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VLASOV-POISSON-FOKKER-PLANCK IN FRACTIONAL SOBOLEV-LEBESGUE SPACES

JINGCHUN CHEN∗ AND CONG HE

ABSTRACT. In this paper, we are concerned with the local well-posedness of the Vlasov-Poisson-Fokker-Planck
equation near vacuum in the fractional Sobolev-Lebesgue space for the large initial data. To achieve this goal, we
mainly adopt the energy method. In order to obtain the energy estimate, we establish an L2-Lq estimate related
to the electronic term, and take advantage of the commutator estimates as well.

1. INTRODUCTION

In this paper, we study the following Vlasov-Poisson-Fokker-Planck equation (VPFP) in n-dimensional
space:

(1.1)


∂tf + v · ∇xf +∇xφ · ∇vf −∆vf = 0,

−∆xφ =
∫
Rn f dv,

f(0, x, v) = f0(x, v),

where f(t, x, v) denotes the distribution function of particles, x ∈ Rn is the position, v ∈ Rn is the velocity,
t > 0 is the time, and n ≥ 5.

In statistical physics, the VPFP system is one of key equations governing the evolution of a distribution
of particles over time. Specifically, it models the distribution of particles in a plasma with respect to posi-
tion and velocity affected by gravitational or electrostatic forces, and the collision effects are produced by
the Brownian motion of particles. In the stellar dynamical context, one of the fundamental problems is to
incorporate, in the framework of a general theory, the effect of encounters between stars. Stellar encoun-
ters under Newtonian inverse square attractions influence the motion of starts in the manner of Brownian
motion [4].

The Cauchy problem for the VPFP system has been studied for several decades. In 1984, Neunzert,
Pulvirenti, and Triolo [12] proved the global existence of smooth solutions for the two-dimensional case
using a probabilistic method. Two years later, Degond [5] proved the global existence for the VPFP system
for dimensions only one and two with initial data in

(1.2) D = {f0 ∈W 1,1(R2d) : 〈v〉γ(|f0|+|Df0|) ∈ L∞(R2d), d = 1, 2, γ > d}.
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In the higher dimension, Victory [16] studied the VPFP system with initial data satisfying

(1.3) f0 ∈ L1(R2n) ∩ L∞(R2n) and
∫
R2n

(
|x|2 + |v|2

)
f0(x, v)dxdv <∞,

and Victory proved the existence of the global weak solutions under these conditions. Later, Rein and
Weckler [14] proved the global existence of a classical solution in a three-dimensional case with initial
condition in the following class:

(1.4) D = {f0 ∈ C1
b (R6) : 〈v〉γf0 ∈ L1 ∩ L∞and 〈v〉γ∇x,vf0 ∈ L1 ∩ L∞}.

Then, Carrillo and Soler [2], proved the global existence of weak solutions for the VPFP system in three-
dimensions with the initial data in L1(R2n) ∩ Lp(R2n), i.e. the initial data is still in L1-framework. They
also studied the VPFP equations with measures in Morrey spaces as initial data, see [3].

All the literature mentioned above were concerned about the solutions in L1 ∩ L∞. It comes naturally
to ask how about in the L2 framework? For instance, whether there is a solution in the fractional Sobolev
space Hs is an interesting question, which becomes the main theme in this paper. Besides, there is rare
paper which devoted to the study of the solutions of the VPFP system in the fractional Sobolev space,
which motivates us to take a step forward in this direction.

To study the well-posedness of (1.1), the main difficulty lies in estimating the electronic term ∇xφ. Our
strategy is to take advantage of the following type of commutator estimates related to the electronic term
∇xφ : ∥∥[Ds

x,∇xφk]∇vfk+1
∥∥
L2
x

� ‖Ds
x(∇xφk)‖Lqx‖∇vf

k+1‖Lnx

+ ‖∇x(∇xφk)‖L∞x ‖D
s−1
x ∇vfk+1‖L2

x
,

which is the basis for the estimate in the hybrid Sobolev-Lebesgue space. Combining with the L2-Lq esti-
mate with respect to∇xφ (see Section 3), we could then close the energy. Also, it is worth to mention that a
weight w is necessary to be introduced to derive an L2-Lq off-diagonal estimate which plays an important
role to deal with the Poisson equation near vacuum.

2. PRELIMINARIES AND MAIN THEOREM

Before we state our main theorem, we would like to set our notations and definitions first.

