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THE SOLUTION EXPRESSIONS AND THE PERIODICITY SOLUTIONS OF SOME NONLINEAR
DISCRETE SYSTEMS

TURKI D. ALHARBI1,2,∗ AND ELSAYED M. ELSAYED1,3

ABSTRACT. The principle purpose of this paper is to investigate the long-term behaviors of some nonlinear sys-
tems of difference equations and obtain these solution expressions and periodicity character. Furthermore, we
use MATLAB programming to simulate the dynamics and confirm our results.

.

1. INTRODUCTION

This paper discusses the form of the solutions and the periodic solution character of some fractional
difference equations systems

(1.1) zn+1 =
tntn−3

zn−2(1 + tntn−3)
, tn+1 =

znzn−3

tn−2(±1± znzn−3)

where the initial values z−3, z−2, z−1, z0, t−3, t−2, t−1 and t0 are non-zero real numbers.

In the past decades, the theory of discrete dynamical systems consisting of difference equations has been
used to explain natural phenomena that change over discrete time. A large number of studies have ana-
lyzed many real-life problems that occur in population dynamics, genetics in biology, engineering, queuing
problems, electrical networks, physics, economics, etc. Some scientists have recently discussed the long-
term behaviors of nonlinear systems of difference equations when the form of these solutions are difficult
to obtain. For instance, Gumus et al. [12] investigated the qualitative properties of the behavior, such as
local and global stability of the equilibrium points, the existence of unbounded solutions, and periodicity
solutions of the following system

un+1 =
αu2n−1

β + γvn−2
, vn+1 =

α1v
2
n−1

β1 + γ1un−2
.

Din [9] analyzed and obtained the equilibrium points, local asymptotic stability, and global behavior of the
equilibrium points of Lotka-Volterra model which is illustrated by the system

xn+1 =
αxn − βxnyn

1 + γxn
, yn+1 =

δyn − εxnyn
1 + ηyn
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However, obtaining the solution forms of nonlinear systems of difference equations is of great interest
to researchers. Here are some recent studies in [5] the obtained theoretical results have been formed and
verified numerically by Alayachi et al. for the discrete dynamical systems

Xn+1 =
Xn−3Yn−4

Yn(1 +Xn−1Yn−2Xn−3Yn−4)
, Yn+1 =

Yn−3Xn−4

Xn(1 + Yn−1Xn−2Yn−3Xn−4)
.

Kara et al. [16] illustrated that the following difference equations system can be solved in closed-form

xn+1 =
xn−2yn−3

yn−1(an + bnxn−2yn−3)
, yn+1 =

yn−2xn−3

xn−1(αn + βnyn−2xn−3)
.

In [11] El-Dessoky et al. provided the form of solutions and the periodicity character of rational systems of
difference equations

Tn+1 =
Tn−1Zn

±Tn ± Tn−1
, Zn+1 =

Zn−1Tn
±Zn ± Zn−1

.

Touafek et al. [22] investigated the periodic nature and got the solution expressions of the following rational
difference equations systems

xn+1 =
xn−3

±1± xn−3yn−1
, yn+1 =

yn−3

±1± yn−3xn−1
.

For more related studies on systems of non-linear difference equations, we refer the reader to [1-22] and
references cited therein.

2. MAIN RESULTS

2.1. The First System. This subsection discusses the form of solutions of the following system

(2.1) zn+1 =
tntn−3

zn−2(1 + tntn−3)
, tn+1 =

znzn−3

tn−2(1 + znzn−3)

where n = 0, 1, 2, ... and the initial conditions are arbitrary nonzero real numbers.

Theorem 2.1. Assume that {zn, tn} are solutions of system (2.1). Then for n ≥ 0, the solutions of system (2.1) can
be formed as follows

z6n−3 =
AnDn

andn−1

n−1∏
i=0

( 1 + (6i)ad

1 + (6i+ 3)AD

)
, t6n−3 =

andn

AnDn−1

n−1∏
i=0

( 1 + (6i)AD

1 + (6i+ 3)ad

)

z6n−2 =
andnc

AnDn

n−1∏
i=0

(1 + (6i+ 1)AD

1 + (6i+ 4)ad

)
, t6n−2 =

AnDnC

andn

n−1∏
i=0

( 1 + (6i+ 1)ad

1 + (6i+ 4)AD

)

z6n−1 =
AnDnb

andn

n−1∏
i=0

( 1 + (6i+ 2)ad

1 + (6i+ 5)AD

)
, t6n−1 =

andnB

AnDn

n−1∏
i=0

(1 + (6i+ 2)AD

1 + (6i+ 5)ad

)

z6n =
an+1dn

AnDn

n−1∏
i=0

(1 + (6i+ 3)AD

1 + (6i+ 6)ad

)
, t6n =

An+1Dn

andn

n−1∏
i=0

( 1 + (6i+ 3)ad

1 + (6i+ 6)AD

)

z6n+1 =
An+1Dn+1

andnc(1 +AD)

n−1∏
i=0

( 1 + (6i+ 4)ad

1 + (6i+ 7)AD

)
, t6n+1 =

an+1dn+1

AnDnC(1 + ad)

