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REPRESENTATION OF SOLUTIONS OF A SECOND-ORDER SYSTEM OF TWO DIFFERENCE
EQUATIONS WITH VARIABLE COEFFICIENTS

AHMED GHEZAL∗ AND IMANE ZEMMOURI

ABSTRACT. A definition of system of two nonlinear difference equations with variable coefficients is given. Our
main result shows that the difference equation is solvable in closed form and thus for the constant coefficients.
Some applications of the main result are also given.

1. INTRODUCTION

The nonlinear difference equations and systems have been considered in a number of papers recently (cf.
in particular [1]- [14] and the references cited therein). However, there are some classical classes of solvable
difference equations and methods for solving them can be found (see, for example, [8], [9], [12], [16], [17],
[18], [19]). In particular, Stević [15] gave some additional information on the behavior of the solutions of
the following difference equation

xn+1 =
xn−1

1 + xnxn−1
, n ∈ N0.

In Clark and Kulenovic [7] investigated the global asymptotic stability and asymptotic behavior of the
following system

xn+1 =
xn

a+ cyn
, yn+1 =

yn
b+ dxn

, n ∈ N0.

Elsayed [8] has got the solutions of the following systems of the difference equations

xn+1 =
xn−1

±1 + ynxn−1
, yn+1 =

yn−1
∓1 + xnyn−1

, n ∈ N0.

Motivated by all above mentioned work, and especially by [8], here we investigate the form of the solutions
of the system of two-dimensional nonlinear difference equations

(1.1) xn+1 =
cnxn−1

an + bnynxn−1
, yn+1 =

cnyn−1
an + bnxnyn−1

, n ∈ N0.

Now, we consider system (1.1) in the case when a cn 6= 0 for all n ∈ N0. Noticing that in this case, system
(1.1) can be written in the form

xn+1 =
xn−1

ân + b̂nynxn−1
, yn+1 =

yn−1

ân + b̂nxnyn−1
, n ∈ N0.
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where ân =
an
cn

and b̂n =
bn
cn

, for all n ∈ N0, we see that we may assume that cn = 1, for all n ∈ N0. Hence

we consider, without loss of generality, the system

(1.2) xn+1 =
xn−1

an + bnynxn−1
, yn+1 =

yn−1
an + bnxnyn−1

, n ∈ N0.

using the same notation for coefficients as in (1.1) except for the coefficients cn, assuming that cn = 1, for
all n ∈ N0.

2. MAIN RESULTS

Assume that {xn, yn} is a well-defined solution to system (1.2). In this section, we investigate the solutions
of the two-dimensional system of rational difference equations (1.2). Following the idea in Bas̆tinec et al.
[3], we use a transformation which reduces rational system (1.2) to system of nonhomogeneous linear
difference equations. If we multiply the first equation in system (1.2) by yn, the second by xn, and then use
such obtained system to change the variables

(2.1) un =
1

ynxn−1
, vn =

1

xnyn−1
, n ∈ N0.

the system is, for n ∈ N0, transform into,

(2.2)

{
un+1 = anvn + bn

vn+1 = anun + bn
.

System (2.2) implies that for n ≥ 1,

(2.3)

{
un+1 = anan−1un−1 + anbn−1 + bn

vn+1 = anan−1vn−1 + anbn−1 + bn
,

where values for u0, v0 are computed by (2.1) with n = 0. System (2.3) implies that the sequences
(u2n+m) n∈N0

and (v2n+m) n∈N0
, m ∈ {0, 1}, are solutions of the system of linear difference equation

u2n =

{
2∏

i=1

a2n−i

}
u2(n−1) +

2∑
r=1

{
r−1∏
i=1

a2n−i

}
b2n−r

u2n+1 =

{
2∏

i=1

a2n+1−i

}
u2(n−1)+1 +

2∑
r=1

{
r−1∏
i=1

a2n+1−i

}
b2n+1−r

v2n =

{
2∏

i=1

a2n−i

}
v2(n−1) +

2∑
r=1

{
r−1∏
i=1

a2n−i

}
b2n−r

v2n+1 =

{
2∏

i=1

a2n+1−i

}
v2(n−1)+1 +

2∑
r=1

{
r−1∏
i=1

a2n+1−i

}
b2n+1−r

,

where
r∏

i=1

ai = 1 if r < 1. Thus, we have that the general solution of system (2.2) is

u2n = u0

{
n−1∏
s=0

2∏
i=1

a2(n−s)−i

}
+

n−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−s)−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−r)−i

