
dt

ptp−1

(6) If f(t) and f(t, α) are both first order differentiable, then the following holds:

Df α
0 t

(
f(t)

)
= −f(t, α)

1
df(t,α)
dt

df(t)

dt

Note 2.3. The Khalil et. al. result, Eqn. (2.2) from [8], relating the CFD and first order derivative is obtained
from Theorem 2.2 (6) by setting
f(t, α) = exp

(
− 1

α t
α
)
.

Note 2.4. The Mainardi result, Eqn. (2.4) from [10], relating the CFD and Caputo derivative is obtained from
Theorem 2 (6) by setting f(t0, t, y0) = Eα(−tα) and using the identity (see [10])

(2.7)
dEα(−tα)

dt
= −tα−1Eα,α(−tα).

In view of the foregoing, Theorem 2.2 (6) is a generalization of the Khalil et. al. identity (2.2) to all con-
formal (local) fractional derivatives and of the Mainardi identity (2.4) to all non-local fractional derivatives
of Caputo type.

A consequence of Definition 1 is the following alternative definition of the CFD, given in [5], which
results from direct substitution of the solution of the CFD FRE, f(t, α) = exp

(
− 1

α t
α
)

into Eqns. (1.4) and
(1.5).

Definition 2.5 (Definition 4.2 of [5]). The conformable fractional derivative has the following alternative
definition on [0,∞), for,0 < α ≤ 1.

TC α
0 t f(t) ≡ lim

h→0
∆CFD α

0 t y(t) = lim
h→0

f(t+ h)− f(t)

1− e−
1
α

(
(t+α)α−tα

) = α lim
h→0

y(t+ h)− y(t)

(t+ h)α − tα
,

where TC α
0 t f(0) is understood to mean TC α

0 t f (0) = limt→0+ TC α
0 t f(t).

3. THE APPROXIMATE ML RELATIONSHIPS

Direct substitution of the solution of the Caputo FRE, f(t, α) = Eα(−tα), into Eqns. (1.4) and (1.5), and
then using the Mainardi identity (2.4) and Definition 3, yields the following:

DC α
0 t f(t) = lim

h→0

f(t+ h)− f(t)

1− Eα(− (t+ h)α) /Eα(−tα)

=
Eα(−tα)

Eαα,(−tα)
TC α

0 t f(t) = α
Eα(−tα)

Eα,α(−tα)
lim
h→0

f(t+ h)− f(t)

(t+ h)α − tα
.(3.1)

The proposed result for ML division then follows by equating the two denominators in Eqn. (3.1) to get

lim
h→0

(
1− Eα (−(t+ h)α)

Eα(−tα)

)
=

1

α

Eα,α (−tα)

Eα(−tα)
lim
h→0

((t+ h)α − tα) ,

from which follows

(3.2) lim
h→0

Eα(−(t+ h)α)

Eα(−tα)
= 1− 1

α

Eα,α(−tα)

Eα(−tα)
lim
h→0

((t+ h)α − tα) ,

and hence the approximate division formula (1.6), for negative arguments. From (3.2), identifying (u+h)α =

y, uα = x, there follows

Eα(−y) ≈ Eα(−x)

(
1− 1

α

Eα,α(−x)

Eα(−x)
(y − x)

)
.
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Identifying −y = t+ s, −x = t the approximate semi-group property (1.7) then follows:

Eα(t+ s) ≈ Eα(t)

(
1− 1

α

Eα,α(t)

Eα(t)

(
(−t− s) + t

))
= Eα(t)

(
1 +

1

α

Eα,α(t)

Eα(t)
s

)
.

The approximate semi-group property (1.7) may also be deduced from consideration of the growth equa-
tion,

Dα
t Ψα(t) = Ψα(t), Ψα

(
0+
)

= 1, t ≥ 0; α ∈ (0, 1]

which yields, denoting the solution as f(t, α) the following DQR:

(3.3) ∆̄fC α
0 t f(t, h) =

f(t+ h)− f(t)
f(t+h,α)
f(t,α) − 1

.