n−1∏
i=0

(1 + (6i+ 4)AD

1 + (6i+ 7)ad

)

z6n+2 =
an+1dn+1

AnDnb(1 + 2ad)

n−1∏
i=0

(1 + (6i+ 5)AD

1 + (6i+ 8)ad

)
, t6n+2 =

An+1Dn+1

andnB(1 + 2AD)

n−1∏
i=0

( 1 + (6i+ 5)ad

1 + (6i+ 8)AD

)
where z−3 = d, z−2 = c, z−1 = b, z0 = a, t−3 = D, t−2 = C, t−1 = B, and t0 = A.
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Proof. It is clear that for n = 0 the results are true. Now for n > 0, assume the results hold for n − 1 and
they are given as follows

z6n−9 =
An−1Dn−1

an−1dn−2

n−2∏
i=0

( 1 + (6i)ad

1 + (6i+ 3)AD

)
, t6n−9 =

an−1dn−1

An−1Dn−2

n−2∏
i=0

( 1 + (6i)AD

1 + (6i+ 3)ad

)

z6n−8 =
an−1dn−1c

An−1Dn−1

n−2∏
i=0

(1 + (6i+ 1)AD

1 + (6i+ 4)ad

)
, t6n−2 =

An−1Dn−1C

an−1dn−1

n−2∏
i=0

( 1 + (6i+ 1)ad

1 + (6i+ 4)AD

)

z6n−7 =
An−1Dn−1b

an−1dn−1

n−2∏
i=0

( 1 + (6i+ 2)ad

1 + (6i+ 5)AD

)
, t6n−1 =

an−1dn−1B

An−1Dn−1

n−2∏
i=0

(1 + (6i+ 2)AD

1 + (6i+ 5)ad

)

z6n−6 =
andn−1

An−1Dn−1

n−2∏
i=0

(1 + (6i+ 3)AD

1 + (6i+ 6)ad

)
, t6n−6 =

AnDn−1

an−1dn−1

n−2∏
i=0

( 1 + (6i+ 3)ad

1 + (6i+ 6)AD

)

z6n−5 =
AnDn

an−1dn−1c(1 +AD)

n−2∏
i=0

( 1 + (6i+ 4)ad

1 + (6i+ 7)AD

)
,

t6n−5 =
andn

An−1Dn−1C(1 + ad)

n−2∏
i=0

(1 + (6i+ 4)AD

1 + (6i+ 7)ad

)

z6n−4 =
andn

An−1Dn−1b(1 + 2ad)

n−2∏
i=0

(1 + (6i+ 5)AD

1 + (6i+ 8)ad

)
,

t6n−4 =
AnDn

an−1dn−1B(1 + 2AD)

n−2∏
i=0

( 1 + (6i+ 5)ad

1 + (6i+ 8)AD

)
Now, the first relation will be proven.
After substituting 6n− 3 into system (2.1). We get

z6n−3 =
t6n−4t6n−7

z6n−6(1 + t6n−4t6n−7)
,

z6n−3 =

AnDn

an−1dn−1B(1+2AD)

∏n−2
i=0

(
1+(6i+5)ad
1+(6i+8)AD

)
an−1dn−1B
An−1Dn−1

∏n−2
i=0

(
1+(6i+2)AD
1+(6i+5)ad

)
andn−1

An−1Dn−1

∏n−2
i=0

(
1+(6i+3)AD
1+(6i+6)ad

)(
1 + AD

1+2AD

∏n=2
i=0

(
1+(6i+2)AD
1+(6i+8)AD

) ,

so,

z6n−3 =

AD
1+(6n−4)AD

andn−1

An−1Dn−1

∏n−2
i=0

(
1+(6i+3)AD
1+(6i+6)ad

)(
1+(6n−4)AD+AD

1+(6n−4)AD

)
z6n−3 =

AnDn

(andn−1)(1 + (6n− 3)AD

n−2∏
i=0

1 + (6i+ 6)ad

1 + (6i+ 3)AD
.

Therefore,

z6n−3 =
AnDn

andn−1

n−1∏
i=0

( 1 + (6i)ad

1 + (6i+ 3)AD

)
.

t6n−3 =
z6n−4z6n−7

t6n−6(1 + z6n−4z6n−7)
,

t6n−3 =

andn

An−1Dn−1b(1+2ad)

∏n−2
i=0

(
1+(6i+5)AD
1+(6i+8)ad

)
An−1Dn−1b
an−1dn−1

∏n−2
i=0

(
1+(6i+2)ad
1+(6i+5)AD

)
AnDn−1

an−1dn−1

∏n−2
i=0

(
1+(6i+3)ad
1+(6i+6)AD

)(
1 + ad

1+2ad

∏n=2
i=0

(
1+(6i+2)ad
1+(6i+8)ad

) ,



Pan-Amer. J. Math. 2 (2023), 3 4

then,

t6n−3 =

ad
1+(6n−4)ad

AnDn−1

an−1dn−1

∏n−2
i=0

(
1+(6i+3)ad
1+(6i+6)AD

)(
1+(6n−4)ad+ad

1+(6n−4)ad

)
t6n−3 =

andn

(AnDn−1)(1 + (6n− 3)ad

n−2∏
i=0

1 + (6i+ 6)AD

1 + (6i+ 3)ad
.