2.1. Notations and definitions.

• Given a locally integrable function f, the maximal function Mf is defined by

(2.1) (Mf)(x) = sup
δ>0

1

|B(x, δ)|

∫
B(x,δ)

|f(y)|dy,

where |B(x, δ)| is the volume of the ball of B(x, δ) with center x and radius δ.
• Given f ∈ S Schwartz class, its Fourier transform Ff = f̂ is defined by

f̂(ξ) =

∫
Rn
e−ix·ξf(x)dx,

and its inverse Fourier transform is defined by F−1f(x) = f̂(−x). In this paper, we use Fxf(x, v) to
represent the Fourier transform of x only, and ξ to represent the dual variable of x.

• Ds
xf = F−1〈ξ〉sf̂ , 〈ξ〉 = (1 + |ξ|2)

1
2 .

• Throughout this paper, the weight function is w(v) = 〈v〉γ , γ > n.

• ‖f‖L2
x,v(w) =

( ∫
R2n |f |2w dxdv

) 1
2

.
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• Let s > 0, the hybrid Sobolev-Lebesgue space with weight in v is defined by

H̃s(R2n
x,v) =

{
f ∈ S

′
: ‖f‖H̃s(R2n

x,v) = ‖Ds
xf‖L2

x,v(w) ≤ ∞
}
,

where S ′ is the dual space of Schwartz class. For the convenience, we use H̃s for the abbreviation
of H̃s(R2n

x,v) whenever there is confusion arising.
• A � B means there exists a positive generic constant C independent of the main parameters such

that A ≤ CB. A ∼ B means A � B and B � A.

Remark 2.1. The hybrid space H̃s possesses the different differential and integral properties on x and v

variables.

2.2. Some useful lemmas. In this part, we collect some known results of the Riesz potential [1,15] and the
boundedness of Hardy-Littlewood operator for later use.

The pointwise estimate of the Riesz potential stated below is applied to derive the off-diagonal estimate
in Section 3.

Lemma 2.2. ( [1]) For any multi-index ξ with |ξ| < α < n, there is a constant C such that for any f ∈ Lp(Rn), 1 ≤
p <∞, and almost every x, we have

(2.2) |Dξ(Iα ∗ f(x))| ≤ CMf(x)
|ξ|
α · (Iα ∗ |f |(x))1− |ξ|α ,

where Iα = γα
|x|n−α , γα =

Γ(n−α2 )

π
n
2 2αΓ(α2 )

.

Remark 2.3. In our paper, we consider −∆φ =
∫
Rn fdv =: g, n ≥ 3. Thus, in our context, Iα can be taken

(2.3) I2(x) =
1

(n− 2)ωn−1
· 1

|x|n−2
, i.e. α = 2,

where ωn−1 = 2π
n
2

Γ(n2 ) is the (n − 1)−dimensional area of the unit sphere in Rn. Additionally, we have the
pointwise estimate

(2.4) |Dξ(I2 ∗ g(x))| ≤ cMg(x)
|ξ|
2 · (I2 ∗ |g|(x))1− |ξ|2 .

The boundedness of the Riesz potential in Lebesgue space is needed in our proof as well.

Lemma 2.4. ( [15]) If −∆φ = g ∈ L2(Rn), then φ = I2 ∗ g and

(2.5) ‖I2 ∗ g‖Lq̃(Rn) ≤ c‖g‖L2(Rn),

where n > 4, c = c(p, q̃) and

(2.6)
1

q̃
=

1

2
− 2

n
.

For more results of the Riesz potential and its applications in partial differential equations, see [6–8].
Now we give the boundedness of Hardy–Littlewood operator M which is defined by (2.1).

Lemma 2.5. ( [10]) Let 1 < p ≤ ∞, then the Hardy–Littlewood operator M is bounded from Lp(Rn) to Lp(Rn).

i.e.,

‖Mf‖Lp ≤ Cn,p‖f‖Lp , ∀ f ∈ Lp(Rn).

The following commutator estimate is of importance in this paper, see Section 4.
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Lemma 2.6. ( [11]) Let 1 < p <∞, and let 1 < p1, p2, p3, p4 ≤ ∞ satisfy
1

p1
+

1

p2
=

1

p3
+

1

p4
=

1

p
.

Then for any f, g ∈ S(Rn), the following holds

‖Ds(fg)− fDsg‖Lp � ‖Ds−1∂f‖p1‖g‖p2 + ‖∂f‖p3‖Ds−2∂g‖p4 .

