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EXISTENCE RESULTS FOR FRACTIONAL DIFFERENTIAL EQUATIONS UNDER WEAK
TOPOLOGY FEATURES

AHMED HALLACI, AREF JERIBI, BILEL KRICHEN∗, AND BILEL MEFTEH

ABSTRACT. Using Krasnoselskii type fixed point theorem under the weak topology, we establish some sufficient
conditions to ensure the existence of the weak solutions for kinds of initial value problems of fractional differential
equations, involving Riemann-Liouville fractional derivative.

1. INTRODUCTION

The great recent interest of fractional differential equations have been the principle reason of the intensive
development of the theory of fractional calculus and fractional differential equations. Various applications
of such contributions in many scientific disciplines such as physics, chemistry, biology, engineering,
viscoelasticity, signal processing, electrotechnical, electrochemistry and controllability was developed
in [1, 3, 4, 12, 13].

In this paper, we are interested in the qualitative theory of a kind of fractional differential equations in
the field of initial value problems. More precisely, let us consider the following Riemann-Liouville type
fractional differential equation with initial conditions (IVP)

(1.1)

D
αu(t) = h (t) f(t, u (t)) + g (t,Hu (t)) , t ∈ I := [0, T ], T > 0

lim
t→0+

t2−αu(t) = lim
t→0+

t2−αu
′
(t) = 0,
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where u belongs to L1 (I, E) , the space of Lebesgue integrable functions on I with values in a finite dimen-
sional Banach space (E, ‖ · ‖), which is endowed with the norm

‖u‖L1 =

T∫
0

‖u (t)‖ dt,

and Dα is the left Riemann Liouville derivative of order α, 1 < α ≤ 2. Here, f (., .) and g (., .) are nonlinear
functions, h (.) is a measurable function and H is a bounded linear operator from L1 (I, E) into itself.

This type of fractional differential equations has been studied by many authors. The most of investigated
papers deals with the existence, uniqueness and stability of solutions using fixed point theorems in Banach
spaces (see for example the paper [3]). On the other hand, to the best of our knowledge, the use of
fixed point theorems under the weak topology in the study of fractional differential equations is still not
sufficiently generalized. However although, fixed point theory with weak topology has been investigated
in several papers and monographs for integral equations to prove the existence of solutions [11,14] and the
monograph [9] and the references therein.

The aim of this work is to study of existence of solutions for a nonlinear boundary value problem (1.1)

involving the left Riemann-Liouville fractional derivative. For this end, we transform problem (1.1) to an
integral equation.

By combining the theory of fixed point under weak topology point with the De Blasi measure of weak
noncompactness and the theory of fractional differential equations, we give sufficient conditions on the
functions f and g to prove that IVP (1.1) has at least one integrable solution. For this purpose, we give
some preliminary concepts and lemmas around fractional calculus theory and weak topoloy. Then, we
transform IVP (1.1) into Volterra type integral equation employing some useful definitions and lemmas of
fractional integral and derivative. After that, we present our main result which based on a variant of fixed
point theorem developed in [14].

2. PRELIMINARIES

In this section we establish the notation used in the paper and we provide a few auxiliary facts which will
be needed in our considerations. Moreover, we give here definitions of basic concepts applied in our study
and we also indicated some essential properties of the concepts appearing in our reasonings.

Throughout the paper we denote by R the set of real numbers. The symbol N stands for the set of natural
numbers (positive integers). By the symbol E we will denote a Banach space endowed with the norm
‖.‖E and with zero element θ. In general, we write ‖.‖ in place of ‖.‖E . For r > 0 the symbol Br denotes
the closed ball centered at θ and with radius r and D(A) denotes the domain of an operator A. By the
symbol ME we will denote the collection of all nonempty bounded subsets of E while W(E) stands for
its subfamily consisting of all relatively weakly compact sets. Moreover, for an arbitrarry subset M of the
space X the symbol Mw will stand for the weak closure of M and the symbol conv(M) denotes the conve
hull of M . Apart from this we use the standard notation M1 + M2, λM(λ ∈ R) for algebraic operations on
sets.
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Further, let us recall the concept of the De Blasi measure of weak noncompactness [9] being the function
ω :ME → R+ = [0,∞), defined in the following way

ω(M) = inf{r > 0 : there exists W ∈ W(X) such that M ⊂W +Br}.

For our purpose we recall some basic properties of the measure of weak noncompactness [4, 9].