Consequently,

t6n−3 =
andn

AnDn−1

n−1∏
i=0

( 1 + (6i)AD

1 + (6i+ 3)ad

)
Similarly, we can prove the remaining relations. The proof is complete. �

We simulate the difference equations system (2.1) numerically by using MATLAB programming. Figure
1 shows the behavior of the system under the random values z−3 = 0.4, z−2 = −1.5, z−1 = 4, z0 = 1,
t−3 = 2, t−2 = −1.3, t−1 = 5 and t0 = 0.5.

FIGURE 1. The Dynamics of The Solution of The System (2.1)

2.2. The Second System. In this subsection, we provide the solution expression and periodic solutions of
period six for the following system.

(2.2) zn+1 =
tntn−3

zn−2(1 + tntn−3)
, tn+1 =

znzn−3

tn−2(1− znzn−3)

where n = 0, 1, 2, ... and the initial conditions are arbitrary nonzero real numbers.

Theorem 2.2. Let {zn, tn} be solutions of the system of non-linear difference equations (2.2). Then for n = 0, 1, 2, ..,
the solutions of system (2.2) can be formed as follows

z6n−3 =
AnDn

andn−1(1 +AD)n
, t6n−3 =

andn

AnDn−1(1− ad)n

z6n−2 =
andnc(1 +AD)n

AnDn
, t6n−3 =

AnDnC(1− ad)n

andn
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z6n−1 =
AnDnb

andn(1 +AD)n
, t6n−1 =

andnB

AnDn(1− ad)n

z6n =
an+1dn(1 +AD)n

AnDn
, t6n =

An+1Dn(1− ad)n

andn

z6n+1 =
An+1Dn+1

andnc(1 +AD)n+1
, t6n+1 =

an+1dn+1

AnDnC(1− ad)n+1

z6n+2 =
an+1dn+1(1 +AD)n

AnDnb
, t6n+2 =

An+1Dn+1(1− ad)n

andnB

Proof. The results are true for n = 0. Now for n > 0, assume the results hold for n− 1 and they are given as
follows

z6n−9 =
An−1Dn−1

an−1dn−2(1 +AD)n−1
, t6n−9 =

an−1dn−1

An−1Dn−2(1− ad)n−1

z6n−8 =
an−1dn−1c(1 +AD)n−1

An−1Dn−1
, t6n−8 =

An−1Dn−1C(1− ad)n−1

an−1dn−1

z6n−7 =
An−1Dn−1b

an−1dn−1(1 +AD)n−1
, t6n−7 =

an−1dn−1B

An−1Dn−1(1− ad)n−1

z6n−6 =
andn−1(1 +AD)n−1

An−1Dn−1
, t6n−6 =

AnDn−1(1− ad)n−1

an−1dn−1

z6n−5 =
AnDn

an−1dn−1c(1 +AD)n
, t6n−5 =

andn

An−1Dn−1C(1− ad)n

z6n−4 =
andn(1 +AD)n−1

An−1Dn−1b
, t6n−4 =

AnDn(1− ad)n−1

an−1dn−1B
.

Now, we prove the first relation.
Substituting 6n− 3 into system (2.2). We get

z6n−3 =
t6n−4t6n−7

z6n−6(1 + t6n−4t6n−7)
,

z6n−3 =

AnDn(1−ad)n−1

an−1dn−1B
an−1dn−1B

An−1Dn−1(1−ad)n−1

andn−1(1+AD)n−1

An−1Dn−1

(
1 + AnDn(1−ad)n−1

an−1dn−1B
an−1dn−1B

An−1Dn−1(1−ad)n−1

) ,
thus,

z6n−3 =
AD

andn−1(1+AD)n−1

An−1Dn−1

(
1 +AD

) .
Therefore,

z6n−3 =
AnDn

andn−1(1 +AD)n
.

t6n−3 =
z6n−4z6n−7

t6n−6(1 + z6n−4z6n−7)
,

t6n−3 =

andn(1+AD)n−1

An−1Dn−1b
An−1Dn−1b

an−1dn−1(1+AD)n−1

AnDn−1(1−ad)n−1

an−1dn−1

(
1 + andn(1+AD)n−1

An−1Dn−1b
An−1Dn−1b

an−1dn−1(1+AD)n−1

) ,
so,

t6n−3 =
ad

AnDn−1(1+ad)n−1

an−1dn−1

(
1 + ad

) .
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Hence,

t6n−3 =
andn

AnDn−1(1 + ad)n
.

Following the same approach, we can verify the other forms. The proof is complete. �

Theorem 2.3. The system of non-linear difference equation (2.2) has a periodic solution of period six iff AD = −2,
ad = 2 and it will take the following form

{zn} = {d, c, b, a,
−AD
c

,
ad

b
, d, c, b, a,

−AD
c

,
ad

b
, ...},

{tn} = {D,C,B,A,
−ad
C

,
AD

B
,D,C,B,A,

−ad
C

,
AD

B
, ...}.

