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DYNAMICS AND GLOBAL STABILITY OF SECOND ORDER NONLINEAR DIFFERENCE
EQUATION

E. M. ELSAYED∗ AND HANAN S. GAFEL

ABSTRACT. In this paper, we study some qualitative behavior of the solutions of the following rational difference
equation with order two

xn+1 = axn + bxn−1 +
cxn + dxn−1

e+ fxn−1
,

where the parameters a, b, c, d, e and f are positive real numbers and the initial conditions x−1 and x0 are
positive real numbers.

1. INTRODUCTION

Difference equations precribe real life situations in probability theory, electrical network, physics, sociol-
ogy, etc. Then the difference equations got solution of more complicated problems. There has been many
papers about the global behavior and stability of rational difference equations, see [1]-[52].
Agarwal and Elsayed [1] investigated the global stability and gave the solutions of some special cases of
the difference equation

xn+1 = a+
dxn−1xn−k
b− cxn−s

.

Ahmed and Eshtewy [2] investigated the global attractivity of the difference equation

xn+1 =
A−Bxn−2
C +Dxn−1

.

Elsayed [10] studied the global stability, and periodicity character of the following recursive sequence

xn+1 = axn−l +
bxn−l

cxn−l − dxn−k
.

Elsayed and El-Dessoky [16] investigated the global convergence, boundedness, and periodicity of solu-
tions of the difference equation

xn+1 = axn−s +
bxn−l + cxn−k
dxn−l + exn−k

.
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Ibrahim [26] has got the closed form expressions of some higher order nonlinear rational partial difference
equation in the form

xn,m =
xn−r,m−r

Ψ +

r∏
i=1

xn−i,m−i

.

Moaaz and Abdelrahman [35] investigated the qualitative behavior of the solution of the rational difference
equations

xn+1 =
bxn−k

α+

k∑
j=0

βj

k∏
i=0,i6=j

xn−i

.

Obaid et al. [37] investigated the global attractivity and periodic character of the following fourth order
difference equation

xn+1 = axn +
bxn−1 + cxn−2 + dxn−3
αxn−1 + βxn−2 + γxn−3

.

Saleh et al. [40] studied the dynamical of a nonlinear rational difference equation of a higher order

xn+1 =
α+ βxn + γxn−k
bxn + cxn−k

.

Our goal in this article is study some properties and dynamics of the solution of the difference equation

(1) xn+1 = axn + bxn−1 +
cxn + dxn−1
e+ fxn−1

,

where the parameters a, b, c, d, e and f are positive real numbers and the initial conditions x−1 and x0
are positive real numbers.

2. SOME BASIC PROPERTIES AND DEFINITIONS

"Here, we recall some basic definitions and some theorems that we need in the sequel.
Let I be some interval of real numbers and let

F : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, ... , x0 ∈ I,
the difference equation

(2) xn+1 = F (xn, xn−1, ..., xn−k), n = 0, 1, ...,

has a unique solution {xn}∞n=−k .

Definition 2.1. (Equilibrium point)

A point x̄ ∈ I is called an equilibrium point of Equation (2) if

x̄ = F (x̄, x̄, ..., x̄).

That is, xn = x̄ for n ≥ 0, is a solution of Equation (2), or equivalently, x̄ is a fixed point of F .

Definition 2.2. (Periodicity)

A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all n ≥ −k.

Definition 2.3. (Stability)
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(i) The equilibrium point x̄ of Equation (2) is locally stable if for every ε > 0, there exists δ > 0 such that
for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x̄|+ |x−k+1 − x̄|+ ...+ |x0 − x̄| < δ,

we have

|xn − x̄| < ε for all n ≥ −k.

(ii) The equilibrium point x̄ of Equation (2) is locally asymptotically stable if x̄ is locally stable solution
of Equation (2) and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x̄|+ |x−k+1 − x̄|+ ...+ |x0 − x̄| < γ,

we have

lim
n→∞

xn = x̄.

