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STABILITY CHAOS AND PERIODIC SOLUTION OF DELAYED RATIONAL RECURSIVE
SEQUENCE

ABDUL KHALIQ, MUBEEN ALAM∗, AND SK. SARIF HASSAN

ABSTRACT. In this paper, we will investigate a non-linear rational difference equation of higher order. Our con-
centration is on invariant intervals, periodic character, the character of semi cycles and global asymptotic stability
of all positive solutions of

sn+1 = Asn +Bsn−l +
α+ βsn−k
A0 +B0sn−k

, n = 0, 1, ...,

where the parameters A, B, α, β and A0, B0 and the initial conditions s−r, s−r+1, s−r+2, ..., s0 are arbitrary
positive real numbers, r = max{l, k}. Finally, we study the global stability of this equation through numerically
solved examples and confirm our theoretical discussion through it.

1. INTRODUCTION

Our aim is to investigate the global stability character and the periodicity of the solutions of the following
rational higher order difference equation

(1) sn+1 = Asn +Bsn−l +
α+ βsn−k
A0 +B0sn−k

, n = 0, 1, ...,

where the parameters A0, B0, α, β and A, B and the initial conditions s−k, s−k+1, ..., s0 are positive real
numbers, k = {1, 2, 3, ...} is a positive integer and the initial conditions s−k, s−k+1, ..., s0 are non-negative
real numbers.
Discrete dynamical systems or difference equations are varied field because various biological sys-
tems naturally leads to their study by means of a discrete variable. Every dynamical system un+1 =

f(un) determines a difference equation and vice versa. The theory of discrete dynamical systems and
difference equations developed greatly during the last twenty-five years of the twentieth century. Applica-
tions of discrete dynamical systems and difference equations have appeared recently in many areas. The
theory of difference equations occupies a central position in applied sciences and applicable areas. There is
no doubt that the theory of difference equations will continue to play an important role in mathematics as
a whole. Nonlinear difference equations of order greater than one are of paramount importance in applica-
tions. Such equations also appear naturally as discrete analogues and as numerical solutions of differential
and delay differential equations, which model various diverse phenomena in biology, ecology, physiology,
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physics, engineering, economics, probability theory, genetics, psychology and resource management. It is
very interesting to investigate the behaviour of solutions of a higher-order rational difference equation and
to discuss the local asymptotic stability of its equilibrium points. Rational difference equations have been
studied by several authors. Especially there has been a great interest in the study of the attractivity of the
solutions of such equations. For more results for the rational difference equations, we refer the interested
reader to [6-10].
"Saleh and Baha et al. [27] investigated the global attractivity of the following rational recursive sequence

xn+1 =
βxn + γxn−k
Axn +Bxn−k

.

Several other researchers have studied the behavior of the solution of difference equations, for example, in
[15] Elsayed et al. investigated the solution of the following non-linear difference equation.

zn+1 = azn +
bz2n

czn + dz2n−1
.

Elabbasy et al. [16] studied the boundedness, global stability, periodicity character and gave the solution of
some special cases of the difference equation.

xn+1 =
αxn−l + βxn−k
Axn−l +Bxn−k

.

Keratas et al.[20] gave the solution of the following difference equation

yn+1 =
yn−5

1 + yn−2yn−5
.

Elabbasy et al. [17] investigated the global stability, periodicity character and gave the solution of some
special cases of the difference equation

xn+1 =
axn−lxn−k

bxn−p + cxn−q
.

Yalçınkaya et al. [18] has studied the following difference equation

xn+1 = α+
xn−m
xkn

.

Wang et. al. [19] existence and uniqueness of the positive solutions and the asymptotic behaviour of the
equilibrium points of the fuzzy difference equation

yn+1 =
Axn−1xn−2

D +Bxn−3 + Cxn−4
.

where xn is a sequence of positive fuzzy numbers, the parameters A, B, C, D and the initial conditions
x−4, x−3, x−2, x−1, x0 are positive fuzzy numbers.