Proof. Suppose that a prime period six solution exists

{zn} = {d, c, b, a,
−AD
c

,
ad

b
, d, c, b, a,

−AD
c

,
ad

b
, ...},

{tn} = {D,C,B,A,
−ad
C

,
AD

B
,D,C,B,A,

−ad
C

,
AD

B
, ...}

of system (2.2). Then, we can recognize from the form of the solution of system (2.2) that

d =
AnDn

andn−1(1 +AD)n
, D =

andn

AnDn−1(1− ad)n

c =
andnc(1 +AD)n

AnDn
, C =

AnDnC(1− ad)n

andn

b =
AnDnb

andn(1 +AD)n
, B =

andnB

AnDn(1− ad)n

a =
an+1dn(1 +AD)n

AnDn
, A =

An+1Dn(1− ad)n

andn

−AD
c

=
An+1Dn+1

andnc(1 +AD)n+1
,
−ad
C

=
an+1dn+1

AnDnC(1− ad)n+1

ad

b
=
an+1dn+1(1 +AD)n

AnDnb
,
AD

B
=
An+1Dn+1(1− ad)n

andnB
.

So,
AD = −2, ad = 2.

Then, assmue that AD = −2 , ad = 2. Consequently, we see from the form of solution of system (2.2) that

z6n−3 = d , t6n−3 = D

z6n−2 = c, t6n−3 = C

z6n−1 = b, t6n−1 = B

z6n = a, t6n = A

z6n+1 =
−AD
c

, t6n+1 =
−ad
C

z6n+2 =
ad

b
, t6n+2 =

AD

B
.

Therefore, we have a periodic solution of period six. The proof is complete. �
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The following figures are confirmed our theoretical results numerically by simulating the system (2.2).
Figure (2) illustrates the behavior of the system when the initial values are z−3 = 1, z−2 = −0.5, z−1 = 2,
z0 = 2.3, t−3 = 4, t−2 = −1.1, t−1 = 4 and t0 = −0.5. While figure (3), displays that the solution is periodic
of period six when the initial conditions are z−3 = 4, z−2 = −5, z−1 = 7, z0 = 0.5, t−3 = 4, t−2 = −9,
t−1 = 3 and t0 = −0.5. And it is clear that the initial values satisfied the condition of Theorem (2.3).

FIGURE 2. The Dynamics of The Solution of The System (2.2)

FIGURE 3. The Dynamics of The Solution of The System (2.2)

2.3. The Third System. In this part, the solution expressions is explored. Moreover, we illustrate the peri-
odicity character of the following system

(2.3) zn+1 =
tntn−3

zn−2(1 + tntn−3)
, tn+1 =

znzn−3

tn−2(−1− znzn−3)
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where n = 0, 1, 2, ... and the initial conditions are arbitrary nonzero real numbers.

Theorem 2.4. Assume that {zn, tn} are solutions of the system (2.3). Then for n = 0, 1, 2, 3, .. the solutions of
system (2.3) can be formed as follows

z12n−3 =
A2nD2n

a2nd2n−1(1 +AD)2n
, t12n−3 =

(−1)na2nd2n(−1− 2AD)n

A2nD2n−1(−1 + ad)n(−1− ad)n

z12n−2 =
a2nd2nc(1 +AD)2n

A2nD2n
, t12n−2 =

A2nD2nC(−1− ad)n(−1 + ad)n

(−1)na2nd2n(−1− 2AD)n

z12n−1 =
A2nD2nb

a2nd2n(−1−AD)2n
, t12n−1 =

(−1)na2nd2nB(−1− 2AD)n

A2nD2n(−1 + ad)n(−1− ad)n

z12n =
a2n+1d2n(1 +AD)2n

A2nD2n
, t12n =

A2n+1D2n(−1− ad)n(−1 + ad)n

(−1)na2nd2n(−1− 2AD)n

z12n+1 =
A2n+1D2n+1

a2nd2nc(1 +AD)2n+1
, t12n+1 =

(−1)na2n+1d2n+1(−1− 2AD)n

A2nD2nC(−1 + ad)n(−1− ad)n+1

z12n+2 =
a2n+1d2n+1(−1−AD)2n

−A2nD2nb
, t12n+2 =

A2n+1D2n+1(−1− ad)n(−1 + ad)n

(−1)na2nd2nB(−1− 2AD)n+1

z12n+3 =
A2n+1D2n+1

−a2n+1d2n(1 +AD)2n+1
, t12n+3 =

(−1)n+1a2n+1d2n+1(−1− 2AD)n

A2n+1D2n(−1 + ad)n+1(−1− ad)n

z12n+4 =
a2n+1d2n+1c(1 +AD)2n+1

A2n+1D2n+1
, t12n+4 =

A2n+1D2n+1C(−1− ad)n+1(−1 + ad)n

(−1)na2n+1d2n+1(−1− 2AD)n

z12n+5 =
A2n+1D2n+1b

a2n+1d2n+1(−1−AD)2n+1
, t12n+5 =

(−1)na2n+1d2n+1B(−1− 2AD)n+1

A2n+1D2n+1(−1 + ad)n(−1− ad)n+1

z12n+6 =
a2n+2d2n+1(1 +AD)2n+1

A2n+1D2n+1
, t12n+6 =

A2n+2D2n+1(−1− ad)n(−1 + ad)n+1

(−1)n+1a2n+1d2n+1(−1− 2AD)n+1

z12n+7 =
A2n+2D2n+2

−a2n+1d2n+1c(1 +AD)2n+2
, t12n+7 =

(−1)n+1a2n+2d2n+2(−1− 2AD)n

A2n+1D2n+1C(−1 + ad)n+1(−1− ad)n+1

z12n+8 =
a2n+2d2n+2(−1−AD)2n+1

A2n+1D2n+1b
, t12n+8 =

A2n+2D2n+2(−1− ad)n+1(−1 + ad)n

(−1)na2n+1d2n+1B(−1− 2AD)n+1

Proof. The results are true for n = 0. Now for n > 0, assume the results hold for n− 1 and they are given as
follows