Lemma 2.1. Let M1, M2 be two elements ofME . Then, the following conditions are satisfied:

(1) M1 ⊆M2 implies ω(M1) ≤ ω(M2).
(2) ω(M1) = 0 if, and only if, M1

w ∈ W(E).
(3) ω(M1

w) = ω(M1).
(4) ω(M1 ∪M2) = max{ω(M1), ω(M2)}.
(5) ω(λM1) = |λ|ω(M1) for all λ ∈ R.
(6) ω(conv(M1)) = ω(M1).
(7) ω(M1 +M2) ≤ ω(M1) + ω(M2).
(8) if (Mn)n≥1 is a decreasing sequence of nonempty bounded and weakly closed subsets of E with

lim
n→∞

ω(Mn) = 0, then M∞ :=

∞⋂
n=1

Mn is nonempty and ω(M∞) = 0 i.e., M∞ is relatively weakly

compact. ♦

In L1 space, the measure ω (.) possesses the following form (see [2]).

Proposition 2.1. [2] Let Ω be a compact subset of Rn and let M be a bounded subset of L1 (Ω, E) where E
is a finite dimensional Banach space. Then, ω (.) possesses the following form

ω (M) = lim
ε→0

sup

 sup
Ψ∈M


∫
D

‖Ψ (t)‖ dt : meas (D) ≤ ε


 ,

for any nonempty subset D of Ω, where meas(.) denotes the Lebesgue measure. ♦

Definition 2.1. Let Ω ⊂ Rn and let E,F be two Banach spaces. A function f : Ω × E → F is said to be a
Carathéodory, if

(i) for any u ∈ E, the map t 7−→ f (t, u) is measurable from Ω to F , and
(ii) for almost all t ∈ Ω, the map u 7−→ f (t, u) is continuous from E to F .

Letm(Ω, E) be the set of all measurable functions u : Ω→ E. If f is a Carathéodory function, then f defines
a mapping Nf : m(Ω, E) → m(Ω, F ) by Nfu (t) := f (t, u (t)), for all t ∈ Ω. This mapping is called the
Nemytskii’s operator associated to f . ♦

Let us recall the following Lemma that will be needed in the sequel.

Lemma 2.2. [15] Let Ω ⊂ Rn and letE be a separable Banach space, and p, q ≥ 1 and let F : Ω×E → E be a
Carathéodory function. The Nemytskii operator Nf associated to f maps continuously the space L1 (Ω, E)

into itself if, and only if,

‖f (t, u)‖ ≤ a (t) + b ‖u‖ ,∀t ∈ I, ∀u ∈ E,

where a ∈ L1
+ (Ω, E) and b is a nonnegative constant. Here, L1

+ (Ω, E) stands for the positive cone of the
space L1 (Ω, E) . Obviously, we have

‖Nfu‖L1 ≤ ‖a‖L1 + b ‖u‖L1 ,∀u ∈ L1 (Ω, E) . ♦
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Definition 2.2. [8, 13] The Riemann-Liouville fractional integral of the function u of order α ≥ 0 is defined
by

Iαu (t) =
1

Γ (α)

t∫
0

u (τ)

(t− τ)
1−α dτ,

where Γ (.) is the Euler gamma function defined by Γ (α) =

∞∫
0

e−ttα−1dt. ♦

Definition 2.3. [8,13] The Riemann-Liouville fractional derivative of the function u of order α ∈ (n− 1, n],
n ≥ 1 is defined by

Dαu (t) =
1

Γ (n− α)

dn

dtn

t∫
0

u (τ)

(t− τ)
α−n+1 dτ. ♦

Let α > 0 be a real number, we have following Lemma.

Lemma 2.3. [13] The unique solution of the linear fractional differential equation

Dαu(t) = 0,

is given by

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 + ...+ cnt

α−n, ci ∈ R, i = 1, 2, ..., n. ♦

3. EXISTENCE RESULT

Let E be a Banach space and let A : D(A) ⊆ E → E be an operator. Recall the following conditions:

(C1)

{
If (xn)n∈N ⊆ D(A) is a weakly convergent sequence in E, then
(Axn)n∈N has a strongly convergent subsequence in E.

(C2)

{
If (xn)n∈N ⊆ D(A) is a weakly convergent sequence in E, then
(Axn)n∈N has a weakly convergent subsequence in E.

Note conditions (C1) and (C2) were considered in [7,10] and for some applications on maps satisfying these
conditions we refer the reader to the monograph [9].

The following variant of fixed point theorem [14] will play a fundamental role in our considerations.

Theorem 3.1. Let M be a nonempty, bounded, closed, and convex subset of a Banach space E, Suppose
that A : M → E and B : M → E be two operators such that

(i) A is continuous and satisfies (C1),
(ii) there exists γ ∈ [0, 1[ such that ω (AS +BS) ≤ γω (S) for all S ⊆M,

(iii) B is a contraction and satisfies (C2), and
(iv) AM +BM ⊆M .