Elsayed et al. [22] studied the global behaviour of rational recursive sequence

xn+1 = axn−l +
bxn−k + cxn−s
d+ exn−t

.

where the initial conditions x−r, x−r+1, x−r+2, ..., x0 are arbitrary positive real numbers, r =

max{l, k, s,t} is non-negative integer and a, b, c, d, e are positive constants:
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L.alseda et al. [4] studied the following rational difference equation

xn+1 =
1

An + xn
.

Q. Wang et al. [31] investigated the local stability, asymptotic behaviour, periodicity and oscillation of
solutions for the difference equation

xn+1 =
Axn−k

B + CΠk
i=0xn−i

.

with the initial conditions x−i = b−i, i = 0, 1, 2, ..., k, where k is a non-negative integer, b−k, b−k+1, ..., b0

are given k + 1 constants, A, B, C are positive constants.
As a matter of fact, numerous papers negotiate with the problem of solving non-linear difference equations
in any way possible, see, for instance [7]-[15]. The long-term behaviour and solutions of rational difference
equations of order greater than one has been extensively studied during the last decade. For example, var-
ious results about periodicity, boundedness, stability, and closed form solution of the second-order rational
difference equations, see [5-9, 21-29].

Other related work on rational difference equations see in refs. [30,31,32].

2. PRELIMINARIES AND DEFINITIONS

Here, we recall some basic definitions and some theorems that we need in the sequel.
Let I be some interval of real numbers and let

F : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions s−k, s−k+1, ...,s0 ∈ I, the
difference equation

(2) sn+1 = F (sn, sn−1, ..., sn−k), n = 0, 1, ...,

has a unique solution {sn}∞n=−k.

Definition 1. (Equilibrium Point)

A point s ∈ I is called an equilibrium point of Eq.(2.1) if

s = F (s, s, ..., s).

That is, sn = s for n ≥ 0, is a solution of Eq.(2.1), or equivalently, s is a fixed point of F .

Definition 2. (Periodicity)

A Sequence {sn}∞n=−k is said to be periodic with period p if sn+p = sn for all n ≥ −k.

Definition 3. (Stability)
(i) The equilibrium point s of Eq.(2.1) is locally stable if for every ε > 0, there exists δ > 0 such that for all

s−k, s−k+1, ..., s−1, s0 ∈ I with

|s−k − s|+ |s−k+1 − s|+ ...+ |s0 − s| < δ,

we have
|xn − x| < ε for all n ≥ −k.
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(ii) The equilibrium point s of Eq.(2.1) is locally asymptotically stable if s is locally stable solution of Eq.(2.1) and
there exists γ > 0, such that for all s−k, s−k+1, ..., s−1, s0 ∈ I with

|s−k − s|+ |s−k+1 − s|+ ...+ |s0 − s| < γ,

we have

lim
n→∞

sn = s.

(iii) The equilibrium point s of Eq.(2.1) is global attractor if for all s−k, s−k+1, ..., s−1, s0 ∈ I, we have

lim
n→∞

sn = s.

(iv) The equilibrium point s of Eq.(2.1) is globally asymptotically stable if s is locally stable and s is also a global
attractor of Eq.(2.1).
(v) The equilibrium point s of Eq.(2.1) is unstable if s is not locally stable.
(vi) The linearized equation of Eq.(2.1) about the equilibrium s is the linear difference equation

(3) yn+1 =

k∑
i=0

∂F (s,s,...,s)
∂sn−i

yn−i.

Theorem A [27]: Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

(4) |p|+ |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

sn+1 + psn + qsn−k = 0, n = 0, 1, ... .

The following theorem will be useful for the proof of our results in this paper.
Theorem B [28]: Let f : [a, b]k+1 → [a, b] be a continuous function, where k is a positive integer and [a, b]

is an interval of real numbers. Consider the difference equation

(5) sn+1 = f(sn, sn−1, ..., sn−k), n = 0, 1, ....