z12n−15 =
A2n−2D2n−2

a2n−2d2n−3(1 +AD)2n−2
, t12n−15 =

(−1)n−1a2n−2d2n−2(−1− 2AD)n−1

A2n−2D2n−3(−1 + ad)n−1(−1− ad)n−1

z12n−14 =
a2n−2d2n−2c(1 +AD)2n−2

A2n−2D2n−2
, t12n−14 =

A2n−2D2n−2C(−1− ad)n−1(−1 + ad)n−1

(−1)n−1a2n−2d2n−2(−1− 2AD)n−1

z12n−13 =
A2n−2D2n−2b

a2n−2d2n−2(−1−AD)2n−2
, t12n−13 =

(−1)n−1a2n−2d2n−2B(−1− 2AD)n−1

A2n−2D2n−2(−1 + ad)n−1(−1− ad)n−1

z12n−12 =
a2n−1d2n−2(1 +AD)2n−2

A2n−2D2n−2
, t12n−12 =

A2n−1D2n−2(−1− ad)n−1(−1 + ad)n−1

(−1)n−1a2n−2d2n−2(−1− 2AD)n−1

z12n−11 =
A2n−1D2n−1

a2n−2d2n−2c(1 +AD)2n−1
, t12n−11 =

(−1)n−1a2n−1d2n−1(−1− 2AD)n−1

A2n−2D2n−2C(−1 + ad)n−1(−1− ad)n
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z12n−10 =
a2n−1d2n−1(−1−AD)2n−2

−A2n−2D2n−2b
, t12n−10 =

A2n−1D2n−1(−1− ad)n−1(−1 + ad)n−1

(−1)n−1a2n−2d2n−2B(−1− 2AD)n

z12n−9 =
A2n−1D2n−1

−a2n−1d2n−2(1 +AD)2n−1
, t12n−9 =

(−1)na2n−1d2n−1(−1− 2AD)n−1

A2n−1D2n−2(−1 + ad)n(−1− ad)n−1

z12n−8 =
a2n−1d2n−1c(1 +AD)2n−1

A2n−1D2n−1
, t12n−8 =

A2n−1D2n−1C(−1− ad)n(−1 + ad)n−1

(−1)n−1a2n−1d2n−1(−1− 2AD)n−1

z12n−7 =
A2n−1D2n−1b

a2n−1d2n−1(−1−AD)2n−1
, t12n−7 =

(−1)n−1a2n−1d2n−1B(−1− 2AD)n

A2n−1D2n−1(−1 + ad)n−1(−1− ad)n

z12n−6 =
a2nd2n−1(1 +AD)2n−1

A2n−1D2n−1
, t12n−6 =

A2nD2n−1(−1− ad)n−1(−1 + ad)n

(−1)na2n−1d2n−1(−1− 2AD)n

z12n−5 =
A2nD2n

−a2n−1d2n−1c(1 +AD)2n
, t12n−5 =

(−1)na2nd2n(−1− 2AD)n−1

A2n−1D2n−1C(−1 + ad)n(−1− ad)n

z12n−4 =
a2nd2n(−1−AD)2n−1

A2n−1D2n−1b
, t12n−4 =

A2nD2n(−1− ad)n(−1 + ad)n−1

(−1)n−1a2n−1d2n−1B(−1− 2AD)n
.

We prove the first form.
Substituting 12n− 3 into the system of difference equations (2.3). We get

z12n−3 =
t12n−4t12n−7

z12n−6(1 + t12n−4t12n−7)
,

z12n−3 =

A2nD2n(−1−ad)n(−1+ad)n−1

(−1)n−1a2n−1d2n−1B(−1−2AD)n
(−1)n−1a2n−1d2n−1B(−1−2AD)n

A2n−1D2n−1(−1+ad)n−1(−1−ad)n

a2nd2n−1(1+AD)2n−1

A2n−1D2n−1 (1 +AD)
,

so,

z12n−3 =
AD

a2nd2n−1(1+AD)2n−1

A2n−1D2n−1 (1 +AD)
.

Consequently,

z12n−3 =
A2nD2n

a2nd2n−1(1 +AD)2n
.

t12n−3 =
z12n−4z12n−7

t12n−6(−1− t12n−4t12n−7)
,

t12n−3 =

a2nd2n(−1−AD)2n−1

A2n−1D2n−1b
A2n−1D2n−1b

a2n−1d2n−1(−1−AD)2n−1

A2nD2n−1(−1−ad)n−1(−1+ad)n

(−1)na2n−1d2n−1(−1−2AD)n (−1− ad)
,

then,

t12n−3 =
ad

A2nD2n−1(−1−ad)n−1(−1+ad)n

(−1)na2n−1d2n−1(−1−2AD)n (−1− ad)
.