}
b2(n−r)−t

)
u2n+1 = u1

{
n−1∏
s=0

2∏
i=1

a2(n−s)+1−i

}
+

n−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−s)+1−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−r)+1−i

}
b2(n−r)+1−t

)
v2n = v0

{
n−1∏
s=0

2∏
i=1

a2(n−s)−i

}
+

n−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−s)−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−r)−i

}
b2(n−r)−t

)
v2n+1 = v1

{
n−1∏
s=0

2∏
i=1

a2(n−s)+1−i

}
+

n−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−s)+1−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−r)+1−i

}
b2(n−r)+1−t

)
,

for all n ∈ N and m ∈ {0, 1}, where
r∑

i=1

ai = 0 if r < 1. The following theorem gives us the main result for

system of difference equations (2.2).
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Theorem 2.1. Let {un, vn}n≥0 be solutions of system (2.2). Then {un}n≥0 and {vn}n≥0 are given by the formulas
for n = 0, 1, ...

(2.4)

{un}n≥0 :


u2n = u0

{
n−1∏
s=0

2∏
i=1

a2(n−s)−i

}
+

n−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−s)−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−r)−i

}
b2(n−r)−t

)
u2n+1 = (a0v0 + b0)

×
{

n−1∏
s=0

2∏
i=1

a2(n−s)+1−i

}
+

n−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−s)+1−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−r)+1−i

}
b2(n−r)+1−t

) ,

and
(2.5)

{vn}n≥0 :


v2n = v0

{
n−1∏
s=0

2∏
i=1

a2(n−s)−i

}
+

n−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−s)−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−r)−i

}
b2(n−r)−t

)
v2n+1 = (a0u0 + b0)

×
{

n−1∏
s=0

2∏
i=1

a2(n−s)+1−i

}
+

n−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−s)+1−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−r)+1−i

}
b2(n−r)+1−t

) .

Corollary 2.2. In the constant case, i.e., when the coefficients are constants
(an = a and bn = b for all n ∈ N) , in the Theorem (2.1), the solution (2.4)− (2.5) reduces to

{un}n≥0 :


u2n = u0a

2n + b (1 + a)
n−1∑
r=0

a2r

u2n+1 = (a0v0 + b0) a
2n + b (1 + a)

n−1∑
r=0

a2r
,

and

{vn}n≥0 :


v2n = v0a

2n + b (1 + a)
n−1∑
r=0

a2r

v2n+1 = (a0u0 + b0) a
2n + b (1 + a)

n−1∑
r=0

a2r
.

Now note that from (2.1) we have

xn =
un−1

vn
xn−2 and yn =

vn−1
un

yn−2,

from which it follows that x2n =
u2n−1

v2n
x2(n−1)

x2n+1 =
u2n

v2n+1
x2(n−1)+1

and

 y2n =
v2n−1
u2n

y2(n−1)

y2n+1 =
v2n

u2n+1
y2(n−1)+1

, for all n ∈ N0.

On the other hand, we get explicit solutions of system (1.2), for all n ∈ N0,
x2n = x0

{
n−1∏
k=0

u2(n−k)−1

v2(n−k)

}
x2n+1 = x1

{
n−1∏
k=0

u2(n−k)

v2(n−k)+1

} and


y2n = y0

{
n−1∏
k=0

v2(n−k)−1

u2(n−k)

}
y2n+1 = y1

{
n−1∏
k=0

v2(n−k)

u2(n−k)+1

} .

Hence we have the following result.