Now we are ready to state our theorem.

2.3. The statement of the main theorem.

Theorem 2.7. Suppose f0 ∈ H̃s, s > n
2 with n ≥ 5, then there exists a T0 > 0 such that the Cauchy problem of the

Vlasov-Poisson-Fokker-Planck system (1.1) admits a unique solution in [0, T0]× Rn × Rn satisfying

sup
0≤t≤T0

E(f(t)) ≤ 4‖f0‖2H̃s ,

where

E(f(t)) =: ‖f(t)‖2
H̃s

+

∫ t

0

‖∇vDs
xf‖2L2

x,v(w)dτ.

Remark 2.8. In the definition of space H̃s, we only impose the differential assumption on the variable x, not
on the variable v; by contrast, the weight function w(v) is only about v, not about x. So our space is different
from the fractional Sobolev space, it is a hybrid Sobolev-Lebesgue space with weight.

3. L2-Lq ESTIMATES

In this section, we are aiming to obtain an L2-Lq estimates related to the electronic term ∇xφ, which
plays a fundamentally important role in the commutator estimate of the electronic term∇xφ.

First of all, we establish the boundedness of the solution of Laplacian equation in Lebesgue space.

Lemma 3.1. Assume −∆φ = g, then it holds that

(3.1) ‖∇xφ‖Lq(Rn) � ‖g‖L2(Rn),

where n > 4 and 1
q = 1

2 −
1
n .

Proof. Note that ∇xφ = ∇x(I2 ∗ g) by Lemma 2.4, therefore there holds

‖∇xφ‖Lq(Rn) = ‖∇x(I2 ∗ g)‖Lq(Rn)

� ‖Mg
1
2 · (I2 ∗ |g|)

1
2 ‖Lq(Rn)

� ‖(Mg)
1
2 ‖L4(Rn) · ‖(I2 ∗ |g|)

1
2 ‖Lq2 (Rn)

� ‖Mg‖
1
2

L2(Rn) · ‖I2 ∗ |g|‖
1
2

L
q2
2 (Rn)

,

where

(3.2)
1

4
+

1

q2
=

1

q
,

and we applied Lemma 2.2 in the second line.
On the one hand, the boundedness of Hardy-Littlewood operator Lemma 2.5 yields that

(3.3) ‖Mg‖L2(Rn) � ‖g‖L2(Rn).

On the other hand, by the boundedness of the Riesz potential Lemma 2.4, we have

(3.4) ‖I2 ∗ |g|‖
L
q2
2 (Rn)

� ‖g‖L2(Rn),
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where

(3.5)
2

q2
=

1

2
− 2

n
.

Consequently,

‖∇xφ‖Lq(Rn) � ‖g‖
1
2

L2(Rn) · ‖g‖
1
2

L2(Rn) = ‖g‖L2(Rn),

which ends the proof of this lemma. �

Remark 3.2. This lemma explains the reason that we can not have a solution in the L2-framework for n ≤ 4,

in some sense.

Remark 3.3. We summarize the conditions imposed on the indices in Lemma 3.1 as follows:

(3.6)


q1 = 4,

q2 =
4n

n− 4
,

q =
2n

n− 2
.

The following corollary will be used in our commutator estimate involving the electronic term∇xφ.

Corollary 3.4. Assume −∆φ = g, then it holds that

(3.7) ‖Ds
x∇xφ‖Lq � ‖Ds

xg‖L2
x,v(w).

Proof. Observe that

Ds
x∇xφ = ∇xDs

xφ = Ds
x∇x(I2 ∗ g) = ∇x(I2 ∗Ds

xg),

applying Lemma 3.1 with φ and g replaced by Ds
xφ and Ds

xg respectively yields the desired result. �

Corollary 3.5. Take g =
∫
Rn fdv in Corollary 3.4, then we have

‖Ds
x∇xφ‖Lqx � ‖f‖H̃s .

Proof. Hölder’s inequality leads to∣∣∣ ∫
Rn
Ds
xfdv

∣∣∣ � (∫
Rn
|Ds

xf |2wdv
) 1

2
(∫

Rn
w−1dv

) 1
2

.

Note that w = 〈v〉γ and γ > n, which implies that(∫
Rn
w−1dv

) 1
2 ≤ c.