Suppose that f satisfies the following conditions:
(i) For every integer i with 1 ≤ i ≤ k + 1, the function f(s1, s2, ..., sk+1) is weakly monotonic in zi , for

fixed z1, z2, ..., zi−1, zi+1, ..., zk+1.

(ii) If m, M is a solution of the system

m = f(m1,m2, ...,mk+1) and M = f(M1,M2, ...,Mk+1),

then m = M , where for each i = 1, 2, ..., k + 1, we set

mi = {m if f is non-decreasing in zi

= {M if f is non-increasing in zi

and

Mi = {M if f is non-decreasing in zi

= {m if f is non-increasing in zi

Then Eq. (2.4) has a unique equilibrium s ∈ [a, b] and every solution of Eq.(2.4) converges to s.
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FIGURE 1. Parameters (A, B) plot for which the positive equilibrium exists

3. EQUILIBRIUM POINTS OF EQ.(1.1)

In this section we will study the equilibrium points of Eq.(1.1). The equilibrium points of Eq.(1.1) are the
positive solutions of the equation

s = As+Bs+
α+ βs

A0 +B0s
or,

B0(1−A−B)s2 + (A0 −AA0 −A0B − β)s− α = 0

if 0 < A < 1&0 < B < 1−A then the only positive equilibrium point of Eq.(1.1) is given by

s =
(A0A+A0B+β−A0)+

√
(A0A+A0B+β−A0)2+4αB0(1−A−B)

2B0(1−A−B)

A set of parameters (A and B) for which the positive equilibrium exists are obtained and figured out in the
Fig. 1.
To find the linearization for our problem, consider

f(u, v, w) = Au+Bv +
α+ βw

A0 +B0w

Now,

∂f(u, v, w)

∂u
= A ,

∂f(u, v, w)

∂v
= B,

∂f(u, v, w)

∂w
=

(βA0 −B0α)

(A0 +B0w)2
.

Hence, for s =
(A0A+A0B+β−A0)+

√
(A0A+A0B+β−A0)2+4αB0(1−A−B)

2B0(1−A−B) ,

fu(s, s, s) = A = p1,

fv(s, s, s) = B = p2.



Pan-Amer. J. Math. 1 (2022), 15 6

and
fw(s, s, s) =

(βA0 −B0α)

(A0 +B0s)2
= p3.

So, the linearized equation about the s =
(A0A+A0B+β−A0)+

√
(A0A+A0B+β−A0)2+4αB0(1−A−B)

2B0(1−A−B)

(6) yn+1 −Ayn−1 −Byn −
(

(βA0−B0α)
(A0+B0x)2

)
yn−2 = 0

4. LOCAL ASYMPTOTIC STABILITY OF THE EQUILIBRIUM OF THE EQ.(1.1)

Local stability about s =
(A0A+A0B+β−A0)+

√
(A0A+A0B+β−A0)2+4αB0(1−A−B)

2B0(1−A−B)

Theorem 1. Eq.(1.1) is locally asypmtotically stable if and only if.

(7) A+B < 1

Proof. Let f : (0,∞)3 → (0,∞) be a continuous function defined by

(8) f(u, v, w) = Au+Bv +
α+ βw

A0 +B0w
.

It follows from Theorem A that, the equilibrium s̄ of the Eq.(1.1) is locally asymptotically stable⇔

|p1|+ |p2|+ |p3| < 1.

Here at the positive equilibrium s̄,
p1 = A, p2 = B and p3 = − 4(A+B−1)2(αB0−A0β)(√

(A0(A+B−1)+β)2−4αB0(A+B−1)−A0(A+B−1)+β
)2

Thus

|A|+ |B|+

∣∣∣∣∣∣∣−
4(A+B − 1)2(αB0 −A0β)(√

(A0(A+B − 1) + β)2 − 4αB0(A+B − 1)−A0(A+B − 1) + β
)2
∣∣∣∣∣∣∣ < 1,

On simple algebraic simplification, we get,

A+B < 1

Here we present an example with different pairs of (l, k) with fixed A = 0.771941 and B = 0.115124 of local
stability of the positive equilibrium.
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FIGURE 2. Locally Asymptotically stable trajectories for different initial values with four
possible pairs of l and k.
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In all the above four cases of even and odd pair of (l, k), the trajectories for different choice of parameters
except (A,B) are locally asymptotically stable as shown in the Fig. 2.

