# SPLIT DOMINATION NUMBER IN EDGE SEMI-MIDDLE GRAPH

VENKANAGOUDA M. GOUDAR, K.C. RAJENDRA PRASAD\*, AND K.M. NIRANJAN

ABSTRACT. Let G = (p,q) be a connected graph and  $M_e(G)$  be its corresponding edge semi-middle graph. A dominating set  $D \subseteq V[M_e(G)]$  is split dominating set  $\langle V[M_e(G)] - D \rangle$  is disconnected. The minimum size of D is called the split domination number of  $M_e(G)$  and is denoted by  $\gamma_s[M_e(G)]$ . In this paper we obtain several results on split domination number.

#### 1. INTRODUCTION

Domination is an area in graph theory with an extensive research activity. We consider simple, finite, undirected, non-trivial and connected graphs for our study. In literature, the concept of graph theory terminology not presented here can be found in [1]. In a graph G, a set  $D \subseteq V$  is dominating set of G if every vertex in V - D is adjacent to some vertex in D. The domination number of a graph G is the minimum size of D. Some studies on domination in graphs were found in the papers [2–4, 6–15, 18–30]. The edge semi middle graph  $M_e(G)$  of a graph G was studied [17] and is defined as follows. Let V(G), E(G) and R(G) be the vertex set, edge set and regions set respectively. The edge semi-middle graph of a graph G, denoted by  $M_e(G)$  is a graph whose vertex set is  $V(G) \cup E(G) \cup R(G)$ . The vertices of  $M_e(G)$  are adjacent if and only if they corresponds to two adjacent edges of G or one corresponds to a vertex and other to an edge incident with it or one corresponds to edge and other to a region in which edge lie on the region.

Let  $R' = \{r'_1, r'_2, ..., r'_m\} \subseteq V[M_e(G)]$  for the region set  $\{r_1, r_2, ..., r_m\}$  of G. Let  $V' = \{v'_1, v'_2, ..., v'_p\} \subseteq V[M_e(G)]$  for the vertex set  $\{v_1, v_2, ..., v_p\}$  of G. Let  $E' = \{e'_1, e'_2, ..., e'_q\} \subseteq V[M_e(G)]$  for the edge set  $\{e_1, e_2, ..., e_q\}$  of G. The study of some domination parameters on jump graph [16] motivated us to introduce split domination number in edge semi middle graph.

## 2. Preliminaries

**Theorem 2.1.** [5] For any graph G,  $\gamma(G) \ge \lceil \frac{p}{1+\triangle(G)} \rceil$ .

**Theorem 2.2.** [31] For the path  $P_n$ ,  $\gamma[M_e(P_n)] = \lceil \frac{n}{2} \rceil$ .

**Theorem 2.3.** [31] For the cycle  $C_n$ ,  $\gamma[M_e(C_n)] = \lceil \frac{n}{2} \rceil$ .

**Theorem 2.4.** [31] For any graph G(p,q),  $\gamma[M_e(G)] \ge \lceil \frac{p}{1+\Delta(G)} \rceil$ .

Department of Mathematics, Sri Siddhartha Institute of Technology, Tumakuru, Karnataka, India 572105 Department of Mathematics, Jain Institute of Technology, Davanagere, Karnataka, India 577003

DEPARTMENT OF MATHEMATICS, U B D T COLLEGE OF ENGINEERING, DAVANAGERE, KARNATAKA, INDIA 577003 *E-mail addresses*: vmgouda@gmail.com, rajendraprasadkp@gmail.com, niranjankm64@gmail.com. Submitted on Jul. 11, 2022.

<sup>2020</sup> Mathematics Subject Classification. Primary 05C05, 05C10; Secondary 05C38, 05C45.

*Key words and phrases.* Domination number, Edge semi-middle graph.

<sup>\*</sup>Corresponding author.

# 3. Split Domination Number in Edge Semi-Middle Graph

A dominating set D of  $M_e(G)$  is a split dominating set if  $\langle V[M_e(G)] - D \rangle$  is disconnected. The minimum cardinality of D is called split domination number of  $M_e(G)$  and is denoted by  $\gamma_s[M_e(G)]$ . A minimum split dominating set is denoted by  $\gamma_s - set$ .

In the Figure 1, the split dominating set of  $M_e(G)$  is  $D_4 = \{e'_1, e'_3, e'_5, e'_6\}, \gamma_s[M_e(G)] = 4;$ 



FIGURE 1. The graph G and its  $M_e(G)$ 

We begin with the following observations.