(iii) The equilibrium point x̄ of Equation (2) is global attractor if for all x−k, x−k+1, ..., x−1, x0 ∈ I, we
have

lim
n→∞

xn = x̄.

(iv) The equilibrium point x̄ of Equation (2) is globally asymptotically stable if x̄ is locally stable, and x̄

is also a global attractor of Equation (2).
(v) The equilibrium point x̄ of Equation (2) is unstable if is not locally stable.
The linearized equation of Equation (2) about the equilibrium point x̄ is the linear difference equation

(3) yn+1 =

k∑
i=0

∂F (x̄, x̄, ..., x̄)

∂xn−i
yn−i.

Theorem A [33] Assume that pi ∈ R, i = 1, 2, ... and k ∈ {0, 1, 2, ...}. Then

(4)
k∑
i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

(5) yn+k + p1yn+k−1 + ...+ pkyn = 0, n = 0, 1, ... .

Theorem B [33] Let g : [a, b]k+1 → [a, b], be a continuous function, where k is a positive integer, and where
[a, b] is an interval of real numbers. Consider the difference equation

(6) xn+1 = g(xn, xn−1, ..., xn−k), n = 0, 1, ... .

Suppose that g satisfies the following conditions.
(1) For each integer iwith 1 ≤ i ≤ k+1; the function g(z1, z2, ..., zk+1) is weakly monotonic in zi for fixed

z1, z2, ..., zi−1, zi+1, ..., zk+1.

(2) If m,M is a solution of the system

m = g(m1,m2, ...,mk+1), M = g(M1,M2, ...,Mk+1),

then m = M , where for each i = 1, 2, ..., k + 1, we set

mi =

{
m, if g is non-decreasing in zi,
M, if g is non-increasing in zi,

}
,

Mi =

{
M, if g is non-decreasing in zi,
m, if g is non-increasing in zi.

}
.
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Then there exists exactly one equilibrium point x̄ of Equation (6), and every solution of Equation (6)
converges to x̄."

3. LOCAL STABILITY OF EQUATION (1)

In this section, we investigate the local stability character of the solutions of Equation (1).
Equation (1) has two equilibrium points and given by the relation

x̄ = ax̄+ bx̄+
cx̄+ dx̄

e+ fx̄
.

Then

x̄1 = 0.

x̄2 =
c+ d

[1− (a+ b)]f
− e

f
.

Let f : (0,∞)2 −→ (0,∞) be a function defined by

f(u, v) = au+ bv +
cu+ dv

e+ fv
.

Therefore it follows that
∂f(u, v)

∂u
= a+

c

e+ fv
,

∂f(u, v)

∂v
= b+

de− cfu
(e+ fv)2

.

Theorem 3.1. Assume that
(a+ b)e < e− (c+ d) .

Then the first equilibrium point (x̄1 = 0) of Equation (1) is locally asymptotically stable.

Proof. Let f : (0,∞)2 −→ (0,∞) be a function defined by

f(u, v) = au+ bv +
cu+ dv

e+ fv
.

Then, we see at the first point x̄1 = 0, that

∂f(x̄, x̄)

∂u
= a+

c

e
,

∂f(x̄, x̄)

∂v
= b+

d

e
.

Then, the linearized equation of Equation (1) about x̄1 = 0 is

(7) yn+1 −
(
a+

c

e

)
yn −

(
b+

d

e

)
yn−1 = 0.

The characteristic equation of Eq.(7) is

λ2 −
[
a+

c

e

]
λ−

[
b+

d

e

]
= 0,

and hence it follows from Theorem A, that the equilibrium point is locally asymptotically stable if∣∣∣a+
c

e

∣∣∣+

∣∣∣∣b+
d

e

∣∣∣∣ < 1,

or
(a+ b)e < e− (c+ d) .

This completes the proof. �
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Theorem 3.2. Assume that

c < eA < c+ d, or eA < c < d+ eA,

since A = 1 − (a + b). Then the second equilibrium point
(
x̄2 = c+d

[1−(a+b)]f −
e
f

)
of Equation (1) is locally asymp-

totically stable.