5. EXISTENCE OF PERIODIC SOLUTION

In this section, we will investigate positive prime period two solution of Eq.(1.1). The following theorems
states the necessary and sufficient conditions that this equation has periodic solution of prime period two.

Theorem 2. Eq.(1.1) has positive prime period two solution if and only if

(i) [A0(B − 1)− (A0A+ β)]2(B −A− 1) + 4A{A0(1−B)[A0(B − 1)− (A0A+ β)] + αAB0} > 0,

(l − odd, k − even)

(ii) (1 +A+B)[(β −A0(1 +A+B)]2 − 4[A0(A+B)(A0(1 +A+B)− β)− β0α] > 0, (l−Even, k − odd)

(iii) (1 +A+B)[(β−A0(B−A− 1)]2− 4(1−B)[4A0(A0(1 +A−B)− β) +αB0(B− 1)] > 0, (l, k− odd)

(iv) (1 +A+B)[−β−A0(1 +A+B)]2− 4(A+B)[A0(β+A0) + (A+B)(A2
0 +αB0)] > 0, (l, k− even)

we will prove just the 1stcase, the remaining cases are the same.

Proof. (i) Let us assume the two cycle period of Eq.(1.1) will be in the form

...p, q, p, q...

(9) sn+1 = sn−k

we get, from Eq.(1.1)

p = Aq +Bp+
(

α+βq
A0+B0q

)
q = Ap+Bq +

(
α+βp
A0+B0p

)
This transform to

A0p+B0pq = aA0q + aB0q
2 + α+ βq and(10)

A0q +B0pq = aA0p+ aB0p
2 + α+ βp.(11)

by subtracting (5.3) from (5.2) it gives,

A0(p− q) +AB0(p2 − q2) = A0B(p− q)−AA0(p− q)− β(p− q)

Then since p 6= q, it follows that

(12) p+ q = A0(B−A−1)−β
AB0

.

Again, adding (5.3) and (5.2) yields,

A0(p+ q) + 2B0pq = (AA0 +A0A)(p+ q) +AB0(p2 + q2) + 2BB0pq + 2α+ β(p+ q),

AB0(p2 + q2) = A0(p+ q) + 2B0pq − (AA0 +A0B)(p+ q)− 2BB0pq − 2α− β(p+ q),
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(13) AB0(p2 + q2) = (A0 −AA0 −A0B − β)(p+ q) + 2B0pq − 2B0pq − 2α.

By using (5.4), (5.5) and the relation

p2 + q2 = (p+ q)2 − 2pq, for all p, q ∈ R,

we get
AB0((p+ q)2 − 2pq) = (A0 −AA0 −A0B − β)(p+ q) + 2B0pq − 2BB0pq − 2α

(A0(B−A−1)−β)2
AB0

− 2AB0pq = (A0 −AA0 −A0B − β)
(
A0(B−A−1)−β

AB0

)
− 2α.

So,

(14) pq = −A0(B−1)[A0(B−1)−(A0A+β)]+αAB0

AB2
0(B−A−1)

.