Then, there is u ∈M such that Au+Bu = u. ♦

Our existence result is based on Theorem 3.1. After showing the existence of solutions for the problem IVP
(1.1), we transform it into an equivalent integral equation as follows.
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Lemma 3.1. IVP (1.1) is equivalent to the following Volterra type integral equation

(3.1) u(t) =
1

Γ(α)

t∫
0

(t− s)α−1h (s) f(s, u (s))ds+
1

Γ(α)

t∫
0

(t− s)α−1
g(s,Hu (s))ds.

♦

Proof. Using Lemma 2.3, the equation (1.1) can be written as follows

u(t) = Iαh (t) f(t, u (t)) + Iαg(t,Hu (t)) + c1t
α−1 + c2t

α−2

=
1

Γ(α)

t∫
0

(t− s)α−1
h (s) f(s, u (s))ds+

1

Γ(α)

t∫
0

(t− s)α−1
g(s,Hu (s))ds

+c1t
α−1 + c2t

α−2.(3.2)

Using condition lim
t→0+

t2−αu(t) = 0, we get c2 = 0, and the condition lim
t→0+

t2−αu
′
(t) = 0 give us c1 = 0.

Substituting in (3.2), we obtain the integral equation

u(t) =
1

Γ(α)

t∫
0

(t− s)α−1
h (s) f(s, u (s))ds+

1

Γ(α)

t∫
0

(t− s)α−1
g(s,Hu (s))ds.

�

From Lemma 3.1, it follows that the integral equation (3.1) can be written in the following form

u = Au+ Bu

where A, and B are two operators defined from L1(I, E) into itself by

(3.3) A := IN f and B := JN gH,

where Nf , and Ng are the Nemytskii’s operators associated to f(., .) and g(., .), respectively. The linear
operators I and J are defined from L1 (I, E) into L1 (I, E) by

Iz (t) =
1

Γ(α)

t∫
0

(t− s)α−1
h (s) z (s) ds,

and

J z(t) =
1

Γ(α)

t∫
0

(t− s)α−1
z (s) ds.

In what follows, we need the following assumption:

(H1) The function h : I → E belongs to L∞ (I, E) .

Lemma 3.2. Assume that (H1) is satisfied. The linear operators I and J are bounded on L1 (I, E) and we
have the following estimates

‖Iz‖L1 ≤
Tα

Γ(α)
‖h‖L∞ ‖z‖L1 ,

and
‖J z‖L1 ≤

Tα

Γ(α)
‖z‖L1 ,

for all z ∈ L1 (I, E). ♦
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Now, we give the existence of integrable solution for the Volterra type integral equations (3.1). Obviously,
every solution of (3.1) is also a solution of (1.1).

So, we consider the following assumptions:

(H2) The function g : I × E → E is a measurable function, g(., 0) ∈ L1(I, E) and g is Lipschitzian with
respect to the second variable, i.e., there exists a λ ∈ R+ such that ‖g(t, u)− g(t, v)‖ ≤ λ‖u− v‖ for all t ∈ Ω

and u, v ∈ E.

(H3) f (., .) is a Carathéodory function and there exists a function a ∈ L1
+ (I) and a nonnegative constant

b such that
‖f (t, u)‖ ≤ a (t) + b ‖u‖ ,

for all (t, u) ∈ I × E.

Lemma 3.3. [14] LetE be a finite dimensional Banach space. Assume that (H3) holds. Then, the Nemytskii
operator Nf satisfies condition (C2). ♦

Theorem 3.2. LetE be a finite dimensional Banach space and let I = [0, T ], T > 0 be a compact subset of R.
Assume that the conditions (H1) − (H3) are satisfied. Then IVP (1.1) has at least one solution in L1 (I, E),
provided

(3.4)
Tα

Γ(α)
(b‖h‖L∞ + λ‖H‖L) < 1.

Here, ‖·‖L denotes the standard norm of linear operator spaces. ♦

Proof. To prove Theorem 3.2, it is enough to show that operatorsA and B given by (3.3) satisfy all hypothe-
ses of Theorem 3.1. To this end, we need four claims. Before this, let

(3.5) r ≥
Tα

Γ(α) ‖h‖L∞ ‖a‖L1 + Tα

Γ(α) ‖g (., 0)‖L1

1−
(
bTα

Γ(α) ‖h‖L∞ + λTα

Γ(α) ‖H‖L
) .

Clearly, r is positive from (3.4). Let us consider the bounded, closed, convex of L1(I, E), defined by

Br =
{
u ∈ L1(I, E) : ‖u‖L1 ≤ r

}
.