Since both ∆̄fC α
0 t and ∆fC α

0 t are exact QDR approximations of the FD Dα
t , it follows from the invariance of

derivative definition that the following must hold true:

(3.4) lim
h→0

∆̄fC α
0 t f(t, h) = D̄fC α

0 t f(t) = DfC α
0 t f(t) = lim

h→0
∆fC α

0 t f(t, h)

Consideration of the Caputo FD in (3.3) and (3.4) yields therefore

lim
h→0

(
Eα((t+ h)α)

Eα(tα)
− 1

)
=

1

α

Eα,α(tα)

Eα(tα)
lim
h→0

((t+ h)α − tα) ,

hence the division formula (1.6) for positive arguments,

Eα((u+ h)α)

Eα(uα)
≈ 1 +

1

α

Eα,α(uα)

Eα(uα)
((u+ h)α − uα) ,(3.5)

Eα((u+ h)α) ≈ Eα(uα)

(
1 +

1

α

Eα,α(uα)

Eα(uα)
((u+ h)α − uα)

)
.

From the approximation (3.5), identifying (u+ h)α = y, uα = x, there follows

Eα(y) ≈ Eα(x)

(
1 +

1

α

Eα,α(x)

Eα(x)
(y − x)

)
,

and hence, identifying y = t+ s, x = t, the approximate semi-group property (1.7).
Next, note that the formula in Eqn. (1.6) is the result of the following identities obtained from the UDQR

representations of the Caputo FD and CFD:

(3.6) lim
h→0

(
1− Eα(−λ(t+ h)α)

Eα(−λ tα)

)
=
Eα,α(−λ tα)

Eα(−λ tα)
lim
h→0

(
1− e

−λ
α ((t+h)α−tα)

)
and

(3.7) lim
h→0

(
Eα(λ(t+ h)α)

Eα(λ tα)
− 1

)
=
Eα,α(λtα)

Eα(λtα)
lim
h→0

(
e
λ
α ((t+h)α−tα) − 1

)
.

Taken without the limits for α = 1, (3.6) and (3.7) respectively yield, as expected,

E1 (−λ(t+ h))

E1(−λt)
= 1− E1,1(−λt)

E1(−λt)

(
1− e−λ((t+h)−t)

)
= e−λ((t+h)−t) =

e−λ((t+h))

e−λt
,

and
E1 (λ(t+ h))

E1(λt)
= 1 +

E1,1(λt)

E1(λt)

(
eλ((t+h)−t) − 1

)
= eλ((t+h)−t) =

eλ((t+h))

eλt
.

Following the reasoning of Peng and Li in [11], we conclude that “the semigroup property ofE1(z) above is
just the limit state of equality in (3.6) and (3.7) as α→ 1−“, and the following results are therefore deduced
from (3.6) and (3.7):
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FIGURE 1.1. (a) (top), (b) (bottom, left), (c) (bottom, right). Comparison, for 0 ≤ u ≤ 2 (abscissa),
of the LHS (solid lines) and the RHS (dotted lines) of (3.2) (ordinate) for α = 0.5 and various values
of (a) h ∈ [3.0×10−5, 0.1] (b) h ∈ [0.1, 0.5] and (c) h ∈ [0.5, 0.9]

Proposition 3.1. For h sufficiently small and every real λ, there holds that

(3.8) lim
α→1−

Eα(−λ(t+ h)
α

)

Eα(−λtα)
= 1− λ lim

α→1−

Eα,α(−λ tα)

Eα(−λtα)

(
1− e

−λ
α ((t+h)α− tα)

)
and

(3.9) lim
α→1−

Eα(λ(t+ h)
α

)

Eα(λtα)
= 1 + λ lim

α→1−

Eα,α(λtα)

Eα(λtα)

(
e
λ
α ((t+h)α−tα) − 1

)
4. NUMERICAL EXPERIMENTS

In this section, numerical simulation results are presented for the h-approximate division formulas (3.2)
and (3.5) for 0 ≤ u ≤ 2 and positive, small parameter h, and the α-approximate division formulas (3.6) and
(3.7). The results for identities (3.2), (3.5), (3.8), and (3.9) are presented in, respectively, Figures 1.1, 1.2 (a),
(b), (c), Figures 2.1, 2.2 (a), (b), (c), Figures 3.1 (a), (b), 3.2, and Figures 4.1 (a), (b), 4.2.