Now, it is obvious from Eq.(5.3) and Eq.(5.6) that, p and q are two distinct real roots of the quadratic equation

t2 −
(
A0(B−A−1)−β

AB0

)
t−

(
A0(B−1)[A0(B−1)−(A0A+β)]+αAB0

AB2
0(B−A−1)

)
= 0,

or,
AB0t

2 − (A0B −AA0 −A0 − β)t−
(
A0(B−1)[A0(B−1)−(A0A+β)]+αAB0

B0(B−A−1)

)
= 0,

thus,
[A0(B − 1)− (A0A+ β)]

2
+ 4A{A0(B−1)[A0(B−1)−(A0A+β)]+αAB0

(B−A−1) > 0,

or

(15) [A0(B − 1)− (A0A+ β)]
2

(B −A− 1) + 4A{A0(B − 1)[A0(B − 1)− (A0A+ β)] + αAB0 > 0.

for A+ 1 < B then the inequalities (i) holds.
Conversely suppose that inequality (i) is true. We will prove that Eq.(1.1) has a prime period two solution.
Suppose that,

p =
ξ + δ

2AB0

and

q =
ξ − δ
2AB0

where δ =
√
ξ2 + 4A[A0A(B−1)+αAB0]

(B−A−1) and ξ = A0(B − 1)− (A0A+ β).

from (5.7) we get that δ2 > 0, therefore p and q are distinct real numbers, set

s−2 = p and s−1 = q.

We would like to show that
s1 = q, and s2 = p

It follows from Eq.(1.1) that

s1 = Ap+Bq + α+βp
A0+B0p

= A
(
ξ+δ
2AB0

)
+B

(
ξ−δ
2AB0

)
+

α+β
(
ξ+δ

2AB0

)
A0+B0

(
ξ+δ

2AB0

)
dividing numerator and denominator by 2AB0 we get

s1 = A
(
ξ+δ
2AB0

)
+B

(
ξ−δ
2AB0

)
+ 2AB0α+β(ξ+δ)

2AA0B0+B0(ξ+δ)
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multiply denominator and numerator of right hand side by 2AA0B0 + B0(ξ − δ) and by computation we
get

s1 = q.

Similarly
s2 = p.

Then by induction we get

s2n = p and s2n+1 = q for all n ≥ −max{l, k}.

Thus Eq.(1.1) has prime period two solution.

6. GLOBAL STABILITY OF EQ.(1.1)

In this section we will study the global stability character of the solutions of Eq.(1.1).

Lemma 3. For any values of the quotient α
A0

and β
B0

the function f(u, v, w) defined by Eq.(4.2) has monotonicity
behaviour in its two arguments.

Proof. The proof follows by easy computations and is omitted.

Theorem 4. The equilibrium point s of Eq.(1.1) is a global attractor⇔

(16) i) A+B < 1.

(17) ii) βA ≤ αB and A < 1.

Proof. Let ζ, η are real numbers and assume that g : [ζ, η]2 → [ζ, η] be a function defined by

g(u, v, w) = Au+Bv +
α+ βw

A0 +B0w

∂f(u, v, w)

∂u
= A,

∂f(u, v, w)

∂v
= B and

∂f(u, v, w)

∂w
=

βA0 − αB0

(A0 +B0w)2

Now, two cases must be considered.
Case (1): Suppose that βA0 − αB0 < 0, then we can easily see that the function g(u, v, w) is increasing in
u, v and decreasing in w.
Let (m,M) be a solution of the system M = g(M,M,m) and m = g(m,m,M). Then from Eq.(1.1), we can
write

M = AM +BM + α+βm
A0+B0m

, m = Am+Bm+ α+βM
A0+B0M

or
M(1−A−B) = α+βm

A0+B0m
, m(1−A−B) = α+βM

A0+B0M

then the equation

A0(1−A−B)M +B0(1−A−B)Mm = α+ βm, and

A0(1−A−B)m+B0(1−A−B)mM = α+ βM.
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Then by subtracting we get,
(M −m){A0(1−A−B) + β} = 0,

under the condition A+B < 1,we see that
M = m

By using Theorem B, it follows that s is a global attractor of Eq.(1.1) and then the proof is completed.
Case (2): Suppose that βA0−αB0 > 0 is true, let ζ, η are real numbers and assume that g : [ζ, η]2 → [ζ, η] be
a function defined by g(u, v, w) = Au + Bv + α+βw