Therefore,

t12n−3 =
(−1)na2nd2n(−1− 2AD)n

A2nD2n−1(−1− ad)n(−1 + ad)n
.

The proof is completed . �



Pan-Amer. J. Math. 2 (2023), 3 10

Theorem 2.5. The system of non-linear difference equation (2.3) has a periodic solution of period twelve iffAD = −2,
ad = 2 and it will take the following form

{zn} = {d, c, b, a,
−AD
c

,
−ad
b
,
AD

a
, c,−b, a, AD

c
,
−ad
b
...},

{tn} =
{
D,C,B,A, ad

C(−1−ad) ,
−AD

B(−1−2AD) ,
−ad
A ,−C(−1− ad), B, A

(−1−2AD) ,
−ad

(−1−ad) ,
AD
B , ....

}
Proof. Suppose that a prime period twelve solution exists

{zn} = {d, c, b, a,
−AD
c

,
−ad
b
,
AD

a
, c,−b, a, AD

c
,
−ad
b
...},

{tn} =
{
D,C,B,A, ad

C(−1−ad) ,
−AD

B(−1−2AD) ,
−ad
A ,−C(−1− ad), B, A

(−1−2AD) ,
−ad

(−1−ad) ,
AD
B , ....

}
of the system (2.3). Then, we see from the solution’s form of system (2.3) that

d =
A2nD2n

a2nd2n−1(1 +AD)2n
, D =

(−1)na2nd2n(−1− 2AD)n

A2nD2n−1(−1 + ad)n(−1− ad)n

c =
a2nd2nc(1 +AD)2n

A2nD2n
, C =

A2nD2nC(−1− ad)n(−1 + ad)n

(−1)na2nd2n(−1− 2AD)n

b =
A2nD2nb

a2nd2n(−1−AD)2n
, B =

(−1)na2nd2nB(−1− 2AD)n

A2nD2n(−1 + ad)n(−1− ad)n

a =
a2n+1d2n(1 +AD)2n

A2nD2n
, A =

A2n+1D2n(−1− ad)n(−1 + ad)n

(−1)na2nd2n(−1− 2AD)n

−AD
c

=
A2n+1D2n+1

a2nd2nc(1 +AD)2n+1
,

ad

C(−1− ad)
=

(−1)na2n+1d2n+1(−1− 2AD)n

A2nD2nC(−1 + ad)n(−1− ad)n+1

−ad
b

=
a2n+1d2n+1(−1−AD)2n

−A2nD2nb
,

−AD
B(−1− 2AD)

=
A2n+1D2n+1(−1− ad)n(−1 + ad)n

(−1)na2nd2nB(−1− 2AD)n+1

AD

a
=

A2n+1D2n+1

−a2n+1d2n(1 +AD)2n+1
,
−ad
A

=
(−1)n+1a2n+1d2n+1(−1− 2AD)n

A2n+1D2n(−1 + ad)n+1(−1− ad)n

c =
a2n+1d2n+1c(1 +AD)2n+1

A2n+1D2n+1
, −C(−1− ad) = A2n+1D2n+1C(−1− ad)n+1(−1 + ad)n

(−1)na2n+1d2n+1(−1− 2AD)n

−b = A2n+1D2n+1b

a2n+1d2n+1(−1−AD)2n+1
, B =

(−1)na2n+1d2n+1B(−1− 2AD)n+1

A2n+1D2n+1(−1 + ad)n(−1− ad)n+1

a =
a2n+2d2n+1(1 +AD)2n+1

A2n+1D2n+1
,

A

(−1− 2AD)
=
A2n+2D2n+1(−1− ad)n(−1 + ad)n+1

(−1)n+1a2n+1d2n+1(−1− 2AD)n+1

AD

c
=

A2n+2D2n+2

−a2n+1d2n+1c(1 +AD)2n+2
,

−ad
(−1− ad)

=
(−1)n+1a2n+2d2n+2(−1− 2AD)n

A2n+1D2n+1C(−1 + ad)n+1(−1− ad)n+1

−ad
b

=
a2n+2d2n+2(−1−AD)2n+1

A2n+1D2n+1b
,
AD

B
=
A2n+2D2n+2(−1− ad)n+1(−1 + ad)n

(−1)na2n+1d2n+1B(−1− 2AD)n+1

So,
AD = −2, ad = 2.

Then, suppose that AD = −2 , ad = 2. Thus, we see from the form of the solution of system(2.3) that

z12n−3 = d , t12n−3 = D
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z12n−2 = c , t12n−2 = C

z12n−1 = b , t12n−1 = B

z12n = a , t12n = A

z12n+1 =
−AD
c

, t12n+1 =
ad

C(−1− ad)

z12n+2 =
−ad
b

, t12n+2 =
−AD

B(−1− 2AD)

z12n+3 =
AD

a
, t12n+3 =

−ad
A

z12n+4 = c , t12n+4 = −C(−1− ad)

z12n+5 = −b , t12n+5 = B

z12n+6 = a , t12n+6 =
A

(−1− 2AD)

z12n+7 =
AD

c
, t12n+7 =

−ad
(−1− ad)

z12n+8 =
−ad
b

, t12n+8 =
AD

B
.

