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APPROXIMATION OF SOLUTIONS OF SPLIT MONOTONE VARIATIONAL INCLUSION
PROBLEMS AND FIXED POINT PROBLEMS

FRANCIS O. NWAWURU

ABSTRACT. Many researchers have incorporated an inertial term and will continue to involve it in iterative algo-
rithms due to the fact that it speeds up the rate of convergence which is desirable in applications. In this paper, we
propose a new inertial extrapolation algorithm for solving split monotone variational inclusion problems which
turns out to solve fixed point problems in the framework of real Hilbert spaces. Our proposed algorithm which
is the generalization of split feasibility problems among many others, does not involve the knowledge of oper-
ator norm which is sometimes difficult in practice. Furthermore, we prove under some mild assumptions that
the sequence generated recursively by our algorithm converges strongly to a common solution of split monotone
variational inclusion problems and fixed point of κ−demicontractive mapping. Finally, we apply our algorithm
to solve other related problems, precisely linear inverse problems. Some numerical illustrations are provided to
further demonstrate the efficiency and competitiveness of our algorithm.

1. INTRODUCTION

Throughout this paper, unless otherwise stated H1 and H2 will denote real Hilbert spaces with inner prod-
uct 〈., .〉 and associated norm ‖.‖. LetC andQ be nonempty closed convex subsets ofH1 andH2 respectively
while −→ and ⇀ will respectively represent strong and weak convergence.
The split feasibility problem (SFP) introduced and studied by Censor and Elfving [1] is formulated as fol-
lows:

(1.1) find x∗ ∈ C such that y∗ = Tx∗ ∈ Q,

where C and Q have their usual definition and T ∈ RN×M is a real matrix. For the past two decades, (1.1)
has recieved huge attention due to variety of its applications. It is worth mentioning that the SFP is the first
known model for Split Inverse Problem (SIP) (see [2, 3])which is formulated as follows:

(1.2) find x∗ ∈ X1 that solvss IP1 such that y∗ = Tx∗ ∈ X2 solves IP2,

where IP1 and IP2 are two inverse problems respectively defined on two vector spaces X1 and X2. It
was further investigated that the SFP has been used as a model in intensity-Modulated Radiation Therapy
(IMRT) treatment planning. It has a wide application in phase retrieval, medical imaging, signal processing,
data compression, computerized tomography among many others (see [4–10] for details). Furthermore, due
to the interest of scientists and researchers, in the study of the SFP, a lot of modifications and generalizations
have been made. For instance, Split Variational Inequality Problem (SVIP) is another form of SFP which is
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more general than the SFP. The SVIP which was first introduced by Censor et al. [2] can be formulated as
follows:

(1.3) find x∗ ∈ C that solvss 〈f(x∗), x− x∗〉 ≥ 0,∀x ∈ C,

(1.4) and such that y∗ = Tx∗ ∈ Q solves 〈g(y∗), y − y∗〉 ≥ 0 ∀y ∈ Q,

where C, Q, H1 and H2 have their usual definitions,T : H1 → H2 is a bounded linear operator while
f : H1 → H1 and g : H2 → H2 are two given operators. If we consider (1.3) and (1.4) seperately, then
we observed that (1.3) is a classical Variational Inequality Problem (VIP). Therefore, (1.3) and (1.4) can be
viewed as an interesting combination of the VIP and SFP.
To solve the SVIP without a product space formulation, Censor et al. [2] proposed the following iterative
algorithm. Let λ > 0. Select an arbitrary starting point x0 ∈ H1. Given the current iterate xk, compute

(1.5) xk+1 = PC(I − λf)(xk + γT ∗(PQ(I − λg)− I)Txk), k ≥ 1,

where γ ∈ (0, 1/L) with L being the spectral radius of the operator T ∗T and T ∗ is an adjoint of T. Let SOL(f,
C) and SOL(g, Q) denote the solution set of (1.3) and (1.4) respectively. They proved that if the solution set
of (1.3)-(1.4) is nonempty, then the sequence {xk} generated by the algorithm (1.5) converged weakly to a
solution set of problem (1.3) and (1.4).
Moreso, if in (1.3) and (1.4) C = H1, Q = H2; and choosing x := x∗ − f(x∗) ∈ H1 in (1.3) and y =

T (x∗)− g(T (x∗) ∈ H2, in (1.4) we obtain the Split Zeros Problems (SZP) for two operators f : H1 → H1 and
g : H2 → H2, a concept introduced and studied in section 7.3 of [2]. The SZP is formulated as follows:

(1.6) find x∗ ∈ H1 such that f(x∗) = 0 and g(T (x∗)) = 0.

Suppose we denote a normal cone by

NC(v) := {d ∈ H : 〈d, y − v〉 ≤ 0,∀y ∈ C},

where v ∈ C and C is a nonemty, closed and convex set and a multivalued mapping, K is defined by

K(v) :=

f(v) +NC(v), v ∈ C,

∅, otherwise,

where f is some given operator, then, under a certain continuity assumption on f , it was shown in [43]
that K is a maximal monotone mapping and B−1(0) = SOL(f, C). Further advancement has been made
towards Inclusion Problems. The inclusion problem (see [11] and references therein) can be formed as
follows:

(1.7) find x ∈ H such that 0 ∈ f(x) +M(x),

where 0 is the zero vector in H , f is a single-valued map from H to itself while M : H → 2H is a set
valued mapping. In this line of research, Moudafi [12] introduced the Split Monotone Inclusion Variational
Problem (SMVIP) which generalizes so many other constrained optimization problems. It is formulated as
follows:

(1.8) find x∗ ∈ H1 such that 0 ∈ f1(x∗) +B1(x∗)

and

(1.9) y∗ = A(x∗) ∈ H2 such that 0 ∈ f2(y∗) +B2(y∗),
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where f1 and f2 are two inverse strongly monotone, B1 and B2 are two maximal monotone and A is a
bounded linear operator. We denote the solution set of (1.8)-(1.9) by:

Γ := {x∗ ∈ H1 : 0 ∈ f1(x∗) +B1(x∗) and

y∗ = A(x∗) ∈ H2 such that 0 ∈ f2(y∗) +B2(y∗)}.

We can view (1.8) seperately as a Variational Inclusion Problem with its solution set (B1 + f1)−1 and (1.9) is
a variational inclusion problem with its solution set (B2 + f2)−1. It was noted that the SMVIP generalizes
the split fixed point problem, the split variational inequality problem, the split zero problem and the split
feasibility problem (see [1, 2, 4–6, 13])
Suppose in SMVIP (1.8)-(1.9), f1 ≡ 0 and f2 ≡ 0, we obtain the following Split Variational Inclusion Prob-
lem:

(1.10) find x∗ ∈ H1 such that 0 ∈ B1(x∗)

and

(1.11) y∗ = A(x∗) ∈ H2 such that 0 ∈ B2(y∗).

In [12], the iterative scheme for solving problem (1.10)-(1.11) was constructed below: for a given initial
value x0 ∈ H1, the sequence {xn} generated by the following algorithm is given by:

(1.12) xn+1 = JB1

λ (xn + γA∗(JB2

λ − I)Axn), λ > 0,

where JB1

λ and JB2

λ are the resolvent operators associated with the maximal monotones, B1 and B2 respec-
tively. They obtained weak convergence for the proposed theorems for solving (1.10)-(1.11).
Recently, inspired by the work of Byrne et al. [13], and Kazmi and Rizvi [14], Shehu and Ogbuisi [15]
proposed the following algorithm for SMVIP (1.8)-(1.9) and Fixed Point Problem (FPP) for strictly pseudo-
contractive mapping, S:

x0 ∈ H1,

wn = (1− αn)xn,

yn = JB1

λ (I − λf1)(wn + γA∗(JB2

λ (I − λf2)− I)Awn),

xn+1 = (1− βn)yn + βnSyn,∀n ≥ 0.