Proof. Let f : (0,∞)2 −→ (0,∞) be a function defined by

f(u, v) = au+ bv +
cu+ dv

e+ fv
.

Then, we see at the point x̄2 = c+d
Af −

e
f , ( since A = 1− (a+ b)) that

∂f(x̄, x̄)

∂u
= a+

c(1− (a+ b))

c+ d
= a+

cA

c+ d
,

∂f(x̄, x̄)

∂v
= b+

(eA− c)A
c+ d

.

Then, the linearized equation of Equation (1) about x̄2 is

(8) yn+1 −
(
a+

cA

c+ d

)
yn −

(
b+

(eA− c)A
c+ d

)
yn−1 = 0.

It follows by Theorem A that Equation (8) is asymptotically stable if∣∣∣∣a+
cA

c+ d

∣∣∣∣+

∣∣∣∣b+
(eA− c)A
c+ d

∣∣∣∣ < 1.

We consider three cases
Case (I):- A > 0, eA > c, we see that

a+
cA

c+ d
+ b+

(eA− c)A
c+ d

< 1.

Then

a+ b+
eA2

c+ d
< 1 ⇒ eA2

c+ d
< A ⇒ eA < c+ d.

Case (II):- A > 0, eA < c, we see that

a+
cA

c+ d
+ b+

(c− eA)A

c+ d
< 1.

(2c− eA)A

c+ d
< 1− a− b = A.

2c− eA
c+ d

< 1.

Then

2c− eA < c+ d.

c < d+ eA.

Case (III):- A < 0, we suppose (A = −B = a+ b− 1) and we get

a+
cB

c+ d
+ b+

(eB + c)B

c+ d
< 1.

(eB + 2c)B

c+ d
< A.

which is contradictions, thus A should be positive. This completes the proof. �
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4. GLOBAL ATTRACTIVITY OF THE EQUILIBRIUM POINT OF EQUATION (1)

In this section we deals the global attractivity character of solutions of Equation (1).

Theorem 4.1. The equilibrium point x̄ is a global attractor of equation (1) if one of the following conditions holds:

(i) (1 + b− a)e+ d > c.

(ii) a+ b > 1.

Proof. Let r, s be nonnegative real numbers and assume that

f : [r, s]2 → [r, s]

be a function defined by

f(u, v) = au+ bv +
cu+ dv

e+ fv
.

It is easy to see that the function f(u, v) is increasing in u but it is unknown in v. So, we consider two cases:
Case 1: Assume that f(u, v) is decreasing in v.
Suppose that (m,M) is a solution of the system

M = f(M,m) and m = f(m,M).

Then from Equation (1), we see that

M = aM + bm+
cM + dm

e+ fm
, m = am+ bM +

cm+ dM

e+ fM
,

or
M [1− a] = bm+

cM + dm

e+ fm
, m[1− a] = bM +

cm+ dM

e+ fM
,

then

M [1− a](e+ fm) = bm(e+ fm) + cM + dm,

m[1− a](e+ fM) = bM(e+ fM) + cm+ dM,

Subtracting this two equations, we obtain

(M −m) {(1 + b− a)e+ be− c+ d+ bf(M +m)} = 0,

under the condition (1 + b− a)e+ d > c, we see that

M = m.

It follows from Theorem B that x̄ is a global attractor of Equation (1).
Case 2: Assume that f(u, v) is increasing in v.
Suppose that (m,M) is a solution of the system

M = f(M,M) and m = f(m,m).

Then from Equation (1), we see that

M = aM + bM +
cM + dM

e+ fM
, m = am+ bm+

cm+ dm

e+ fm
,

or
M [1− (a+ b)] =

cM + dM

e+ fM
, m[1− (a+ b)] =

cm+ dm

e+ fm
,

then

M2f [1− (a+ b)] +Me[1− (a+ b)] = cM + dM,

m2f [1− (a+ b)] +me[1− (a+ b)] = cm+ dm.
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Subtracting this two equations we get

(M −m) {f(M +m)[1− (a+ b)] + e(1− a− b)− c− d} = 0.

under the condition (a+ b) > 1, we see that

M = m.