Therefore, we have a periodic solution of period twelve. The proof is complete. �

Now, our results of the system (2.3) are verified numerically. In figure (4), the behavior represents the
dynamics of the system when the initial values are z−3 = 1, z−2 = −0.5, z−1 = 2, z0 = 2.4, t−3 = 4,
t−2 = −1.1, t−1 = 4 and t0 = −0.5. Figure (5) confirms that the solution is periodic of period twelve when
Theorem 2.5 is satisfied and the initial values are z−3 = 4, z−2 = −5, z−1 = 7, z0 = 0.5, t−3 = 1, t−2 = −1,
t−1 = 4 and t0 = −2.

2.4. The Fourth System. In this part, the solution’s form and the periodicity character are investigated for
the following system

(2.4) zn+1 =
tntn−3

zn−2(1 + tntn−3)
, tn+1 =

znzn−3

tn−2(−1 + znzn−3)

where n = 0, 1, 2, ... and the initial conditions are arbitrary nonzero real numbers.

Theorem 2.6. Suppose that {zn, tn} are solutions of the system (2.4). Then for n = 0, 1, 2, 3, .. the solutions of
system (2.4) can be formed as follows

z12n−3 =
A2nD2n(2ad− 1)n

a2nd2n−1(AD − 1)n(AD + 1)n
, t12n−3 =

a2nd2n

A2nD2n−1(ad− 1)2n

z12n−2 =
a2nd2nc(AD − 1)n(AD + 1)n

A2nD2n(2ad− 1)n
, t12n−2 =

A2nD2nC(ad− 1)2n

a2nd2n

z12n−1 =
A2nD2nb(2ad− 1)n

a2nd2n(AD − 1)n(AD + 1)n
, t12n−1 =

a2nd2nB

A2nD2n(ad− 1)2n
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FIGURE 4. The Dynamics of The Solution of The System (2.3)

FIGURE 5. The Dynamics of The Solution of The System (2.3)

z12n =
a2n+1d2n(AD − 1)n(AD + 1)n

A2nD2n(2ad− 1)n
, t12n =

A2n+1D2n(ad− 1)2n

a2nd2n

z12n+1 =
A2n+1D2n+1(2ad− 1)n

a2nd2nc(AD − 1)n(AD + 1)n+1
, t12n+1 =

a2n+1d2n+1

A2nD2nC(ad− 1)2n+1

z12n+2 =
a2n+1d2n+1(AD − 1)n(AD + 1)n

A2nD2nb(2ad− 1)n+1
, t12n+2 =

−A2n+1D2n+1(ad− 1)2n

a2nd2nB

z12n+3 =
A2n+1D2n+1(2ad− 1)n

a2n+1d2n(AD − 1)n+1(AD + 1)n
, t12n+3 =

a2n+1d2n+1

−A2n+1D2n(ad− 1)2n+1
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z12n+4 =
a2n+1d2n+1c(AD − 1)n(AD + 1)n+1

A2n+1D2n+1(2ad− 1)n
, t12n+4 =

A2n+1D2n+1C(ad− 1)2n+1

a2n+1d2n+1

z12n+5 =
A2n+1D2n+1b(2ad− 1)n+1

a2n+1d2n+1(AD − 1)n(AD + 1)n+1
, t12n+5 =

−a2n+1d2n+1B

A2n+1D2n+1(ad− 1)2n+1

z12n+6 =
a2n+2d2n+1(AD − 1)n+1(AD + 1)n

A2n+1D2n+1(2ad− 1)n+1
, t12n+6 =

A2n+2D2n+1(ad− 1)2n+1

a2n+1d2n+1

z12n+7 =
A2n+2D2n+2(2ad− 1)n

a2n+1d2n+1c(AD − 1)n+1(AD + 1)n+1
, t12n+7 =

−a2n+2d2n+2

A2n+1D2n+1C(ad− 1)2n+2

z12n+8 =
a2n+2d2n+2(AD − 1)n(AD + 1)n+1

A2n+1D2n+1b(2ad− 1)n+1
, t12n+8 =

−A2n+2D2n+2(ad− 1)2n+1

a2n+1d2n+1B

Proof. The results are true for n = 0. Now for n > 0, assume the results hold for n− 1 and they are given as
follows