(1.13)

where 0 < λ < 2µ, 2v and γ ∈ (0, 1
L ), Ldenotes the largest enginvector for the matrix A∗A,A is abounded

linear operator while A∗ is the adjoint of A, f1 and f2 are v, µ−inverse strongly monotone operators and B1

and B2 are maximal monotone operators. They proved under some mild conditions that the sequence {xn}
generated by the Algorithm (1.13) converged strongly to a point p ∈ Γ ∩ F (S) where Γ is the solution set of
(1.8) and (1.9).
In 2018, Ezeora and Izuchukwu [16] followed the idea of Moudafi [12] and constructed a new iterative
scheme for approximation of a solution of split variational inclusion problem. The following algorithm
was presented: given the initial values, x1, u ∈ H1,

un = (1− βn)xn + βnu,

yn = PC(un − γnA∗(I − TγAun),

xn+1 = JMλ (I − λf)yn, n ≥ 1.

(1.14)

where Tγ := γI + (1 − γ)S with γ ∈ [µ, 1), {γn} ⊂ [a, b] for some a, b ∈ (0,
1

‖A‖2
), λ ∈ (0, 2α) and {βn} ⊂

(0, 1) such that limn→∞ βn = 0, and
∑∞
n=1 βn = ∞, f is an α−inverse strongly monotone, S is µ strictly

pseudocontractive mapping while M is a multi-valued maximal monotone mapping. They proved that the
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sequence {xn} generated by (1.14) strongly converged to an element of Ω := {z ∈ (M + f)−1(0) : Az ∈
F (S)} 6= ∅.
In 2020, a modification of [16] was established by Izuchukwu et. al. [17]. They proposed an inertial method
for solving generalized split feasibility problems over the solution set of (1.8). They presented the following
algorithm: given the initial guess x0, x1 ∈ H1. Let {xn} be a sequence generated recursively by

un = xn + αn(xn − xn−1),

wn = un − τnT ∗(I − S)Tun,

yn = JBλn
(I − λnA)wn = (I + λnB)−1(I − λnA)wn,

zn = yn − λn(Ayn −Awn),

xn+1 = (1− θn − βn)wn + θnzn, n ≥ 1,

(1.15)

where 0 ≤ αn ≤ αn, and

αn :=

min{ n−1
n+α−1 ,

εn
‖xn−xn−1‖} ifxn 6= xn−1,

n−1
n+α−1 otherwise.

(1.16)

and

λn+1 :=

min{µ
‖wn−yn‖
‖Awn−Ayn‖ , λn} ifAwn 6= Ayn,

λn otherwise,
(1.17)

T is a bounded linear operator, A is a monotone and Lipschitz continuous operator, B is a
maximal monotone operator and S is a nonexpansive mapping. They proved under some as-
sumptions that the sequence {xn} generated by algorithm (1.15) converged strongly to a point
p ∈ Γ = {z ∈ (A+B)−1(0) : Tz ∈ F (S)} 6= ∅.

In recent years, there has been tremendous interest in developing the fast convergence of algorithms,
especially for the inertial type extrapolation method, which was first proposed by Polyak in [25].
Recently, some researchers have constructed different fast iterative algorithms by means of inertial
extrapolation techniques,for example, inertial Mann algorithm [26], inertial forward–backward splitting
algorithm [27, 28], inertial extragradient algorithm [29, 30], inertial projection algorithm [31, 32], and fast
iterative shrinkage–thresholding algorithm (FISTA) [33].

We study problem (1.8)-(1.9) such that the solution set involves a fixed of demicontractive mapping. To
be precise, Let H1 and H2 have their usual definition. Let A be a bounded linear operator from H1 to H2.
Let f1 and f2 are µ, v− inverse strongly monotone. Let B1 and B2 be two multi-valued maximal monotone
operators. Let S : H1 → H1 be κ− demicontractive mapping and Γ ∩ F (S) 6= ∅. Our interest is to solve the
following problem:

(1.18) find x∗ ∈ H1 such that 0 ∈ f1(x∗) +B1(x∗), Sx∗ = x∗

and

(1.19) y∗ = A(x∗) ∈ H2 such that 0 ∈ f2(y∗) +B2(y∗).

Remark 1.1: It turns out that if S is choosen to be an identity operator in H1, we recover the work of
Moudafi [12] which is a generalization of SVIP and SZP studied by Censor et al., [2]. It is worth noting that
(see [12])

0 ∈ f1(x∗) +B1(x∗)⇐⇒ x∗ = JB1

λ (I − λf1)x∗



Pan-Amer. J. Math. 2 (2023), 1 5

and

0 ∈ f2(y∗) +B2(y∗)⇐⇒ y∗ = JB2

λ (I − λf2)y∗.

See also that if JB1

λ = I and JB2

λ = I, then problem (1.18)- (1.19) becomes just a fixed point problem for
demicontractive operator. However, if B2 ≡ 0, f2 ≡ 0, and S is defined from H2 to itself, then we recover
the result of Ezeora and Izuchukwu [16] and Izuchukwu et al., [17]. Therefore, (1.18) - (1.19) generalizes so
many other optimization problems (see [21–24]).
Remark 1.2: The major drawbacks in the work of Byrne et al. [13], Kazmi and Rizvi [14], Shehu and Ogbuisi
[15], Ezeora and Izuchukwu [16] is that the stepsize used heavily relied in the operator norm which is
difficult to estimate and in many cases, impossible in practice. The Remark 3.4 (a-b) of Izuchukwu et
al. [17] is very interesting feature that truly improved the results of [13–16]. The stepsize λn is constructed
such that it is generated at each iteration and hence, does not depend on the Lipschtiz constant L of the
operator A. However, we gently remark that the control sequence τn is dependent on the norm of the
bounded linear operator T. This is a major drawback in the announced result of Izuchukwu et al. [17].

Motivated and inspired by the excellent work of Byrne et al. [13], Kazmi and Rizvi [14], Shehu and
Ogbuisi [15], Ezeora and Izuchukwu [16] and Izuchukwu et al. [17], we propose a new inertial iterative
scheme for finding a solution of SMVIP (1.8)-(1.9). Thus, our contribution in this paper should include the
following:
1) In order to improve on the rate of convergence, we incorperate inertial extrapolation term (αn(xn−xn−1))
in our proposed algorithm which is desirable in applications.
2) Our inertial term neither does it involve computation of the norm difference between xn and xn−1 nor
requires that

∑∞
n=1 θn‖xn − xn−1‖ <∞.

3) We construct our iterative scheme in such a way that is does not depend on the operator norm of the
bounded linear operator as in the case of [13–17] which is one of the major improvements in the above
mentioned research papers.
4) Our choice of operator S is more general than the use in [13–17] (see remark 2.1 below). It is well known
that the class of decontractive mapping is more general than that of strictly pseudocontractive mapping
and nonexpansive mappings.
5)We also present some numerical illustrations of the proposed method in comparison with Algorithms
(1.13), (1.14) and (1.15) to further show the efficiency of our scheme.
6) We apply our algorithm to solve related inverse problem. To be explicit, we solve a linear inverse problem
(LIP).
The rest of the paper is organized as follows: In section two, we state without proofs the relevant lemmas
that will be helpful to achieving our result, some definitions are also stated. Section three is the algorithm
that we propose in this paper and some assumptions that help to established strong convergence. The
convergence analysis is discussed in section four. In section five, we apply our algorithm to solve linear
inverse problems. Section six deals with numerical illustration for comparison of our algorithm with others
in this research direction, follow by result and discussion. The conclusion of our work is presented in
section seven.