It follows from Theorem B that x̄ is a global attractor of Equation (1) and then the proof is completed. �

5. BOUNDEDNESS OF SOLUTIONS OF EQUATION (1)

Here we deal with the boundedness nature of the solutions of Equation (1).

Theorem 5.1. Every solution of Equation (1) is bounded if a+ b+ c+d
e < 1.

Proof. Let {xn}∞n=−1 be a solution of Equation (1). It follows from Equation (1) that

xn+1 = axn + bxn−1 +
cxn + dxn−1
e+ fxn−1

≤ axn + bxn−1 +
cxn + dxn−1

e
= (a+

c

e
)xn + (b+

d

e
)xn−1.

By using a comparison, we can write the right hand side as follows

yn+1 = (a+
c

e
)yn + (b+

d

e
)yn−1.

This equation is locally asymptotically stable if
∣∣a+ c

e

∣∣ +
∣∣b+ d

e

∣∣ < 1, and converges to the equilibrium
points. Thus the solution is bounded. �

Theorem 5.2. Equation (1) has unbounded solution if a > 1or b > 1.

Proof. Let {xn}∞n=−1 be a solution of Equation (1). It follows from Equation (1) that

xn+1 = axn + bxn−1 +
cxn + dxn−1
e+ fxn−1

> axn ( or we can write xn+1 > bxn−1)

By using a comparison, we can write the right hand side as follows

yn+1 = ayn =⇒ yn = any0 =⇒ lim
n→∞

yn =∞.

yn+1 = byn−1 =⇒ yn = (b
n
2 y0 or b

n+1
2 y−1) =⇒ lim

n→∞
yn =∞.

So the solutions are unbounded solutions. �

6. EXISTENCE OF PERIODIC SOLUTIONS

In this section we study the existence of periodic solutions of Equation (1). The following theorem states
the necessary and sufficient conditions that this equation has periodic solution of prime period two.

Theorem 6.1. Equation (1) has a prime period two solutions if and only if

(d− c− e(B + a))2 >
4B

a+B
(c+ ae)(c+ eB + ea− d), B = 1− b.

Proof. First suppose that there exists a prime period two solution ..., p, q, p, q, ... , of Equation (1). We will
prove that Condition holds.

We see from Equation (1) that

p = aq + bp+
cq + dp

e+ fp
,
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and

q = ap+ bq +
cp+ dq

e+ fq
.

Then

(9) pBe+ fBp2 − aeq − afpq = cq + dp,

and

(10) qBe+ fBq2 − aep− afpq = cp+ dq.

Subtracting (9) from (10) gives

(p− q){Be+ fB(p+ q) + ae} = (d− c)(p− q).

Since p 6= q, it follows that

(11) p+ q =
d− c− eB − ea

fB
.

Again, adding (9) and (10) yields

(12) (p+ q){eB − ea− c− d}+ fB(p+ q)2 − 2fBpq = 2afpq.

It follows by (11), (12) and the relation p2 + q2 + 2pq = (p+ q)2 that

pqf(a+B) = (p+ q)(−c− ea).

Thus

(13) pq =
(d− c− eB − ea)(−c− ea)

f2B(a+B)
.

Now it is clear from Equations (11) and (13) that p and q are the two distinct roots of the quadratic equation

λ2 − d− c− eB − ea
fB

λ+
(d− c− eB − ea)(−c− ea)

f2B(a+B)
= 0,

or

(14) f2B(a+B)λ2 − f(a+B)(d− c− eB − ea)λ+ (d− c− eB − ea)(−c− ea) = 0,

and so
[f(a+B)(d− c− eB − ea)]2 − 4f2B(a+B)(d− c− eB − ea)(−c− ea) > 0.