Thus, we ends the proof of Corollary 3.5. �

Remark 3.6. ∇xφ is a function of the variable x only, while f is a function of the variables x and v. H̃s is a
hybrid Sobolev-Lebesgue space with weight depending on v only, which is defined in Section 2.1.

An L∞ estimate is also needed in the proof of main result Theorem 2.7.

Lemma 3.7. Suppose −∆φ =
∫
Rn fdv. If s > n

2 , then

(3.8)
∑
|α|≤1

‖∂αx∇xφ‖L∞x � ‖f‖H̃s .
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Proof. Note that s > n
2 , i.e. s > n

q + 1. For |α| ≤ 1, we have

‖∂αx∇xφ‖L∞x � ‖D
s−1
x ∂αx∇xφ‖Lq

� ‖Ds
xf‖L2

x,v(w)

� ‖f‖H̃s ,

(3.9)

where we applied Corollary 3.5 and the assumption

1

q
=

1

2
− 1

n
.

�

4. PROOF OF MAIN THEOREM

To prove Theorem 2.7, we split its proof into two parts which are existence and uniqueness of the solution
to (1.1). Let us start with proving the existence.
Proof of existence. In this part, we adopt the energy method and the iteration method. To do so, we need
to close the energy by applying the commutator estimate. In this process, the L2-Lq estimate of electronic
term ∇xφ plays a nice role.

Proof. We consider the following iterating sequence for solving the VPFP (1.1),

(4.1)


∂tf

k+1 + v · ∇xfk+1 +∇xφk · ∇vfk+1 −∆vf
k+1 = 0,

−∆φk =
∫
Rn f

kdv,

fk+1(0, x, v) = f0(x, v).

Applying Ds
x to the first equation in (4.1), we have

∂tD
s
xf

k+1 + v · ∇xDs
xf

k+1 + [Ds
x,∇xφk]∇vfk+1 +∇xφk · ∇vDs

xf
k+1

−∆vD
s
xf

k+1 = 0.
(4.2)

Multiplying (Ds
xf

k+1)w on both sides of (4.2), and then integrating over Rnx × Rnv yields that

1

2

d

dt
‖Ds

xf
k+1‖2L2

x,v(w) +
〈
v · ∇xDs

xf
k+1, (Ds

xf
k+1) · w

〉
︸ ︷︷ ︸

J1

+
〈

[Ds
x,∇xφk]∇vfk+1, (Ds

xf
k+1) · w

〉
︸ ︷︷ ︸

J2

+
〈
∇xφk · ∇vDs

xf
k+1, (Ds

xf
k+1) · w

〉
︸ ︷︷ ︸

J3

+
〈
−∆vD

s
xf

k+1, (Ds
xf

k+1) · w
〉

︸ ︷︷ ︸
J4

= 0.

(4.3)

We now estimate (4.3) term by term.
For J1, we have

(4.4) J1 =

∫
R2n

v · ∇x|Ds
xf

k+1|2w dxdv = 0.
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For J2, applying the commutator estimate Lemma 2.6 yields∥∥[Ds
x,∇xφk]∇vfk+1

∥∥
L2
x
� ‖Ds

x(∇xφk)‖Lqx‖∇vf
k+1‖Lnx

+ ‖∇x(∇xφk)‖L∞x ‖D
s−1
x ∇vfk+1‖L2

x
,

(4.5)

where 1
n + 1

q = 1
2 .

For the first term on the right-hand side of (4.5), by the embedding theorem [13],

‖∇vfk+1‖Lnx � ‖D
s
x∇vfk+1‖L2

x
, s >

n

2
;

and by the L2–Lq estimate Corollary 3.4,

(4.6) ‖Ds
x(∇xφk)‖Lqx � ‖f

k‖H̃s .

For the second term on the right-hand side of (4.5), by Lemma 3.7, we have

(4.7) ‖∇x(∇xφk)‖L∞x � ‖f
k‖H̃s , s >

n

2
.

Consequently,

J2 �
∥∥[Ds

x,∇xφk]∇vfk+1
∥∥
L2
x,v(w)

· ‖Ds
xf

k+1‖L2
x,v(w)

� ‖fk‖H̃s · ‖D
s
x∇vfk+1‖L2

x,v(w) · ‖fk+1‖H̃s

� ε‖Ds
x∇vfk+1‖2L2

x,v(w) + Cε‖fk‖2H̃s · ‖f
k+1‖2

H̃s
.