z12n−15 =
A2n−2D2n−2(2ad− 1)n−1

a2n−2d2n−3(AD − 1)n−1(AD + 1)n−1
, t12n−15 =

a2n−2d2n−2

A2n−2D2n−3(ad− 1)2n−2

z12n−14 =
a2n−2d2n−2c(AD − 1)n−1(AD + 1)n−1

A2n−2D2n−2(2ad− 1)n−1
, t12n−14 =

A2n−2D2n−2C(ad− 1)2n−2

a2n−2d2n−2

z12n−13 =
A2n−2D2n−2b(2ad− 1)n−1

a2n−2d2n−2(AD − 1)n−1(AD + 1)n−1
, t12n−13 =

a2n−2d2n−2B

A2n−2D2n−2(ad− 1)2n−2

z12n−12 =
a2n−1d2n−2(AD − 1)n−1(AD + 1)n−1

A2n−2D2n−2(2ad− 1)n−1
, t12n−12 =

A2n−1D2n−2(ad− 1)2n−2

a2n−2d2n−2

z12n−11 =
A2n−1D2n−1(2ad− 1)n−1

a2n−2d2n−2c(AD − 1)n−1(AD + 1)n
, t12n−11 =

a2n−1d2n−1

A2n−2D2n−2C(ad− 1)2n−1

z12n−10 =
a2n−1d2n−1(AD − 1)n−1(AD + 1)n−1

A2n−2D2n−2b(2ad− 1)n
, t12n−10 =

−A2n−1D2n−1(ad− 1)2n−2

a2n−2d2n−2B

z12n−9 =
A2n−1D2n−1(2ad− 1)n−1

a2n−1d2n−2(AD − 1)n(AD + 1)n−1
, t12n−9 =

a2n−1d2n−1

−A2n−1D2n−2(ad− 1)2n−1

z12n−8 =
a2n−1d2n−1c(AD − 1)n−1(AD + 1)n

A2n−1D2n−1(2ad− 1)n−1
, t12n−8 =

A2n−1D2n−1C(ad− 1)2n−1

a2n−1d2n−1

z12n−7 =
A2n−1D2n−1b(2ad− 1)n

a2n−1d2n−1(AD − 1)n−1(AD + 1)n
, t12n−7 =

−a2n−1d2n−1B

A2n−1D2n−1(ad− 1)2n−1

z12n−6 =
a2nd2n−1(AD − 1)n(AD + 1)n−1

A2n−1D2n−1(2ad− 1)n
, t12n−6 =

A2nD2n−1(ad− 1)2n−1

a2n−1d2n−1

z12n−5 =
A2nD2n(2ad− 1)n−1

a2n−1d2n−1c(AD − 1)n(AD + 1)n
, t12n−5 =

−a2nd2n

A2n−1D2n−1C(ad− 1)2n

z12n−4 =
a2nd2n(AD − 1)n−1(AD + 1)n

A2n−1D2n−1b(2ad− 1)n
, t12n−4 =

−A2nD2n(ad− 1)2n−1

a2n−1d2n−1B

Now, we verify the first form.
Substituting 12n− 3 into the system of difference equations (2.4). We get

z12n−3 =
t12n−4t12n−7

z12n−6(1 + t12n−4t12n−7)
,
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z12n−3 =

−A2nD2n(ad−1)2n−1

a2n−1d2n−1B
−a2n−1d2n−1B

A2n−1D2n−1(ad−1)2n−1

a2nd2n−1(AD−1)n(AD+1)n−1

A2n−1D2n−1(2ad−1)n (1 +AD)
,

that is,

z12n−3 =
AD

a2nd2n−1(AD−1)n(AD+1)n−1

A2n−1D2n−1(2ad−1)n (1 +AD)
.

Thus,

z12n−3 =
A2nD2n(2ad− 1)n

a2nd2n−1(AD − 1)n(AD + 1)n
,

t12n−3 =

a2nd2n(AD−1)n−1(AD+1)n

A2n−1D2n−1b(2ad−1)n
A2n−1D2n−1b(2ad−1)n

a2n−1d2n−1(AD−1)n−1(AD+1)n

A2nD2n−1(ad−1)2n−1

a2n−1d2n−1 (−1 + ad)
,

so,

t12n−3 =
ad

A2nD2n−1(ad−1)2n−1

a2n−1d2n−1 (−1 + ad)
,

Therefore,

t12n−3 =
a2nd2n

A2nD2n−1(ad− 1)2n
.

Similarly, we can prove the other forms. The proof is completed. �

Theorem 2.7. The system of non-linear difference equations (5) has a periodic solution of period twelve iffAD = −2,
ad = 2 and it will take the following form

{zn} =
{
d, c, b, a, −AD

c , ad
b(2ad−1) ,

AD
a(AD−1) , c, b(2ad− 1), a, −AD

c(AD−1)(AD+1) ,
ad

b(2ad−1) ...,
}

{tn} =
{
D,C,B,A, adC ,

−AD
B , −ad

A ,−C,B,−A, adC ,
AD
B , ...,

}
Proof. (We leave this proof to readers and it can be proven by using the same approach as Theorem 2.5) �

We simulate the non-linear difference equations system (2.4) numerically. Figure (6) shows the dynamics
of the system when the initial values are z−3 = 1, z−2 = −0.5, z−1 = 3, z0 = 2.4, t−3 = 4, t−2 = −1.3,
t−1 = 5 and t0 = −0.5. In figure (6), the behaviour of the system is periodic of period twelve when the
initial values are z−3 = 1, z−2 = −0.5, z−1 = 3, z0 = 2, t−3 = 4, t−2 = −1.3, t−1 = 5 and t0 = −0.5.
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FIGURE 6. The Dynamics of The Solution of The System(2.4)

FIGURE 7. The Dynamics of The Solution of The SysThe tem (2.4)
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