Theorem 2.3. Let {xn, yn}n≥−1 be solutions of system (1.2). Then {xn}n≥−1 and {yn}n≥−1 are given by the
formulas for n = 0, 1, ...

(2.6)


x2n = x0 (a0 + b0x0y−1)

n
n−1∏
k=0

An,k

x2n+1 = x−1 (a0 + b0y0x−1)
−n−1 n−1∏

k=0

Bn,k

,
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and

(2.7)


y2n = y0 (a0 + b0y0x−1)

n
n−1∏
k=0

An,k

y2n+1 = y−1 (a0 + b0x0y−1)
−n−1 n−1∏

k=0

Bn,k

where

An,k =

{
n−k−2∏
s=0

2∏
i=1

a2(n−k−s)−1−i

}
+ Cn,k{

n−k−1∏
s=0

2∏
i=1

a2(n−k−s)−i

}
+Dn,k

,

Bn,k =

{
n−k−1∏
s=0

2∏
i=1

a2(n−k−s)−i

}
+Dn,k{

n−k−1∏
s=0

2∏
i=1

a2(n−k−s)+1−i

}
+ En,k

,

Cn,k =

n−k−2∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−k−s)−1−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−k−r)−1−i

}
b2(n−k−r)−1−t

)
,

Dn,k =

n−k−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−k−s)−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−k−r)−i

}
b2(n−k−r)−t

)
,

En,k =

n−k−1∑
r=0

{
r−1∏
s=0

2∏
i=1

a2(n−k−s)+1−i

}(
2∑

t=1

{
t−1∏
i=1

a2(n−k−r)+1−i

}
b2(n−k−r)+1−t

)
.

Corollary 2.4. In the constant case, in the Theorem (2.3), the solution (2.6)− (2.7) reduces to

{xn}n≥0 :

 x2n = x0 (a0 + b0x0y−1)
n

(
a2(n+1) + b (1 + a)

n∑
r=1

a2r
)−1

x2n+1 = x−1 (a+ by0x−1)
−n−1

and

{yn}n≥0 :

 y2n = y0 (a0 + b0y0x−1)
n

(
a2(n+1) + b (1 + a)

n∑
r=1

a2r
)−1

y2n+1 = y−1 (a+ bx0y−1)
−n−1

.

Remark 2.5. In this remark we use the formulae in Theorem 2.3 to get solutions of system (1.1), when cn 6= 0

for n ∈ N0. So, we replace sequences (an)n∈N0
and (bn)n∈N0

in formulas of Theorem 2.3 with sequences(
an
cn

)
n∈N0

and
(
bn
cn

)
n∈N0

.

Remark 2.6. The solutions of the one-dimensional nonlinear rational difference equation

xn+1 =
cnxn−1

an + bnxnxn−1
, n ∈ N0,

can be obtained from system (1.1) by taking x−i = y−i, i ∈ {0, 1} .

Example 2.7. We consider interesting numerical example for the difference equations system (1.1) with the
initial conditions x−1 = −2, x0 = −0.6, y−1 = 0.6 and y0 = 2. Moreover, choosing the sequences an = en+1,

bn = ln (n+ 2) and cn = n+ 3, the system (1.1) can be written as follows:

(2.8) xn+1 =
(n+ 3)xn−1

en+1 + ln (n+ 2) ynxn−1
, yn+1 =

(n+ 3) yn−1
en+1 + ln (n+ 2)xnyn−1

,
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n = 0, 1, ... The plot of the system (2.8) is shown in Figure 1.

Figure 1.This figure shows the solutions of the system (2.8),when we put

the initial conditions x−1 = −2, x0 = −0.6, y−1 = 0.6 and y0 = 2.

Example 2.8. We consider interesting numerical example for the difference equations system (1.1) with
the initial conditions x−1 = −2, x0 = 0.2, y−1 = −0.2 and y0 = −5.4. Moreover, choosing the sequences
an = 0.2, bn = 0.45 and cn = 1, the system (1.1) can be written as follows:

(2.9) xn+1 =
xn−1

0.2 + 0.45ynxn−1
, yn+1 =

yn−1
0.2 + 0.45xnyn−1

,

n = 0, 1, ... The plot of the system (2.9) is shown in Figure 2.