A0+B0w
, then we can easily see that the function g(u, v, w) is

increasing in u,v and w.
Let (m,M) be a solution of the system M = g(M,M,M) and m = g(m,m,m).Then from Eq.(1.1), we see
that
Then from Eq.(1.1), we see that

M = AM +BM + α+βM
A0+B0M

, m = Am+Bm+ α+βm
A0+B0m

by subtracting we get
M(1−A−B) = α+βM

A0+B0M
, m(1−A−B) = α+βm

A0+B0m

and

A0(1−A−B)M +B0(1−A−B)M2 = α+ βM,

A0(1−A−B)m+B0(1−A−B)m2 = α+ βm.

Subtracting we obtain

A0(M −m)(1−A−B) +B0(M2 −m2)(1−A−B) = β(M −m),

(M −m){B0(1−A−B)(m+M) +A0(1−A−B)− β} = 0,

under the condition A+B < 1 and A0(1−A−B) > β we conclude that,

m = M.

It follows by Theorem C that x is a global attractor of Eq.(1.1) and then the proof is completed.

7. EXISTENCE OF BOUNDEDNESS OF SOLUTIONS OF EQ.(1.1)

This section deals with the boundedness of solutions of Eq.(1.1).

Theorem 5. Every solution of Eq.(1.1) is bounded and persist if A+B < 1.

Proof. Let {sn}∞n=−max{l,k} be a solution of Eq. (1.1). It follows from Eq. (1.1) that

sn+1 = Asn +Bsn−l +
α+ βsn−k
A0 +B0sn−k

= Asn +Bsn−l +
α

A0 +B0sn−k
+

βsn−k
A0 +B0sn−k

Then

sn+1 ≤ Asn +Bsn−l +
α

A0
+

βsn−k
B0sn−k

= Asn +Bsn−l +
α

A0
+

β

B0
for all n ≥ 0.

By using comparison, the right hand side can be written as follows

yn+1 = Ayn +Byn−l +
α

A0
+

β

B0
.
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So, we can write
yn = any0 + constant,

and this equation is locally asymptotically stable becauseA+B < 1, and converges to the equilibrium point
y = αB0+βA0

A0B0(1−A−B)

Therefore
lim
n→∞

sup sn ≤ αB0+βA0

A0B0(1−A−B)

Hence the solution is bounded.

Theorem 6. Every solution of Eq.(1.1) is unbounded if A > 1 or B > 1.

Proof. Let {sn}∞n=−max{l, k} be a solution of Eq.(1.1). Then from Eq.(1.1) we see that

xn+1 = Asn +Bsn−l + α+βsn−k
A0+B0sn−k

> Asn for all n ≥ 0.

the right hand side can be written as follows

yn+1 = Ayn ⇒ yn = Any0,

and this equation is unbounded because A > 1 and limn→∞ yn = ∞. Then by using ratio test
{sn}∞n=−max{l,k}is unbounded from above.
Similarly from Eq.(1.1) we see that

xn+1 = Asn +Bsn−l + α+βsn−k
A0+B0sn−k

> Bsn−l for all n ≥ 0.

The right hand side can be written as follows

yn+1 = Byn−l

⇒ y2n−l = Bny−l, and y2n = Bny0

and this equation is unstable because B > 1, and limn→∞ y2n−l = limn→∞ yn = ∞. Then by using ratio
test {sn}∞n=−max{l,k}is unbounded from above.

8. NUMERICAL EXAMPLES

Here we would like to exhibit some numerical examples in order to show the variety of dynamics hap-
pening in the non-linear difference equation Eq. (1.1). For positive parameters and initial values, the dy-
namics of the Eq.(1.1.) is limited to local asymptotic stability of the positive equilibrium and periodic,
bounded solutions. It does not show chaotic, aperiodic, fractal-like solutions. It is seen that if we con-
sider the negative values of the controlling parameters A and/or B, the Eq.(1.1) exhibits very complicated
dynamics viz. fractal-like and chaotic and periodic.
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Example 1. Consider A = 0.0072, B = −0.9804, α = 0.7264, β = 0.4899, A0 = 0.6355, B0 = 0.5154, k = 28

& l = 10 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit fractal-like
trajectories as shown in Fig. 3.