2. PRELIMINARIES

Let T : H → H be a nonlinear map. A point x ∈ H is called the fixed point of T if Tx = x. The set of fixed
point of T is denoted by F (T ) := {x ∈ H : Tx = x}.
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Definition 2.1. The operator T is said to be:
i) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖;∀x, y ∈ H,
ii) firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, ,∀x, y ∈ H;

iii) quasi-nonexpansive if F (T ) 6= ∅ and

‖Tx− p‖ ≤ ‖x− p‖,∀x ∈ H; p ∈ F (T ),

iv) strictly quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx− p‖ < ‖x− p‖∀x ∈ H, p ∈ F (T ),

iii) strictly pseudocontractive if there exists κ ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖(x− y)− (Tx− Ty)‖2 ∀x, y,∈ H;

iv) demicontractive if F (T ) 6= ∅ and there exits κ ∈ [0, 1) such that

‖Tx− p‖2 ≤ ‖x− p‖2 + κ‖x− Tx‖2 ∀x ∈ H; p ∈ F (T ).

v) α−inverse strongly monotone (ism), if there exists α > 0 such that

〈Tx− Ty, x− y〉 ≤ α‖Tx− Ty‖2 ∀x, y ∈ H;

vi) monotone if
〈Tx− Ty, x− y〉 ≥ 0 ∀x, y ∈ H;

vii) L-ipschitz continuous, if there exists a constant L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H.

Remark 2.1: Clearly, demicontractive map (iv) is more general than (i)-(iii). Also, α−inverse strongly
monotone operators are monotone. It is well known that every α−inverse strongly monotone operator is
1
α−Lipschitz coninuous.

Example 1 [47]: Let H be the real line C = [−1, 1]. Define T : C → C by

Tx =

 2
3xsin( 1

x ), ifx 6= 0,

0, if x = 0.
(2.1)

Then, T is demicontractive but not strictly pseudocontractive.
Example 2 [48] Let H be the real line and C = [−2, 1]. Define T : C → C by Tx = −x2 − x. Then, T is
demicontractivewhich is not quasi-nonexpansive.
If T is a multivalued map, that is T : H → 2H , then T is called monotone if

〈x− y, u− v〉 ≥ 0, ∀x, y ∈ H,u ∈ T (x), v ∈ T (y),

and T is called maximal monotone, if the graph

G(T ) := {(x, y) ∈ H ×H : y ∈ T (x)}

of T is not properly contained in the graph of any other monotone operator. In other words, T is maximal
monotone if and only if for (x, u) ∈ H×H, 〈x−y, u−v〉 ≥ 0, ∀(y, v) ∈ G(T ) implies u ∈ T (x). The resolvent
operator JTλ associated with a multivalued map T and λ is a mapping JTλ : H → 2H defined by

JTλ (x) = (I + λT )−1x, x ∈ H,λ > 0.

In [34], it was shown that the resolvent operator JTλ is single-valued, nonexpansive and 1-inverse strongly
monotone and the solution of (1.7) is a fixed point of JTλ (x)(I − λf), λ > 0 (for example, see [35]). Suppose



Pan-Amer. J. Math. 2 (2023), 1 7

f is α− inverse strongly monotone with 0 < λ < 2α,then clearly JTλ (x)(I − λf) is nonexpansive and not
only nonexpansive, it is firmly nonexpansive. Also (f1 +B1)−1 := {z ∈ H : 0 ∈ (f1 +B1)(z)} is closed and
convex.
The T is said to be averaged (see, [44] for details) if and only if it can be written as the average of the identity
mapping and a nonexpansive mapping, i.e.,

T := (1− β)I + IS,

where β ∈ (0, 1) and S : H → H is a nonexpansive mapping. It is known that every averaged mapping
is nonexpansive and every firmly nonexpansive mapping is averaged. Therefore, since the resolvent of
maximal monotone operators are firmly nonexpansive, it is clear that they are averaged (see, [45]).
Recall that for a nonempty closed and convex subset C ofH , the metric projection denoted by PC is a map
from C to H which assigns for each x ∈ H a unique point PC(x) ∈ C such that

‖x− PC(x)‖ = inf{‖x− y‖ : y ∈ C}.

The PC is characterized by the following inequality

〈x− PC(x), z − PC(x)〉 ≤ 0, ∀z ∈ C.

The following results will be very useful in our work: Let H be a real Hilbert space. Then for all x, y ∈ H,
the following hold:
Lemma 2.1
(i) 2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2;

(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;
(iii) ‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2, for some α ∈ (0, 1).

Lemma 2.2 [36] (Demicloseness principle) Let T : C → C be a demicontractive mapping. Then, I − T is
demiclosed at 0 that is, if xn ⇀ x ∈ C and xn − Txn → 0, then x = Tx.

Lemma 2.3 [35]: LetH be a real Hilbert space,A : H → H be a maximal monotone and Lipschitz continuous
operator and B : H → 2H be a maximal monotone operator. Then, the operator (A + B) : H → 2H is
maximal monotone.
Lemma 2.4 [38]: Let {an} be a sequence of non-negative real numbers,{βn} be a sequence in (0, 1) and dn

be a sequence of real numbers such that

an+1 ≤ (1− βn)an + βndn, n ≥ 0.

If 1) lim supn→∞ dn ≤ or
∑∞
n=0 ‖βndn‖ <∞ and

2)
∑∞
n=1 βn =∞,

Then limn→∞ an = 0.

Lemma 2.5 [39]: Let {an} be a sequence of non-negative real numbers satisfying the following condition:

an+1 ≤ (1− βn)an + βndn + γn + ηn, n ≥ 1,

where {βn} be a sequence in (0, 1) and γn and ηnare sequences of real numbers. Assume that
1)

∑∞
n=1 ηn <∞ and

2) γn ≤ βnM for some M ≥ 0.

Then, {an} is a bounded sequence.
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3. THE PROPOSED ALGORITHM

We present in this section our proposed iterative scheme, assumptions and its features. However, we
highlight the advantages it has over others in this research direction.
Assumption 3.1:
a) A : H1 → H2 is a bounded linear operator such that A 6= 0 with A∗ : H2 → H1 its adjoint. Also,
S : H1 → H1 is a demicontractive mapping such that I − S is demiclosed at zero.
b) f1 : H1 → H1 and f2 : H2 → H2 are µ, v−inverse strongly monotone respectively.
c) B1 : H1 → 2H1 and B2 : H2 → 2H2 are two multivalued maximal monotone operators.
d)The solution set

Γ := {x∗ ∈ H1 : 0 ∈ f1(x∗) +B1(x∗) and

y∗ = Ax∗ ∈ H2 such that 0 ∈ f2(y∗) +B2(y∗)} ∩ F (T ) = Γ ∩ F (S) 6= ∅.

Assumption 3.2: The control sequences {θn}, {βn}, {αn} and {εn} satisfy the following conditions:
a) {βn} ⊂ (0, 1) with limn→∞ βn = 0 and

∑∞
n=1 βn =∞,

b) {θn} ⊂ (a, 1− βn) for some a > 0,

c) limn→∞
εn
βn

= 0.

Algorithm 3.3: The inertial extrapolation algorithm for SMVIP and FPP

Step 0: Choose sequences {θn}, {θn}, {αn} and {εn} such that the conditions from Assumption 3.2 hold.
Let λ > 0, α = 3 and x0, x1 ∈ H1 be arbitrarily chosen. Set n := 1.

Iterative steps: Step 1. Given the current iterates xn−1 and xn and choose αn such that
0 ≤ αn ≤ αn, where

αn :=

min{ n−1
n+α−1 ,

εn
‖xn−xn−1‖} ifxn − xn−1 > 0,

n−1
n+α−1 otherwise.

(3.1)

and compute

(3.2) wn = xn + αn(xn − xn−1).

Step 2: compute

(3.3) yn = JB1

λ (I − λf1)(wn + γnA
∗(JB2

λ (I − λf2)− I)Awn),

where the step size γn is chosen such that for small enough ε > 0,

γn ∈ (ε, ‖(T−I)Awn‖2
‖A∗(T−I)Awn‖2 − ε) provided TAwn 6= Awn

Step 3: compute

(3.4) xn+1 = (1− θn − βn)yn + θnSyn.