**Observation 3.1.** For every star  $K_{1,n}$ ,  $\gamma[M_e(K_{1,n})] = \gamma_s[M_e(K_{1,n})] = n$ .

**Observation 3.2.** Let G be a tree,  $\gamma_s[M_e(T)] = \gamma[M_e(T)]$ .

#### 4. Results

**Theorem 4.1.** For the path  $P_n, \gamma_s[M_e(P_n)] = \lceil \frac{n}{2} \rceil$ .

**Proof.** Consider  $G = P_n$ . Let D be the dominating set of  $M_e(G)$  and is defined as follows.

$$D = \begin{cases} e_{1}^{'}, e_{3}^{'}, ... e_{n-1}^{'} & \text{ if n=2k.} \\ \\ e_{1}^{'}, e_{3}^{'}, ... e_{n-2}^{'} v_{n}^{'} & \text{ if n=2k+1.} \end{cases}$$

Clearly,  $V[M_e(P_n)] - D$  is disconnected. Thus  $\gamma_s[M_e(P_n)] = \lceil \frac{n}{2} \rceil$ .

**Theorem 4.2.** For the cycle  $C_n$ ,

$$\gamma_s[M_e(C_n)] = \begin{cases} \lceil \frac{n}{2} \rceil + 1 & \text{if } n = 2k, k \ge 2. \\ \\ \\ \\ \lceil \frac{n}{2} \rceil & \text{if } n = 2k+1, k \ge 1. \end{cases}$$

**Proof.** Consider  $G = C_n$ ,  $V(C_n) = \{v_i, 1 \le i \le n\}$  and  $e_i = v_i v_{i+1}; 1 \le i \le n-1$ . Let *D* be the dominating set of  $M_e(C_n)$  and is defined as follows.

$$D = \begin{cases} e'_1, e'_3, \dots e'_{n-1} & \text{ if } n=2k, k \ge 2. \\ \\ e'_1, e'_3, \dots e'_n & \text{ if } n=2k+1, k \ge 1. \end{cases}$$

Clearly, D is  $\gamma_s - set$  for n = 2k + 1 but D is not for n = 2k. Further, consider  $D' = D \cup \{e'_n\}$  is a set for n = 2k such that  $V[M_e(C_n)] - D'$  is disconnected. Thus

$$\gamma_s[M_e(C_n)] = \begin{cases} \lceil \frac{n}{2} \rceil + 1 & \text{if } n=2k, k \ge 2. \\ \\ \\ \lceil \frac{n}{2} \rceil & \text{if } n=2k+1, k \ge 1. \end{cases}$$

**Theorem 4.3.** For any graph G,  $\gamma_s[M_e(G)] \ge \gamma[M_e(G)]$ .

**Proof.** From  $M_e(G)$  definition,  $V[M_e(G)] = V' \cup E' \cup R'$ . Let the dominating set of  $M_e(G)$  be  $D = \{u'_i/u'_i \in V[M_e(G)]\}$ . We shall prove this in the below cases.

**Case 1.** Let  $G = P_n$ . By the Theorem 2.2 and Theorem 4.1, which implies  $\gamma_s[M_e(P_n)] \ge \gamma[M_e(P_n)]$ .

**Case 2.** Assume that *G* be a tree and *D* be the dominating set of  $M_e(G)$ . By Observation 3.2,  $\gamma_s[M_e(T)] = \gamma[M_e(T)]$  then *D* itself is a  $\gamma_s - set$ . Hence the result follows.

**Case 3.** Let  $G = C_n$ . By the Theorem 2.3 and Theorem 4.2, we can say that  $\gamma_s[M_e(C_n)] \ge \gamma[M_e(C_n)]$ .

**Case 4.** Let *G* be any graph. By Theorem 2.2, Theorem 4.1, Observation 3.2, Theorem 2.3 and Theorem 4.2, it follows that  $\gamma_s[M_e(G)] \ge \gamma[M_e(G)]$ .

It follows that from the above cases,  $\gamma_s[M_e(G)] \ge \gamma[M_e(G)]$ .