(4.8)

For J3, note that |∇vw| � w, integration by parts yields

J3 �
∫
R2n

|∇xφk| · |Ds
xf

k+1|2w dxdv

�‖∇xφk‖L∞x ‖D
s
xf

k+1‖2L2
x,v(w)

�‖fk‖H̃s‖f
k+1‖2

H̃s
,

(4.9)

where we applied the assumption s > n
2 in the last line.

For J4, we have

(4.10) J4 � ‖Ds
x∇vfk+1‖L2

x,v(w) − ‖Ds
xf

k+1‖2L2
x,v(w).

Plugging all the estimates from J1 to J4 into (4.3), we obtain,

1

2

d

dt
‖Ds

xf
k+1‖2L2

x,v(w) + ‖∇vDs
xf

k+1‖2L2
x,v(w)

� ‖fk‖2
H̃s
· ‖fk+1‖2

H̃s
+ ‖fk‖H̃s · ‖f

k+1‖2
H̃s

+ ‖fk+1‖2
H̃s
.

(4.11)

Integrating over [0, t] on both sides of of (4.11), we deduce,

E(fk+1(t)) ≤ ‖f0‖2H̃s + Ct sup
0≤τ≤t

E(fk+1(τ)) · sup
0≤τ≤t

E(fk(τ))

+ Ct sup
0≤τ≤t

(E 1
2 (fk(τ))) · sup

0≤τ≤t
E(fk+1(τ)) + Ct sup

0≤τ≤t
(E(fk+1(τ))).

Inductively, assume

sup
0≤τ≤T0

E(fk(τ)) ≤ 4‖f0‖2H̃s ,
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then

sup
0≤t≤T0

E(fk+1(t)) ≤ ‖f0‖2H̃s + CT0

(
4‖f0‖2H̃s + 2‖f0‖H̃s + 1

)
· sup

0≤t≤T0

E(fk+1(t)).

(4.12)

Taking T0 sufficiently small such that

(4.13) 1− C
(

4‖f0‖2H̃s + 2‖f0‖H̃s + 1
)
T0 ≥

1

4
,

i.e.,

(4.14) T0 ≤
3

4C
(

4‖f0‖2H̃s + 2‖f0‖H̃s + 1
) ,

then we have

(4.15) sup
0≤τ≤T0

E(fk+1(τ)) ≤ 4‖f0‖2H̃s .

Inductively,

(4.16) sup
k

sup
0≤τ≤T0

E(fk(t)) ≤ 4‖f0‖2H̃s ,

i.e., we get a uniform-in-k estimate.
As a routine, let k →∞, we obtain the solution and complete the proof of existence. �

Let us move on to proving the uniqueness.
Proof of uniqueness. In the second part, we apply a similar trick in the proof of existence.

Proof. Assume another solution g exists such that

sup
0≤τ≤T0

E(g(τ)) ≤ 4‖f0‖2H̃s ,

taking the difference of f and g, we have

(4.17)



(∂t + v · ∇x +∇xφf · ∇v)(f − g) + (∇xφf −∇xφg) · ∇vg

−∆v(f − g) = 0,

−∆x(φf − φg) =
∫
Rn(f − g) dv,

f(0, x, v) = g(0, x, v).

Applying Ds
x to (4.17)1, we have

∂tD
s
x(f − g) + v · ∇xDs

x(f − g) + [Ds
x,∇xφf ]∇v(f − g)

+∇xφf · ∇vDs
x(f − g) + [Ds

x,∇x(φf − φg)]∇vg

+∇x(φf − φg) ·Ds
x∇vg −∆vD

s
x(f − g) = 0.

(4.18)
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Multiplying (Ds
x(f − g)) · w on both sides of (4.18), and then integrating over Rnx × Rnv yields that

1

2

d

dt
‖Ds

x(f − g)‖2L2
x,v(w) +

〈
v · ∇xDs

x(f − g), (Ds
x(f − g)) · w

〉
︸ ︷︷ ︸

J5

+
〈

[Ds
x,∇xφf ]∇v(f − g), (Ds

x(f − g)) · w
〉

︸ ︷︷ ︸
J6

+
〈
∇xφf · ∇vDs

x(f − g), (Ds
x(f − g)) · w

〉
︸ ︷︷ ︸

J7

+
〈

[Ds
x,∇x(φf − φg)]∇vg, (Ds

x(f − g)) · w
〉

︸ ︷︷ ︸
J8

+
〈
∇x(φf − φg) ·Ds

x∇vg, (Ds
x(f − g)) · w

〉
︸ ︷︷ ︸

J9

+
〈
−∆vD

s
x(f − g), (Ds

x(f − g)) · w
〉

︸ ︷︷ ︸
J10

= 0.