Set n := n+ 1 and go back to Step 1.

Remark 3.4: (I) The choice of choosing α = 3 in the inertial factor plays an important role in the rate of
convergence of our proposed algorithm.
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4. CONVERGENCE ANALYSIS

Lemma 4.1: Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption 3.1 and 3.2 hold.
Then {xn} is bounded.
For conveniences, we shall denote U := JB1

λ (I − λf1) and T := JB2

λ (I − λf2.).

Proof: Let p ∈ Γ ∩ F (S), we have p = JB1

λ p,Ap = JB2

λ (Ap) and Sp = p. Now, from (3.1) of Algorithm 3.3,
we see that
αn‖xn − xn−1‖ ≤ εn,∀n ∈ N
so that
αn

βn
‖xn − xn−1‖ ≤ εn

βn
→ 0 as n→∞.

Hence, there exists M1 ≥ 0 such that

(4.1)
αn
βn
‖xn − xn−1‖ ≤M1. ∀n ∈ N.

Next, for all p ∈ Γ ∩ F (S), we get that

‖wn − p‖ ≤ ‖xn − p‖+ αn‖xn − xn−1‖

= ‖xn − p‖+ βn
αn
βn
‖xn − xn−1‖

≤ ‖xn − p‖+ βnM1.(4.2)

Observe that

γn〈wn − p,A∗(T − I)Awn〉 = γn〈Awn −Ap, (T − I)Awn〉

= γn〈Awn −Ap+ (T − I)Awn − (T − I)Awn, (T − I)Awn〉

= γn〈TAwn −Ap, (T − I)Awn〉 − γn‖(T − I)Awn‖2

=
1

2
[γn‖TAwn −Ap‖2 + γn‖(T − I)Awn‖2 − γn‖Awn −Ap‖2]

− γn‖(T − I)Awn‖2

≤ 1

2
[γn‖Awn −Ap‖2 + γn‖(T − I)Awn‖2 − γn‖Awn −Ap‖2]

− γn‖(T − I)Awn‖2

= −1

2
γn‖(T − I)Awn‖2.(4.3)

Now, for all p ∈ Γ ∩ F (S) and with the condition on γn we get,

‖yn − p‖2 = ‖U(wn + γn(T − I)Awn)− P‖2

= ‖U(wn + γn(T − I)Awn)− U(P )‖2

≤ ‖wn + γn(T − I)Awn)− P‖2

= ‖wn − p‖2 + γ2
n‖A∗(T − I)Awn‖2 + 2γn〈wn − p,A∗(T − I)Awn〉

≤ ‖wn − p‖2 + γ2
n‖A∗(T − I)Awn‖2 − γn‖(T − I)Awn‖2

= ‖wn − p‖2 − [γn‖(T − I)Awn‖2 − γn‖A∗(T − I)Awn‖2

≤ ‖wn − p‖2.(4.4)

See also that

‖(1− θn − βn)(yn − p) + θn(Syn − p)‖2 = (1− θn − βn)2‖yn − p‖2 + θ2
n‖Syn − p‖2

+ 2θn(1− θn − βn)〈yn − p, Syn − p〉
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≤ (1− θn − βn)2‖yn − p‖2 + θ2
n‖Syn − Sp‖2

+ 2θn(1− θn − βn)‖yn − p‖‖Syn − Sp‖

= [(1− θn − βn)2 + θ2
n + 2θn(1− θn − βn)]‖yn − p‖2

≤ (1− βn)2‖yn − p‖2

≤ (1− βn)2‖wn − p‖2.(4.5)

It follows from (4.2), (3.4) of step 3 and (4.4) that,

‖xn+1 − p‖ = ‖(1− θn − βn)yn + θnSyn − p‖

= ‖(1− θn − βn)(yn − p) + θn(Syn − p)− βnp‖

≤ ‖(1− θn − βn)(yn − p) + θn(Syn − p)‖+ βn‖p‖

≤ (1− βn)‖wn − p‖+ βn‖p‖

≤ (1− βn)[‖xn − p‖+ βnM ] + βn‖p‖

= (1− βn)‖xn − p‖+ (1− βn)βnM + βn‖p‖

≤ (1− βn)‖xn − p‖+ βn(M + ‖p‖)

= (1− βn)‖xn − p‖+ βnMo, forsomeM0 ≥ 0

≤ max{‖xn − p‖,M0}
...

≤ max{‖x1 − p‖,M0}.(4.6)

Following the estimate and Lemma 2.5, we obtain that {xn} is bounded. We we deduce from the proof that
{wn}, {yn}, {Syn} and {Swn} are all bounded sequences. This completes the proof of boundedness.

Lemma 4.2: Let {xn} be a sequence generated by Algorithm 3.3 such that Assumption 3.1 and 3.2 hold. If
there exist a subsequence {xnk

} of {xn} that converges weakly to a point q ∈ H1 and limn→∞ ‖yn−Syn‖ =

0 = ‖wn − xn‖ then, q ∈ Γ ∩ F (S).

Proof: To establish this result, we consider the following cases:
Case 1: Assume {‖xn − p‖} is monotone non-increasing sequence, then {‖xn − p‖} is convergent. Clearly,
we obtain that

lim
n→∞

(‖xn − p‖ − ‖xn+1 − p‖) = 0.

We get from step 1 of the Algorithm 3.3 that

‖wn − xn‖ = αn‖xn − xn−1‖

= βn
αn
βn
‖xn − xn−1‖ → 0 as n→∞.(4.7)

Next, we show that limn→∞ ‖yn − Syn‖ = 0.

‖xn+1 − p‖2 = ‖(1− θn − βn)(yn − p) + θn(Syn − p)− βnp‖2

= ‖(1− θn − βn)(yn − p) + θn(Syn − p)‖2 + β2
n‖p‖

−2βn〈(1− θn − βn)(yn − p) + θn(Syn − p), p〉

= ‖(1− θn − βn)(yn − p) + θn(Syn − p)‖2 + β2
n‖p‖2

+2βn〈(1− θn − βn)(yn − p) + θn(p− Syn), p〉
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≤ ‖(1− θn − βn)(yn − p) + θn(Syn − p)‖2 + β2
n‖p‖2

+2βnM2 for some M2 > 0

= (1− θn − βn)2‖yn − p‖2 + θ2
n‖Syn − p‖2 + 2θn(1− θn − βn)〈yn − p, Syn − p〉

+(βn‖p‖)2 + 2βnM2

≤ (1− θn − βn)2‖yn − p‖2 + θ2
n‖Syn − p‖2 + 2θn(1− θn − βn)‖yn − p‖‖Syn − p‖

+(βn‖p‖)2 + 2βnM2

≤ (1− θn − βn)2‖yn − p‖2 + θ2
n‖Syn − p‖2 + θn(1− θn − βn)[‖yn − p‖2 + ‖Syn − p‖2]

+(βn‖p‖)2 + 2βnM2

= [(1− θn − βn)2 + θn(1− θn − βn)]‖yn − p‖2 + [θ2
n + θn(1− θn − βn)]‖Syn − p‖2

+(βn‖p‖)2 + 2βnM2

≤ [(1− θn − βn)2 + θn(1− θn − βn)]‖yn − p‖2 + [θn(1− βn][‖yn − p‖2 + κ‖yn − Syn‖2