[(d− c− eB − ea)]2 >
4B

a+B
(d− c− eB − ea)(−c− ea).

Therefore the condition holds.
Second suppose that the condition is true. We will show that Equation (1) has a prime period two

solution.
Assume that

p =
−f(a+B)(c+ eB + ea− d) + ζ

2f2B(a+B)
,

and

q =
−f(a+B)(c+ eB + ea− d)− ζ

2f2B(a+B)
,

where
ζ =

√
f2(a+B)2(d− c− eB − ea)2 − 4f2B(a+B)(d− c− eB − ea)(−c− ea).

We see from the condition that

[(d− c− eB − ea)]2 >
4B

a+B
(d− c− eB − ea)(−c− ea),
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which equivalents to

(a+B)[(d− c− eB − ea)]2 − 4B(d− c− eB − ea)(−c− ea) > 0.

Thereforep and q are distinct real numbers.
Set

x−1 = p, x0 = q.

We wish to show that
x1 = p, and x2 = q.

It follows from Equation (1) that

x1 = aq + bp+
cq + dp

e+ fp

= −af(a+B)(c+eB+ea−d)−bf(a+B)(c+eB+ea−d)+bζ−aζ
2f2B(a+B)

+

−cf(a+B)(c+eB+ea−d)−df(a+B)(c+eB+ea−d)+dζ−cζ
2f2B(a+B)

e+ −f(a+B)(c+eB+ea−d)+ζ
2fB(a+B)

= −(a+b)f(a+B)(c+eB+ea−d)+(b−a)ζ
2f2B(a+B)

+

[ −cf(a+B)(c+eB+ea−d)−df(a+B)(c+eB+ea−d)+dζ−cζ
2f2B(a+B)

× 2fB(a+B)
e2fB(a+B)−f(a+B)(c+eB+ea−d)+ζ

]

=
−(a+ b)f(a+B)(c+ eB + ea− d) + (b− a)ζ

2f2B(a+B)
+W,

where

W =
−(c+ d)f(a+B)(c+ eB + ea− d) + (d− c)ζ

e2f2B(a+B)− f2(a+B)(c+ eB + ea− d) + fζ
.

By simple computation we can see that
x1 = p.

Similarly as before one can easily show that
x2 = q.

Then it follows by induction that

x2n = q and x2n+1 = p for all n ≥ −1.

Thus Equation (1) has the positive prime period two solution

...,p,q,p,q,...,

where p and q are the distinct roots of the quadratic equation (14) and the proof is complete. �

7. NUMERICAL EXAMPLES

For confirming the results of this article, we consider numerical examples which represent different types
of solutions to Equation (1).

Example 7.1. We consider numerical example for the difference equation (1) when we take the constants
and the initial conditions as follows: x−1 = 2.5, x0 = 3, a = .7, b = .5, c = .2, d = .1, e = .3, f = .5. See
Figure 1.
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FIGURE 1.

Example 7.2. See Figure (2) when we take Equation (1) with x−1 = 8, x0 = 3, a = .6, b = .2, c = 3, d =

4, e = 7, f = 5.
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FIGURE 2.
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Example 7.3. Figure (3) shows the behavior of the solution of the difference equation (1) when we put
x−1 = 8, x0 = 3, a = .3, b = .5, c = 3, d = 1, e = 8, f = 5.
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FIGURE 3.

Example 7.4. We assume x−1 = 7, x0 = 12, a = 1.1, b = .02, c = .3, d = .4, e = 2, f = .5. See Figure 4.
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FIGURE 4.

Example 7.5. Figure (5) shows the solution of Equation (1) when x−1 = 7, x0 = 12, a = 0.01, b = 1.02, c =

.3, d = .4, e = 2, f = .5.
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FIGURE 5.

Example 7.6. Figure (6) shows the period two solution of Equation (1) when x−1 = p, x0 = q, a = .2, b =

.15, c = .123, d = 14, e = 6, f = .5, since p and q as in the previous theorem.
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FIGURE 6.
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