As can be seen from Figure 1.1, the right-hand side (RHS) of (3.2), represented by solid lines, and the
left-hand side (LHS), represented by solid lines, both increase with decreasing h towards LHS = RHS = 1,
being closer in Figure 1 (b) than in (c), where the percentage difference at α = 0.5 is PD < 0.7% on 0 < u ≤ 2

for h ≥ 0.5. The two sides are even closer in (a), with virtually no distinction between them for h < 0.01;
that is, the dotted and corresponding solid lines both increase towards LHS = RHS = 1, becoming almost
indistinguishable after the green lines. Percentage differences for Figure 1.1 data are shown in Figure 1.2.

In Figure 2.1, the right-hand side (RHS) of (3.5), represented by solid lines, and the left-hand side
(LHS), represented by solid lines as in Figure 1, are seen to both decrease with decreasing h towards
LHS = RHS = 1, being closer in Figure 2 (b) than in (c), where h ≥ 0.5 and the percentage difference
rapidly decreases from PD ≈ 11% at u = 0.2 to PD ≈ 0.7% at u = 2 for α = 0.5. The two sides are even
closer in (a), becoming almost indistinguishable after the green lines, that is, for h < 0.01. Figure 2.2 shows
the percentage differences for Figure 2.1 data.
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FIGURE 1.2. (a) (top), (b) (bottom, left), (c) (bottom, right). Percentage differences, for 0 ≤ u ≤ 2

(abscissa), between the LHS and the RHS of (3.2) (ordinate) for α = 0.5 and various values of (a)
h ∈ [0.1, 0.5], (b) h ∈ [1.0×10−5, 0.1], and (c) h ∈ [1.0×10−5, 0.1] zoomed in.

FIGURE 2.1. (a) (top), (b) (bottom, left), (c) (bottom, right). Comparison, for 0 ≤ u ≤ 2 (abscissa),
of the LHS (solid lines) and the RHS (dotted lines) of (3.5) (ordinate) for α = 0.5 and various values
of (a) h ∈ [3.0×10−5, 0.1], (b) h ∈ [0.1, 0.5] and (c) h ∈ [0.5, 0.9]
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FIGURE 2.2. (a) (top), (b) (bottom, left), (c) (bottom, right). Percentage differences, for 0 ≤ u ≤ 2

(abscissa), between the LHS and the RHS of (3.5) (ordinate) for α = 0.5 and various values of (a)
h ∈ [0.1, 0.5], (b) h ∈ [1.0×10−5, 0.1], and (c) h ∈ [1.0×10−5, 0.1] zoomed in.

FIGURE 3.1 (A). (i) (top, left), (ii) (top, right), (iii) (bottom, left), (iv) (bottom, right). Comparison,
for 0 ≤ u ≤ 2 (abscissa), of the LHS (solid lines) and the RHS (dotted lines) of (3.8) (ordinate) for
various values of α ∈ [0.75, 0.99], for (i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001, (iv) h = 0.0001.
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FIGURE 3.1 (B). (i) (top, left), (ii) (top, right), (iii) (bottom, left), (iv) (bottom, right). Comparison,
for 0 ≤ u ≤ 2 (abscissa), of the LHS (solid lines) and the RHS (dotted lines) of (3.8) (ordinate) for
various values of α ∈ [0.5, 0.75], for (i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001, (iv) h = 0.0001

FIGURE 3.2. (a) (top, left), (b) (top, right), (c) (bottom, left), (d) (bottom, right). Percentage differ-
ences, for 0 ≤ u ≤ 2 (abscissa), between the LHS and the RHS of (3.8) (ordinate) for various values of
(a) α ∈ [0.5, 0.9], h = 0.1, (b) α ∈ [0.75, 0.95], h = 0.1, (c) α ∈ [0.5, 0.9], h = 0.001, (d) α ∈ [0.75, 0.99],
h = 0.001 zoomed in.
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FIGURE 4.1 (A). (i) (i) (top, left), (ii) (top, right), (iii) (bottom, left), (iv) (bottom, right). Comparison,
for 0 ≤ u ≤ 2 (abscissa), of the LHS (solid lines) and the RHS (dotted lines) of (3.9) (ordinate) for
various values of α ∈ [0.75, 0.99], for (i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001, (iv) h = 0.0001.