Claim 1. Based on Lemma 2.2 and using (H3) , we can see that A is continuous maps from L1(I, E) into it-
self. We show now that A satisfies (C1) . For this purpose, let (un)n∈N be a weakly convergent sequence
of L1(I, E), then by Lemma 3.3, it follows that (Nfun)n∈N has a weakly convergent subsequence, say,
(Nfunk)k∈N. From the boundedness of the operator I, it follows that the sequence (IN funk)k∈N converges
pointwise for almost all t ∈ I.Now, when applying Vitali convergence theorem ( [6], p.150), we deduce that
the sequence (Aunk)k∈N converges strongly in L1(I, E). Consequently, A satisfies (C1) .

Claim 2. We claim that condition (ii) of Theorem 3.1 is fulfilled. Let S be a bounded subset of L1(I, E),
then for all u ∈ S, for all ε > 0 and any nonempty subset J of I, we have∫

J

‖Nfu (t)‖ dt ≤
∫
J

‖f (t, u (t))‖ dt

≤
∫
J

(‖a (t)‖+ b ‖u (t)‖) dt

≤ ‖a‖L1(J) + b

∫
J

‖u (t)‖ dt.
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Taking into account the fact that the set consisting of one element is weakly compact, by Proposition 2.1 we
obtain

lim sup
ε→0


∫
J

‖a (t)‖ dt : meas (J) ≤ ε

 = 0,

then,

(3.6) ω (Nf (S)) ≤ bω (S) .

It follows from (3.6) combined with Lemma 3.2 that

(3.7) ω (AS) ≤ bTα

Γ (α)
‖h‖L∞ ω (S) .

Furthermore, if we use the same precedent way for the operatorNgH , and taking into account (H2), we get∫
J

‖NgHu (t)‖ dt ≤
∫
J

‖g (t,Hu (t))‖ dt

≤
∫
J

‖g (t, 0)‖ dt+ λ

∫
J

‖Hu (t)‖ dt,

≤ ‖g (., 0)‖L1 + λ ‖H‖L
∫
J

‖u (t)‖ dt.

Then, we obtain

ω (NgHS) ≤ λ ‖H‖L ω (S) .

Now, by Lemma 3.2, we get

(3.8) ω (BS) ≤ λTα

Γ (α)
‖H‖L ω (S) .

Combining (3.7), (3.8) and Lemma 2.1, it yields

(3.9) ω (AS + BS) ≤
(
bTα

Γ (α)
‖h‖L∞ +

λTα

Γ (α)
‖H‖L

)
ω (S) .

Estimation (3.9) and hypothesis (3.4) prove that condition (ii) of Theorem 3.1 is satisfied.

Claim 3. We will prove that B is a contraction mapping. For this purpose, let u, v ∈ L1(I, E) and by using
Lemma 3.2 and assumption (H2), it follows for all t ∈ I, that

‖Bu−Bv‖L1 = ‖JN gHu−JN gHv‖L1

≤ ‖J ‖L ‖NgHu−N gHv‖L1

≤ λTα

Γ(α)
‖H‖L ‖u− v‖L1 .

Then, B is a contraction mapping on L1(I, E) with constant
λTα

Γ(α)
‖H‖L.
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Claim 4. It remains to prove that Au+Bv ∈ Br. Hence, taking into account assumptions (H1)− (H3), and
Lemmas 2.2 and Lemma 3.2 we deduce that for all u, v ∈ Br we have

‖Au+ Bv‖L1 = ‖IN fu+ JN gHv‖L1

≤ ‖I‖L ‖Nfu‖L1 + ‖J ‖L ‖NgHv‖L1

≤ Tα

Γ (α)
‖h‖L∞ (‖a‖L1 + b ‖u‖L1) +

Tα

Γ (α)
(‖g (., 0)‖L1 + λ ‖H‖L ‖v‖L1)

≤ Tα

Γ (α)
‖h‖L∞ (‖a‖L1 + br) +

Tα

Γ (α)
(‖g (., 0)‖L1 + λr ‖H‖L)

≤
(
bTα

Γ (α)
‖h‖L∞ +

λTα

Γ (α)
‖H‖L

)
r +

(
Tα

Γ (α)
‖h‖L∞ ‖a‖L1 +

Tα

Γ (α)
‖g (., 0)‖L1

)
.

From (3.5), we get
‖Au+ Bv‖L1 ≤ r.

This achieves Claim 4.

Hence, by applying Theorem 3.1, we conclude that the operator A+ B has, at least, one fixed point in Br,
which is the solution of IVP (1.1).

�
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