(4.19)

We could repeat the estimates in the proof of existence except for some special terms. Thus, we would like
to write down the estimates directly without too much details.
Obviously, J5 = 0.

For J6 and J8, which are similar to the estimate of J2, we have

J6 � ‖f‖H̃s · ‖D
s
x∇v(f − g)‖L2

x,v(w) · ‖f − g‖H̃s

� ε‖Ds
x∇v(f − g)‖2L2

x,v(w) + Cε‖f‖2H̃s‖f − g‖
2
H̃s
,

(4.20)

where Young’s inequality [9] with ε small is applied.
Also, we have

J8 � ‖f − g‖H̃s · ‖D
s
x∇vg‖L2

x,v(w) · ‖Ds
x(f − g)‖L2

x,v(w)

� ‖f − g‖2
H̃s

+ ‖Ds
x∇vg‖2H̃s · ‖f − g‖

2
H̃s
.

(4.21)

For J7, we have

J7 � ‖∇xφf‖L∞ · ‖∇vDs
x(f − g)‖L2

x,v(w) · ‖Ds
x(f − g)‖L2

x,v(w)

� ‖f‖H̃s · ‖∇vD
s
x(f − g)‖L2

x,v(w) · ‖Ds
x(f − g)‖L2

x,v(w)

� ε‖∇vDs
x(f − g)‖L2

x,v(w) + Cε‖f − g‖2H̃s · ‖f‖
2
H̃s
,

(4.22)

where Young’s inequality [9] with ε small is applied once again.
For J9, we get

J9 � ‖∇x(φf − φg)‖L∞ · ‖Ds
x∇vg‖L2

x,v(w) · ‖Ds
x(f − g)‖L2

x,v(w)

� ‖f − g‖H̃s · ‖D
s
x∇vg‖L2

x,v(w) · ‖Ds
x(f − g)‖L2

x,v(w)

� ‖f − g‖2
H̃s

+ ‖Ds
x∇vg‖2L2

x,v(w) · ‖f − g‖
2
H̃s
.

(4.23)
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For J10, which is similar to J4, we obtain

(4.24) J10 � ‖∇vDs
x(f − g)‖2L2

x,v(w) − ‖D
s
x(f − g)‖2L2

x,v(w).

Collecting all the estimates from J5 through J10, and plugging into (4.19), we have,

d

dt
‖f − g‖2

H̃s
+ ‖∇vDs

x(f − g)‖2L2
x,v(w)

�
(

1 + ‖f‖2
H̃s

+ ‖g‖2
H̃s

+ ‖Ds
x∇vg‖2L2

x,v(w)

)
· ‖f − g‖2

H̃s
.

(4.25)

Integrating over [0, t] on both sides of (4.25), we get

‖f − g‖2
H̃s

+

∫ t

0

‖∇vDs
x(f − g)‖2L2

x,v(w)dτ

≤
∫ t

0

(
1 + ‖f‖2

H̃s
+ ‖Ds

x∇vg‖2L2
x,v(w)

)
· ‖f − g‖2

H̃s
dτ.

(4.26)

Recall

E(f(t)) =: ‖f(t)‖2
H̃s

+

∫ t

0

‖∇vDs
xf‖2L2

x,v(w)dτ,

and
sup

0≤t≤T0

E(f(t)) ≤ 4‖f0‖2H̃s ,

sup
0≤t≤T0

E(g(t)) ≤ 4‖f0‖2H̃s ,

we have ∫ t

0

1 + ‖f‖2
H̃s

+ ‖Ds
x∇vg‖2L2

x,v(w)dτ

�
∫ t

0

1 + 4‖f0‖2H̃sdτ +

∫ t

0

‖Ds
x∇vg‖2L2

x,v(w)dτ

� T0

(
1 + 4‖f0‖2H̃s

)
+ 4‖f0‖2H̃s

�T0 1.

(4.27)

By Gronwall’s inequality, we have ‖f − g‖2
H̃s

= 0, i.e., f ≡ g, which completes the proof of uniqueness.
Thus, we end the proof of Theorem 2.7. �
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