FIGURE 4.1 (B). (i) (top, left), (ii) (top, right), (iii) (bottom, left), (iv) (bottom, right). Comparison,
for 0 ≤ u ≤ 2 (abscissa), of the LHS (solid lines) and the RHS (dotted lines) of (3.9) (ordinate) for
various values of α ∈ [0.5, 0.75], for (i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001, (iv) h = 0.0001.
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FIGURE 4.2. (a) (top, left), (b) (top, right), (c) (bottom, left), (d) (bottom, right). Percentage differ-
ences, for 0 ≤ u ≤ 2 (abscissa), between the LHS and the RHS of (3.9) (ordinate) for various values
of (a) α ∈ [0.5, 0.75], h = 0.01, (b) α ∈ [0.75, 0.95], h = 0.01, (c) α ∈ [0.5, 0.75], h = 0.001, (d)
α ∈ [0.75, 0.95], h = 0.001.

In both Figures 3.1 (a) and 3.1 (b), the RHS and LHS of (3.8) are seen to both increase with decreasing h
towards LHS = RHS = 1; in all cases, the two sides are indistinguishable for α = 0.99. For argument differ-
ence h = 0.01 (top right: 3(a-ii), 3 (b-ii)), the difference between each solid line (LHS) and its corresponding
dotted line (RHS) is almost negligible, being indistinguishable for α = 0.99 and with percentage difference
for all 0 < u ≤ 2 of PD < 0.3% for α ≥ 0.75 (Fig.3(a-ii)) and PD < 0.5% for 0.5 ≤ α ≤ 0.70 (Fig.3(b-ii)).
That difference is seen to decrease significantly for h < 0.01 (bottom left: 3(a-iii), 3 (b-iii)) and the two sides
become almost indistinguishable for h < 0.001 (bottom right: 3(a-iv), 3 (b-iv)) for all α ≥ 0.50. Figure 3.2
shows the percentage differences for Figures 3.1 (a), (b) data.

In both Figures 4.1 (a) and 4.1 (b), the LHS of (3.9) is seen to decrease while the RHS increases with
decreasing h towards LHS = RHS = 1. For argument difference h = 0.01 (top right: 4(a-ii), 4(b-ii)), the
difference between each solid line (LHS) and its corresponding dotted line (RHS) is small, with percentage
difference PD ≤ 2.5% for all α ≥ 0.5. That difference is seen to decrease significantly and the two sides
become almost indistinguishable for h < 0.01 (bottom left and right: 4(a-iii, iv), 4(b-iii, iv)), with percentage
difference PD ≤ 0.25% for all α ≥ 0.5. Further comparison for Figures 4 (a), (b) data is shown as percentage
differences in Figure 4.2.
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5. CONCLUSION

An approximate semigroup property has been described for the Mittag-Leffler (ML) function, Eα(z), a
non-local extension of the Euler exponential function ez . The property, which relates the three ML functions
Eα (λ(t+ h)α), Eα(λtα), and Eα,α(λ tα), is obtained from a recently proposed universal quotient difference
representation for fractional derivatives (UQDR). Using the UDQR, whose basic properties are given, the
Caputo FD and CFD are represented as difference quotients in terms of, respectively, the ML function and
the exponential function. A property of the UDQR is then used to express the Caputo FD in terms of the
CFD, which leads to a division approximation that yields the following formula for approximating Eα(±z)
on a discrete set of points {tn}:

Eα (±(tn+1)
α

) ≈ Eα(±tnα)

(
1± 1

α

Eα,α(±tnα)

Eα(±tn)

(
(tn+1)α − tnα

))
.

The derivation also yields an approximate expression for α ↑ 1 that relates the three ML functions referred
to above with the exponential function.

Numerical experiments are presented examining the behavior of both the h-approximate and α-
approximate formulas as h → 0 and as α → 1−. It is shown that the division h-approximations are
‘reasonably accurate’ for h ≤ 0.1, with virtually no distinction from identity for h ≤ 0.01. The α-
approximations are also shown to be accurate, with virtually no distinction from identity for argument
difference 0 < h < 0.01 and α ≥ 0.5. Further comparison of the values for Figures 1.1, 2.1, 3.1, 4.1 data is
included in Figures 1.2, 2.2, 3.2, 4.2 as respective percentage difference graphs.
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