+(βn‖p‖)2 + 2βnM2

= [(1− θn − βn)2 + θn(1− θn − βn) + θn(1− βn)]‖yn − p‖2 − κθn(βn − 1)‖yn − Syn‖2

+(βn‖p‖)2 + 2βnM2

≤ (1− βn)2‖wn − p‖2 − κθn(βn − 1)‖yn − Syn‖2 + (βn‖p‖)2 + 2βnM2

≤ (1− βn)‖wn − p‖2 − κθn(βn − 1)‖yn − Syn‖2 + (βn‖p‖)2 + 2βnM2

≤ ‖wn − p‖2 − κθn(βn − 1)‖yn − Syn‖2 + (βn‖p‖)2 + 2βnM2

≤ ‖xn − p‖2 + βnM1 − κθn(βn − 1)‖yn − Syn‖2 + (βn‖p‖)2 + 2βnM2

= ‖xn − p‖2 − κθn(βn − 1)‖yn − Syn‖2 + βn[M1 + β‖p‖2 + 2M2].(4.8)

From (4.8) and condition on βn, we get

κθn(βn − 1)‖yn − Syn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βn[M1 + β‖p‖2 + 2M2]→ 0.(4.9)

Therefore, from (4.9) we have that

lim
n→∞

‖yn − Syn‖ = 0.(4.10)

From step 2 of algorithm 3.3, we know that

γn‖A∗(T − I)Awn‖2 < ‖(T − I)Awn‖2 − ε‖A∗(T − I)Awn‖2.(4.11)

Now, using (4.4),(4.8) and (4.11) we get

‖xn+1 − p‖2 ≤ (1− βn)2‖yn − p‖2 − κθn(βn − 1)‖yn − Syn‖2 + (βn‖p‖)2 + 2βnM2

≤ (1− βn)‖yn − p‖2 − κθn(βn − 1)‖yn − Syn‖2 + β2
n‖p‖2 + 2βnM2

≤ ‖yn − p‖2 − κθn(βn − 1)‖yn − Tyn‖2 + β2
n‖p‖2 + 2βnM2

≤ ‖wn − p‖2 + γn[γn‖A∗(T − I)Awn‖2 − ‖(T − I)Awn‖2]− κθn(βn − 1)‖yn − Tyn‖2

+β2
n‖p‖2 + 2βnM2

< ‖xn − p‖2 + βnM1 − εγn‖A∗(T − I)Awn‖2 − κθn(βn − 1)‖yn − Syn‖2

+β2
n‖p‖2 + 2βnM2

< ‖xn − p‖2 + βnM1 − εγn‖A∗(T − I)Awn‖2 + β2
n‖p‖2 + 2βnM2.
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Therefore,

εγn‖A∗(T − I)Awn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βnM1 + β2
n‖p‖2 + 2βnM2

= ‖xn − p‖2 − ‖xn+1 − p‖2 + βn[M1 + β‖p‖2 + 2M2]→ 0, n→∞.(4.12)

Thus,

lim
n→∞

‖A∗(T − I)Awn‖ = 0.(4.13)

Consequently, from (4.11) and (4.12)

γn‖(T − I)Awn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + γ2
n‖A∗(T − I)Awn − p‖2

+βn[M1 + β‖p‖2 + 2M2]→ 0, n→∞.(4.14)

Therefore,

lim
n→∞

‖(T − I)Awn‖ = 0.(4.15)

Next, using the nonexpansiveness of the resolvent operator U,we show that limn→∞ ‖yn − wn‖ = 0

‖yn − p‖2 = ‖U(wn + γn(T − I)Awn)− U(P )‖2

≤ 〈U(wn + γnA
∗(T − I)Awn)− U(p), wn + γnA

∗(T − I)Awn − p〉

≤ 〈yn − p, wn + γnA
∗(T − I)Awn − p〉

=
1

2
[‖yn − p‖2 + ‖wn + γnA

∗(T − I)Awn − p‖2

−‖yn − wn − γnA∗(T − I)Awn‖2]

=
1

2
[‖yn − p‖2 + ‖wn − p‖2 + γ2

n‖A∗(T − I)Awn‖2 + 2γn〈wn − p,A∗(T − I)Awn〉

−‖yn − wn‖2 − γ2
n‖A∗(T − I)Awn‖2 + 2γn〈yn, A∗(T − I)Awn〉]

≤ 1

2
[‖yn − p‖2 + ‖wn − p‖2 − ‖yn − wn‖2 + 2γn‖wn − p‖‖A∗(T − I)Awn‖

+2γn‖yn − wn‖‖A∗(T − I)Awn‖]

≤ 1

2
[‖yn − p‖2 + ‖wn − p‖2 − ‖yn − wn‖2

+2γn‖A∗(T − I)Awn‖[‖wn − p‖+ ‖yn − yn‖]]

≤ ‖wn − p‖2 − ‖yn − wn‖+ 2γn‖A∗(T − I)Awn‖[‖wn − p‖+ ‖yn − wn‖].(4.16)

Using (4.16) and (4.12), we estimate that

‖xn+1 − p‖2 ≤ (1− βn)‖yn − p‖2 − κθn(βn − 1)‖yn − Syn‖2 + β2
n‖p‖2 + 2βnM2

≤ ‖yn − p‖2 − κθn(βn − 1)‖yn − Syn‖2 + β2
n‖p‖2 + 2βnM2

≤ ‖wn − p‖2 − ‖yn − wn‖+ 2γn‖A∗(T − I)Awn‖[‖wn − p‖+ ‖yn − wn‖]

−κθn(βn − 1)‖yn − Syn‖2 + β2
n‖p‖2 + 2βnM2

≤ ‖wn − p‖2 − ‖yn − wn‖+ 2γn‖A∗(T − I)Awn‖[‖wn − p‖+ ‖yn − wn‖]

+β2
n‖p‖2 + 2βnM2

≤ ‖xn − p‖2 + βnM1 − ‖yn − wn‖+ 2γn‖A∗(T − I)Awn‖[‖wn − p‖+ ‖yn − wn‖]

+β2
n‖p‖2 + 2βnM2.(4.17)
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We therefore obtain from (4.17) that

‖yn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2γn‖A∗(T − I)Awn‖[‖wn − p‖+ ‖yn − wn‖]

+βn[M1 + β‖p‖2 + 2M2]→ 0, n→∞.(4.18)

Hence, it follows from (4.18) that

lim
n→∞

‖yn − wn‖ = 0.(4.19)

Consequently, from(4.7) and (4.19) we get that

lim
n→∞

‖xn − yn‖ = 0.(4.20)

Using (4.10) and (4.20), we estimate that

lim
n→∞

‖Syn − xn‖ = 0.(4.21)

Again, using (4.10) and (4.19) we obtain that

lim
n→∞

‖Syn − wn‖ = 0.(4.22)

Finally, we show that {xn} is asymptotically regular, that is, ‖xn+1 − xn‖ → 0.

‖xn+1 − xn‖ = ‖(1− θn − βn)(yn − xn) + θn(Syn − xn)− βnxn‖

≤ ‖(1− θn − βn)(yn − xn) + θn(Syn − xn)‖+ βn‖xn‖

≤ (1− θn − βn)‖yn − xn‖+ θn‖Syn − xn‖+ βn‖xn‖ → 0.(4.23)

Therefore, using the estimates (4.20) (4.21) and the condition on βn, i.e., Assumption 3.2 (a) we conclude
that

lim
n→∞

‖xn+1 − xn‖ = 0.(4.24)

Denote un = wn + γnA
∗(T − I)Awn, so that

‖un − wn‖2 = γ2
n‖A∗(T − I)Awn‖2 → 0.(4.25)

Combining (4.19) and (4.25), we conclude that

‖yn − un‖ → 0, n→∞.(4.26)

It follows from the boundedness of {yn} that there exists {ynj
} of {yn} that converges. Without loss of

generality, we may assume that ynj ⇀ q as j → ∞. Using Limma 2.2, (4.10) and the fact that I − S is
demiclosed at zero, we obtain that p ∈ F (S.) Consequently, {xn} and {wn} converge weakly to the point p.