Figure 2. This figure shows the solutions of the system (2.9), when we put

the initial conditions x−1 = −2, x0 = 0.2, y−1 = −0.2 and y0 = −5.4.
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Corollary 2.9. In this corollary, we summarize the solution of system (1.1) in some particular cases

The case Formulas for well-defined solutions of system (1.1)

cn = 0 for all n ∈ N0 xn = yn = 0, n ∈ N

cn 6= 0 for all n ∈ N0 xn0
= 0 for x−1 = 0 x2n+1 = 0, y2n = y0

{
n∏

i=1

c2(n−i)+1

a2(n−i)+1

}
, n ∈ N

some n0 ∈ N x0 = 0 x2n = 0, y2n+1 = y−1

{
n∏

i=0

c2(n−i)

a2(n−i)

}
, n ∈ N

yn1
= 0 for y−1 = 0 x2n = x0

{
n∏

i=1

c2(n−i)+1

a2(n−i)+1

}
, y2n+1 = 0, n ∈ N

some n1 ∈ N y0 = 0 x2n+1 = x−1

{
n∏

i=0

c2(n−i)

a2(n−i)

}
, y2n = 0, n ∈ N

Table 1 : Formulas for well-defined solutions of system (1.1) for certain cases.

3. CONCLUSION

In this paper, we have consider the following two nonlinear difference equations with variable coefficients,

xn+1 =
cnxn−1

an + bnynxn−1
, yn+1 =

cnyn−1
an + bnxnyn−1

, n ∈ N0,

where the sequences (an), (bn) , (cn) and initial values x−i, y−i, i ∈ {0, 1} are non-zero real numbers, for all
n ∈ N0. We have obtained the explicit form of solutions of the aforementioned system using homogeneous
linear difference equation to variable coefficients associated to the system. In particular, we have also
obtained the closed-form of well-defined solutions of the two-dimensional systems of nonlinear rational
difference equations with constant coefficients. The aforementioned two-dimensional system can extend
to the three (resp. higher)-dimensional system of difference equations which is variable coefficients or
constant coefficients as special cases.
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[4] L. Berg, S. Stević, On some systems of difference equations. Appl. Math. Comp. 218 (2011), 1713-1718.
[5] L. Berg, S. Stević, On the asymptotics of some systems of difference equations, J. Diff. Equ. Appl. 17 (2011), 1291-1301.
[6] C. Çinar, On the positive solutions of the difference equation xn+1 = xn−1/ (1 + axnxn−1). Applied Mathematics and Compu-

tation, 158 (2004), 809-812.
[7] D. Clark, M. R. S. Kulenovic, A coupled system of rational difference equations. Comp. Math. Appl. 43 (2002), 849-867.
[8] E. M. Elsayed, Solutions of rational difference system of order two, Math. Comp. Model. 55 (2012), 378-384.
[9] E. M. Elsayed, Solution for systems of difference equations of rational form of order two, Comp. Appl. Math. 33 (2014), 751-765.

[10] E. M., Elsayed, H. S. Gafel, On some systems of three nonlinear difference equations, J. Comp. Anal. Appl. 29 (2021), 86-108.
[11] N. Fotiades, G. Papaschinopoulos, On a system of difference equations with maximum, Appl. Math. Comp. 221 (2013), 684-690.
[12] M. Kara, Y. Yazlik, Solvability of a system of nonlinear difference equations of higher order, Turkish J. Math. 43 (2019), 1533-1565.
[13] A.Y. Özban, On the positive solutions of the system of rational difference equations xn+1 = 1/yn−k, yn+1 = yn/xn−myn−m−k ,

J. Math. Anal. Appl. 323 (2006), 26-32.
[14] G. Papaschinopoulos, G. Stefanidou, Asymptotic behavior of the solutions of a class of rational difference equations, Int. J. Diff.

Equ. 5 (2010), 233-249.
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