FIGURE 3. Fractal-like trajectories

Example 2. Consider A = 0.6601, B = −0.4006, α = 0.5699, β = 0.9087, A0 = 0.3423, B0 = 0.8499, k = 28

& l = 8 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit fractal-like
trajectories as shown in Fig. 4.

FIGURE 4. Fractal-like trajectories
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Example 3. Consider A = 0.0.8602, B = −0.6432, α = 0.2558, β = 0.3436, A0 = 0.6028, B0 = 0.1760, k = 6

& l = 2 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit fractal-like
trajectories as shown in Fig. 5.

FIGURE 5. Fractal-like trajectories

Example 4. Consider A = −0.4531, B = 0.6058, α = 0.5845, β = 0.3034, A0 = 0.1249, B0 = 0.8747, k = 26

& l = 6 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit fractal-like
trajectories as shown in Fig. 6.

FIGURE 6. Fractal-like trajectories
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Example 5. Consider A = 0.1714, B = −0.7882, α = 0.8206, β = 0.3087, A0 = 0.1027, B0 = 0.1826, k = 30 &
l = 9 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit chaotic trajectories
as shown in Fig. 7.

FIGURE 7. Chaotic trajectories

Example 6. Consider A = 0.2161, B = −0.7231, α = 0.6634, β = 0.4058, A0 = 0.1341, B0 = 0.6239, k = 14 &
l = 1 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit chaotic trajectories
as shown in Fig. 8.

FIGURE 8. Chaotic trajectories
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Example 7. Consider A = 0.6592, B = −0.7230, α = 0.0657, β = 0.5430, A0 = 0.1904, B0 = 0.1164, k = 4 &
l = 1 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit chaotic trajectories
as shown in Fig. 9.

FIGURE 9. Chaotic trajectories

Example 8. Consider A = 0.1663, B = −0.6324, α = 0.8438, β = 0.9410, A0 = 0.0857, B0 = 0.4363, k = 20 &
l = 5 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit chaotic trajectories
as shown in Fig. 10.

FIGURE 10. Chaotic trajectories
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Example 9. Consider A = −0.6139, B = −0.4973, α = 0.8195, β = 0.2645, A0 = 0.6023, B0 = 0.9178,
k = 12 & l = 3 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit periodic
trajectories of period 5 as shown in Fig. 11.

FIGURE 11. Chaotic trajectories

Example 10. Consider A = −0.8900, B = −0.3202, α = 0.6870, β = 0.1860, A0 = 0.4345, B0 = 0.6596,
k = 22 & l = 5 then for any initial values taken from the interval (0, 1), the solution of the Eq. (1.1) exhibit periodic
trajectories of period 9 as shown in Fig. 12.

FIGURE 12. Chaotic trajectories
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9. CONCLUSION

This work is related to the qualitative behaviour of a rational difference equation, which may be
considered as generalized equation studied in [36]. Thus our results, considerably extend some previous
investigations in literature. Firstly existence and uniqueness of positive equilibrium point is prove. Then
it investigated that Eq. (1.1) is bounded and persists. We proved that the Eq. (1.1) has a unique positive
equilibrium point, which is locally asymptotically stable. The method of linearization is used to prove the
local asymptotic stability of unique equilibrium point. Linear stability analysis shows that the positive
steady-state of Eq. (1.1) is asymptotically stable and there exist positive prime period 2 solution of Eq. (1.1)
under certain parametric conditions and the chosen value of the delays (l, k). The main objective of the
theory of difference equations is to predict the global behaviour of an equation under consideration based
on the knowledge of its present state. At the end some numerical examples are given in order to show the
completeness of dynamics when the parameters A and B are extended to the negative real numbers.
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