Next, we show that q ∈ (B1 + f1)−1. From Remark 2.1 and by Lemma 2.3, we deduce that B1 + f1is
maximal monotone. Ultilizing the definition and property of maximal monotone, let (v, h) ∈ (B1 + f1) be
arbitrary. It follows that h− f1v ∈ B1(v).

From the fact that yn = Uun = JB1

λ (I − λf1)un, we obtain that

(I − λf1)un ∈ (I + λB1)yn.

Hence,
1

λ
(un − λf1un − yn) ∈ B1(yn).
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Considering the fact that (B1 + f1) is a maximal monotone, we get that

〈v − yn, h− f1v −
1

λ
(un − λf1un − yn)〉 ≥ 0.

We obtain from this last inequality that

〈v − yn, h〉 ≥ 〈v − yn, f1v +
1

λ
(un − λf1un − yn)〉 = 〈v − yn, f1v − f1yn + f1yn − f1un +

1

λ
(un − yn)〉

= 〈v − yn, f1v − f1yn + f1yn − f1un +
1

λ
(un − yn)〉

≥ 0 0 + 〈v − yn, f1yn − f1un〉

+〈v − yn,
1

λ
(un − yn)〉.(4.27)

It follows from (4.26), and the condition on f1 (see remark 2.1), we get

lim
n→∞

‖f1yn − f1un‖ = 0.

Since {yn} is weakly convergent to a point p, we get (4.27) that

lim
n→∞

〈v − yn, h〉 = 〈v − p, h〉 ≥ 0.

Thus, by the maximal monotonicity of B1 + f1, we get that 0 ∈ (B1 + f1)p⇒ p ∈ (B1 + f1)−1.
In similiar argument we see that for (µ, v) ∈ G(B2 + f2) implies z − f2µ ∈ B2µ. Let

Ayn = JB2

λ (I − λf2)Aun.

That is,
1

λ
(Aun − λf2un −Ayn) ∈ B2Ayn

.
We obtain from maximal monotonicity of B2 + f2

〈µ−Ayn, z − f2µ−
1

λ
(Aun − λf2Aun −Ayn)〉 ≥ 0.

Using the fact that A is a bounded linear operator and (4.19),we obtain Aw ⇀ Ap, Lemma 2.2 and from
(4.15), we get that

0 ∈ f2Ap+B2(Ap).

Implies that Ap ∈ (B2 + f2)−1. Therefore, Ap ∈ Γ ∩ F (S) as required and this completes the proof of weak
convergence.

Theorem 4.3: Let {xn} be a sequence generated by the Algorithm 3.3 under Assumption 3.1 and 3.2. Then,
{xn} converges strongly to p ∈ Γ ∩ F (S) where

‖p‖ = min{‖z‖ : z ∈ Γ ∩ F (S)}.

Proof: See that

‖(1− θn)yn + θnSyn − p‖2 = ‖(1− θn)yn − p) + θn(Syn − p)‖2

= (1− θn)2‖yn − p‖2 + θ2
n‖Syn − p‖2 + 2θn(1− θn)〈yn − p, Syn − p〉

≤ (1− θn)2‖yn − p‖2 + θ2
n‖Syn − p‖2 + 2θn(1− θn)‖yn − p‖.‖Syn − p‖

≤ (1− θn)2‖yn − p‖2 + θ2
n‖Syn − p‖2 + θn(1− θn)‖yn − p‖2

+θn(1− θn)‖Syn − p‖2

= [(1− θn)2 + θn(1− θn)]‖yn − p‖2 + [θ2
n + θn(1− θn)]‖Syn − p‖2
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= (1− θn)‖yn − p‖2 + θn‖Syn − Sp‖2

≤ (1− θn)‖yn − p‖2 + θn[‖yn − p‖2

= ‖yn − p‖2

≤ ‖wn − p‖2

= ‖xn − p‖2 + α2
n‖xn − xn−1‖2 + 2αn〈xn − p, xn − xn−1〉

≤ ‖xn − p‖2 + α2
n‖xn − xn−1‖2 + 2αn‖xn − p‖.‖xn − xn−1‖

= ‖xn − p‖2 + αn‖xn − xn−1‖[2‖xn − p‖+ αn‖xn − xn−1‖]

≤ ‖xn − p‖2 + 3αn‖xn − xn−1‖M3,(4.28)

where M3 = sup{‖xn − p‖, ‖xn − xn−1‖}.
Further more, using (4.28) and step 3 of the Algorithm, we obtain

‖xn+1 − p‖2 = ‖(1− βn)[(1− θn)yn + θnSyn − p]− [βnθn(yn − Syn) + βnp‖2]

≤ (1− βn)2‖(1− θn)yn + θnSyn − p‖2 − 2〈βnθn(yn − Syn) + βnp, xn−1 − p〉

≤ (1− βn)‖(1− θn)yn + θnSyn − p‖2 + 2〈βnθn(yn − Syn), p− xn+1〉

+2βn〈p, p− xn+1〉

≤ (1− βn)‖(1− θn)yn + θnSyn − p‖2 + 2βnθn‖yn − Syn‖.‖xn+1 − p‖

+2βn〈p, p− xn+1〉

≤ (1− βn)[‖xn − p‖2 + 3αn‖xn − xn−1‖M3] + 2βnθn‖yn − Syn‖.‖xn+1 − p‖

+2βn〈p, p− xn+1〉

= (1− βn)‖xn − p‖2 + βn(3
αn
βn
‖xn − xn−1‖M3 + 2θn‖yn − Syn‖.‖xn+1 − p‖

+2〈p, p− xn+1〉)

= (1− βn)‖xn − p‖2 + βndn,(4.29)

where dn = (3αn

βn
‖xn − xn−1‖M3 + 2θn‖yn − Syn‖.‖xn+1 − p‖+ 2〈p, p− xn+1〉).

We know from Lemma 4.1 that {xn} is bounded. Thus, there exists a subsequnce {xnj} of {xn} that weakly
converges to a point q ∈ H1 such that

(4.30) lim sup
n→∞

〈p, p− xnj
〉 = lim

n→∞
〈p, p− xnj

〉 = 〈p, p− q〉 ≤ 0.

It follows from (4.30) that

(4.31) lim sup
n→∞

〈p, p− xnj+1〉 = 〈p, p− q〉 ≤ 0.

The fact that lim supn→∞ dn ≤ 0 frollows from (4.1), (4.10) and (4.31). Therefore, we obtain from the con-
cluding part of Lemma 2.2 that limn→∞ ‖xn − p‖ = 0. Hence, {xn} strongly converges to p ∈ PΓ∩F (S)0.

Case 2: Suppose that {‖xn − p‖} is not monotone decreasing sequence. Denote Ωn = ‖xn − p‖2 and let
τ : N → N be a mapping for all n ≥ n0( for sufficiently large n0) defined by:

τ(n) := max {k ∈ N : k ≤ n,Ωk ≤ Ωk+1}.

Then, it is easy to see that τ is a non-decreasing sequence such that τ(n)→∞ as n→∞ and

Ωτ(n) ≤ Ωτ(n)+1, for n ≥ no.
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It follows from (4.8) that

0 ≤ ‖xτ(n) − p‖2 − ‖xτ(n) − p‖2

≤ βnM1 + β2
n‖p‖2 + 2βnM2 − κθn(βn − 1)‖yn − Syn‖2.(4.32)

This implies that

κθτ(n)(βτ(n) − 1)‖yτ(n) − Syτ(n)‖2 ≤ βτ(n)M1 + β2
τ(n)‖p‖

2 + βτ(n)M2 → 0.

Using the same argument as above (4.7) -(4.27), as in case one above, we deduce that {xτ(n)}, {yτ(n)} and
{wτ(n)} are all weakly convergent to p ∈ Γ ∩ F (S). Now for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − p‖2 − ‖xτ(n) − p‖2

≤ βτ(n)M1 + β2
τ(n)‖p‖

2 + 2βτ(n)M2 − ‖xτ(n) − p‖2

= βτ(n)[M1 + βτ(n) + 2βτ(n)]− ‖xτ(n) − p‖2.(4.33)

Thus,

‖xτ(n) − p‖2 ≤ βτ(n)[M1 + βτ(n) + 2βτ(n)]→ 0.(4.34)

Hence,
lim
n→∞

‖xτ(n) − p‖2 = 0.

It follows that
lim
n→∞

Ωτ(n) = lim
n→∞

Ωτ(n)+1.

Furthermore, for n ≥ n0, we see that Ωτ(n) ≤ Ωτ(n)+1 if τ(n) < n,

Since, Ωj ≥ Ωj+1 for τ(n+ 1) ≤ j ≤ n. Consequently, ∀n ≥ n0,

0 ≤ Ωn ≤ max {Ωτ(n),Ωτ(n)+1} = Ωτ(n)+1.

Therefore,
lim
n→∞

Ωn = 0.

We conclude that {xn}, {yn} and {wn} converge strongly to p ∈ Γ ∩ F (S) ∀n ≥ n0. This completes the
proof of Theorem 4.3.

We obtain the following corollares are the immediate consequences of Theorem 4.3.
Corollary 4.4: Let A : H1 → H2 be a bounded linear operator such that A 6= 0 with its adjoont A∗. Let
T : H2 → H2 be a nonexpansive map. Let f1 : H1 → H1 and f2 : H2 → H2 be v− and µ− inverse strongly
monotone respectively. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be two multivalued maximal monotone
operators. Let {xn} be an iterate sequence generated from the following algorithm,

x1, x0, H1,

wn = xn + αn(xn − xn−1),

yn = JB1

λ (I − λf1)(wn + γnA
∗(JB2

λ (I − λf2)− I)Awn),

xn+1 = (1− θn − βn)yn + θnSyn, n ≥ 0.

(4.35)

If the assumptions 3.1 and 3.2 hold, then the sequence {xn} strongly converges to the solution set of Γ ∩
F (T ).

Assuming, θn ≡ 0, and we have a linear combination of {xn}, we obtain the following corollary.
Corollary 4.5 Let A : H1 → H2 be a bounded linear operator such that A 6= 0 with its adjoont A. Let
T : H2 → H2 be κ− strictly pseudocontractive mapping. Let f1 : H1 → H1 and f2 : H2 → H2 be v− and
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µ− inverse strongly monotone respectively. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be two multivalued
maximal monotone operators. Let {xn} be an iterate generated from the following algorithm,

x1, x0, H1,

wn = (1− αn)xn,

yn = JB1

λ (I − λf1)(wn + γnA
∗(JB2

λ (I − λf2)− I)Awn,

xn+1 = (1− βn)yn + βnSyn, n ≥ 0,

(4.36)

If the assumptions 3.1 and 3.2 hold, then the sequence {xn} strongly converges to the solution set of
Γ ∩ F (T ).

Furthermore, if we are interested to study SFP of (1.1), and fixed point problem, we can set
C ≡ H1, Q ≡ H2, f1 ≡ 0 ≡ f2, B1 ≡ 0 ≡ B2. We construct the following algorithm for the SFP.

Corollary 4.6 Let C andQ be two nonempty closed convex subsets of two real Hilbert spacesH1 andH2.

Let A be a bounded linear operator with A∗ its adjoint. Assume the solution set Γ of (1.1) is nonempty. Let
{xn} a sequence generated by the foolowing algorithm:

x0, x1 ∈ H1,

wn = xn + θn(xn − xn−1),

yn = PC(wn + γnA
∗(PQ − I)Awn),

xn+1 = (1− θn − βn)yn + θnSyn, n ≥ 0.

(4.37)

where γn ∈ (ε,
‖(PQ−I)Awn‖2
‖A∗(PQ−I)Awn‖2 − ε). If the assumptions 3.1 and 3.2 hold, then the sequence {xn} strongly

converges to the solution set of Γ ∩ F (T ).

5. APPLICATIONS

In this section, we consider applying our algorithm to linear inverse problem.
Linear Inverse Problems (LIP) arises in many applications such as signal processing and image reconstru-
tions, astrophysics, statistical inference, optics among many others. A basic LIP is of the form:

Ax = b+ w,(5.1)

whereA ∈ Rm×n and b ∈ Rm are known, w is an unknown noise vector,and x is the unknown signal/image
to be estimated (see [42]). In the case of image bluring problems, b ∈ Rm represent the blurred image while
x is the unknown true image, supposing to have the same dimension as b. The operator A is taken to
be blur operator in which typically in this instance of spatially invariant, blurs represent two-dimensional
convolution operator. The classical approach to problem (5.1) is the least square (LS) approach in which the
estimator is chosen to minimize the data error as follows:

LS : xLS = argmin‖Ax− b‖2.(5.2)

Taking this idea to our work, let f1, f2 : H1 → R be convex and continously differentiable functions and
g1, g2 : H1 → R be a convex and lower semicontinous function. The Split Linear Inverse Problem can be
formulated as follows:

find x∗ ∈ H1 such that f1(x∗) + g1(x∗) = min
x∈H1

[f1(x∗) + g1(x∗)]

and Ax∗ ∈ H2 such that f2(x∗) + g2(Ax∗) = min
Ax∗∈H2

[f2(Ax∗) + g2(Ax∗)],(5.3)
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where A is a bounded linear operator defined on H1 and S is a demicontractive mapping defined on H2.

Denote Ω the solution set of (5.3) and fixed point of S by F (S). Then the required solution set is denoted
by Ω∩ F (S). It is well known that if f1, f2 are convex and continously differentaible, then the gradient∇f1

of f1 is 1
v− Lipschitz continous. Further, it is v− inverse strongly monotone. Also,∇f2 of f2 is 1

µ−Lipschitz
continous, hence µ−inverse strongly monotone. It is also known that ∂g1 and ∂g2 are maximal monotone
(see [43]). However,

f1(x∗) + g1(x∗) = min
x∈H1

[f1(x∗) + g1(x∗)]⇔ 0 ∈ ∇f1(x∗) + ∂g1(x∗),

and

f2(Ax∗) + g2(Ax∗) = min
x∈H2

[f2(Ax∗) + g2(Ax∗)]⇔ 0 ∈ ∇f2(Ax∗) + ∂g2(Ax∗).

Setting f1 = ∇f1, f2 = ∇f2 and ∂g1 = B1, ∂g2 = B2 in algorithm 3.3, we obtain the following algorithm for
LIP.
Algorithm 5.1 

x0, x1 ∈ H1,

wn = xn + αn(xn − xn−1),

yn = J∂g1λ (I − λ∇f1)(wn + γnA
∗(J∂g2(I − λ∇f2)− I)Awn),

xn+1 = (1− θn − βn)yn + θnSyn, n ≥ 1.

(5.4)

Let {xn} be a recursive sequence generated by the above algorithm, under some mild conditions, the
sequence strongly converges to the solution set Ω ∩ F (S).

6. NUMERICAL ILLUSTRATIONS

In this section, we present computational experiment and compare the scheme we proposed in section
three with existing methods; precisely, the efficiency was tested with, (1.14), (1.13) and (1.15). All the
codes were written in MATLAB R2018a. All the computations were perfomed on personal computer with
Intel(R) Core (TM) i5-4300U CPU at 1.90Ghz 2.49GHz with 8.00 Gb-RAM and 64-OS.
The vectors x0, x1 ∈ H and γ > 0 were randomly selected. We choose αn = αn = n−1

n+α−1 , with choices of
α ranging from 2,3,6,and 10 βn = 1

5n+5 , θn = 1 − βn, εn = θn/n
2. Since Shehu and Ogbuisi [15] chosed

a stepsize that is dependent of the operator norm, we shall take γn = 1
‖A‖2 while in our algorithm, our

stepsize γn is generated at each iteration.

In many applied problems in physical sciences and engineering, finding the minimum norm is very
important. In control theory for example, minimum norm problem is used for the cases where isolated
point constraints appear at immediate times and makes numerical results simple. In a Hilbert space setting
precisely, when minimum norm is formulated, the existence, uniqueness and characterization of optimal
controls are particularly very simple. In an abtract thinking, minimum norm problem can be formulated as
follows:

find x∗ ∈ H, with the property that ‖x∗‖ = min {‖x‖ : x ∈ H},(6.1)

where H is a real Hilbert space. It is commonly known that in the case of variational inequality problem,
(6.1) is equivalent to:

find x∗ ∈ H, such that 〈x∗, x∗ − x〉 ≤ 0,∀x ∈ H.(6.2)
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Let H1 = H2 = L2([0, 1]) be endowed with inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt∀x, y ∈ L2([0, 1]), t ∈ [0, 1]

and

‖x‖ =

√∫ 1

0

|x(t)|2dt, ∀x, y ∈ L2([0, 1]), t ∈ [0, 1].

Let A : L2([0, 1])→ L2([0, 1]) be given by

Ax(s) =

∫ 1

0

V (s, t)x(t)dt,∀x ∈ L2([0, 1]),

where V : [0, 1]× [0, 1]→ R is bounded. However, the adjoint of A which is A∗ is also defined by

A∗x(s) =

∫ 1

0

V (t, s)x(t)dt, ∀x ∈ L2([0, 1]).

Let ‖.‖L2 : L2([a, b]) → R, C = {x ∈ L2 : 〈a, x〉 = b}, for some a ∈ L2 − {0} and Q = {x ∈ L2 : 〈a, x〉 ≥ b}
for some a ∈ L2 − {0}, b ∈ R. Then x∗ minimizes ‖.‖L2

+ δC if and only if 0 ∈ ∂(‖.‖L2
+ δC)(x∗) and Ax∗

minimizes ‖.‖ + δQ if and only if 0 ∈ ∂(‖.‖L2
+ δQ)(Ax∗), where δC[defined as δC(x) = 0 if x ∈ C and

+∞ otherwise] and δQ stands for indicator function of C snd Q respectively and ∂φ for the subdifferential
of φ[∂φ(x) := {u ∈ H : φ(y) + 〈u, y − x〉,∀y ∈ H}. If in (1.8) and (1.9) we set B1 = ∂(‖.‖L2

+ δC), B2 =

∂(‖.‖L2 + δQ) with f1 = f2 = 0,we obtain the following Split Minimization Problem (SMP):

find x∗ ∈ C such that x∗ = argmin{‖x‖L2
: x ∈ C},(6.3)

and

find y∗ = Ax∗ ∈ Q solves y∗ = argmin{‖x‖L2 : x ∈ Q}.(6.4)

Let Θ be a solution set of (6.3) and (6.4) and Θ 6= ∅. Then, the solution to problem (6.3) and (6.4) is a
minimum-norm solution. It is clearly seen from this example that Alhorithm 3.3 generalizes the SMP (see,
e.g., [12]).
Suppose we define a function h : R→ (−∞,+∞] by

h(x) =

= −In(x) + x if x > 0,

∞, otherwise.
(6.5)

Hence, h is a proper, lower semicontinous and convex function. B := ∂h is maximal monotone. From [46],
we obtain the resolvent of B by JB1 x = (I +B)−1x = 1

2 (x− 1 +
√

(x− 1)2 + 4).

In the light of [17], we shall consider the following cases:
Case 1: Take x1(t) = t2 + 1, x0(t) = et, γ1 = 0.5

Case 2:Take x1(t) = t2 + 1, x0(t) = et, γ1 = 2

Case 3: Take x1(t) = sin(t) + 2t, x0(t) = t+ et, γ1 = 0.5

Case 4:Take x1(t) = sin(t) + 2t, x0(t) = t+ et, γ1 = 2

The following tables and figures are the outputs generated from our Matlab codes. Error (‖xn−1 − xn‖2)

and number of iteration (n) are considered as vertical and horizontal axis respectively.
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Table 6.1: Numerical results comparing Alg. 3.3 at difference levels of α

Alg.3.3 (α = 1) Alg.3.3 (α = 2) Al.3.3 (α = 3)

Case 1
CPU time (sec)
No. of iteration

1.245
11

1.056
8

0.067
4

Case 2
CPU time (sec)
No. of iteration

1.516
11

2.035
8

0.467
4

Case 3
CPU time (sec)
No. of iteration

1.574
12

2.446
9

1.047
5

Case 4
CPU time (sec)
No. of iteration

1.571
12

2.449
9

1.467
5

Table 6.2: Numerical results comparing Alg. 3.3, Alg. 1.13 and Alg. 1.14

Alg.3.3 (α = 3) Alg.1.13 Alg.1.14

Case 1
CPU time (sec)
No. of iteration

0.067
4

3.156
12

5.467
13

Case 2
CPU time (sec)
No. of iteration

0.467
4

3.367
13

5.467
14

Case 3
CPU time (sec)
No. of iteration

1.047
4

4.446
15

5.047
15

Case 4
CPU time (sec)
No. of iteration

1.467
4

6.009
16

6.467
16

Table 6.3: Numerical results comparing Alg. 3.3, and Alg. 1.15 at (α = 1, 2, 3)

Alg.3.3 (α = 3) Alg.1.13 (α = 3)

Case 1
CPU time (sec)
No. of iteration

0.067 4 2.006 9

Case 2
CPU time (sec)
No. of iteration

0.467 4 2.047 9

Case 3
CPU time (sec)
No. of iteration

1.047 4 2.097 9

Case 4
CPU time (sec)
No. of iteration

1.467 4 2.579 9
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FIGURE 1. Comparing our algorithm (Alg. 3.3) at different choices of ′α′ values
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7. RESULTS AND DISCUSSION

In Table 6.1, we compare our algorithm at different choices of ′α′ and observe that our algorithm converges
at just fourth iteration whenever ′α = 3′ and converges far otherwise provided that α is positive. This also
can be seen in Figure 1 above.
Table 6.2 is comparison of the rate of convergence between our Algorithm 3.3, (1.13) and (1.14) which the
stepsizes rely on the operator norm of the bounbed linear map. Apart from the fact that we introduce an
inertial term, we also remove the condition and our Algorithm performs extremely well than others. Figure
2 are another evidence.
In Table 6.3 we compare our Algorithm 3.3 with Algorithm (1.15) where both Algorithms have a similiar
inertial terms. We tested them at the same level of α = 3 (see [17], remark 4.3 (c) and Table 1). We observe
that at α = 3, Algorithm 3.3 converges at 4th iteration while Algorithm (1.15) converges at 9th iteration (see
Figure 4 above). Nevertheless, we concord with their result and on their remark 4.3 (c).
In Figure 3 above, we compare our scheme with rest as we pointed out. It is observed that our Algorithm
converges faster and at a fewer iteration than others. In nutshell, both in theory and in practice, our algo-
rithm has advantages over others. Hence, it an improvement when compared with others in the literature.

8. CONCLUSION

In the framework of real Hilbert spaces, the new inertial extrapolation method for solving split monotone
variational inclusion problem is constructed and a strong convergence of the proposed iterative scheme
is established. Under some mild conditions, which are not limited to the fact that, the step size does not
requiring the knowledge of operator norm or trying to have a rough estimate of it. The most general
class of operators, the demicontractive operator is considered which really makes the work more general
than many others in the same direction. Our algorithm not only finds a solution to the split monotone
variational inclusion problem but also solves a fixed point problem which arises in so many areas of
engineering and sciences. Furthermore, we apply our algorithm to linear inverse problems. A numerical
examples were provided to demostrate how effective and compective our algorithm is over others in this
direction (see [13, 14, 16, 17]) among many others.
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