**Theorem 4.4.** For any graph G(p,q),  $\gamma_s[M_e(G)] \ge \lceil \frac{p}{1+\triangle(G)} \rceil$ .

Proof. By Theorem 2.4,

(4.1)

$$\gamma[M_e(G)] \ge \lceil \frac{p}{1 + \triangle(G)} \rceil$$

By Theorem 4.3,

(4.2)  $\gamma_s[M_e(G)] \ge \gamma[M_e(G)]$ 

From equation (4.1) and (4.2),

(4.3) 
$$\gamma_s[M_e(G)] \ge \lceil \frac{p}{1 + \triangle(G)} \rceil$$

**Theorem 4.5.**  $\gamma_s[M_e(G)] \ge \lceil \frac{diam(G)+1}{2} \rceil$  for every graph G(p,q).

**Proof.** Let  $V(G) = \{v_1, v_2, v_3, ... v_p\}$  such that  $\exists u, v \in V(G)$  and d(u, v) forms a diametral path in G. Clearly, d(u, v) = diam(G). Consider the set D be the dominating set of  $M_e(G)$ . If there are at least two components in  $\langle V[M_e(G)] - D \rangle$  then  $\langle D \rangle$  itself is the  $\gamma_s - set$  of  $M_e(G)$ . If not,  $\exists \{e'_i\} \in V[M_e(G)] - D$  having maximum degree such that  $\langle V[M_e(G)] - D \cup \{e'_i\} \rangle$  is disconnected. Clearly,  $D \cup \{e'_j\}$  forms a  $\gamma_s - set$  of  $M_e(G)$ . Therefore the diametral path contains at most  $\gamma_s[M_e(G)] - 1$  edges connecting the neighbourhood of the vertices of  $D \cup \{e'_i\}$ . Hence  $\gamma_s[M_e(G)] + \gamma_s[M_e(G)] - 1 \ge diam(G)$  which gives  $\gamma_s[M_e(G)] \ge \lceil \frac{diam(G)+1}{2} \rceil$ .

**Theorem 4.6.** For any graph G(p,q),  $\gamma_s[M_e(G)] \ge \alpha_1(G)$ .

**Proof.** Suppose the minimum set of edges in *G* be  $E_1 = \{e_1, e_2, e_3, ..., e_k, 1 \le k \le q\}$  such that  $|E_1| = \alpha_1(G)$ . In  $M_e(G)$ , let *D* be the dominating set. If at least two components are found in  $\langle V[M_e(G)] - D \rangle$  then  $\langle D \rangle$  is the  $\gamma_s - set$  of  $M_e(G)$ . If not,  $\exists \{e'_j\} \in V[M_e(G)] - D$  with a maximum degree such that  $\langle V[M_e(G)] - D \cup \{e'_j\} \rangle$  has more than one component. Evidently,  $D \cup \{e'_j\}$  forms a  $\gamma_s - set$  of  $M_e(G)$ . We can say that,  $\gamma_s[M_e(G)] \ge \alpha_1(G)$ .

**Theorem 4.7.** Let G(p,q) be any graph,  $\gamma_s[M_e(G)] \leq q$ .

**Proof.** Consider *G* be a any graph such that |E| = q. Let *D* be a dominating set in  $M_e(G)$ . If  $\langle V[M_e(G)] - D \rangle$  is disconnected then  $\langle D \rangle$  itself forms a  $\gamma_s - set$  of  $M_e(G)$ . Otherwise,  $\exists e'_j \in V[M_e(G)] - D$  having maximum degree such that  $\langle V[M_e(G)] - (D \cup \{e'_j\}) \rangle$  has more than one component. Evidently,  $D \cup \{e'_j\}$  forms a  $\gamma_s - set$  of  $M_e(G)$ . Clearly,  $|D| \leq |E|$ . Therefore,  $\gamma_s[M_e(G)] \leq q$ .

## 5. CONCLUSION

In this paper we established some domination results on edge semi-middle graphs. Many bounds on domination number of edge semi-middle graph are obtained.

#### References

- [1] F. Harary, Graph Theory, Addison Wesley Reading Mass, 1972.
- [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker: New York, (1997).
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker: New York, 1998.
- [4] V.R. Kulli and B. Janakiram, The Split Domination Number of Graph, Graph Theory Notes N.Y. XXXII (1997) 16-19.
- [5] V.R. Kulli, Theory of domination in graphs, Vishwa International Publication, Gulbarga, India, 2010.
- [6] V.R. Kulli, B. Janakiram, K.M. Niranjan, The dominating graph, Graph Theory Notes N.Y. 46 (2004), 5-8.
- [7] V.R. Kulli, B. Janakiram, K.M. Niranjan, The Vertex Minimal Dominating Graph, Acta Ciencia Indica. 28 (2002), 435-440.
- [8] V.R. Kulli, K.M. Niranjan, The Semi-Splitting Block Graph of a Graph, J. Sci. Res. 2 (2010), 485-488.
- [9] V.R. Kulli, B. Basavanagouda, K.M. Niranjan, Quasi-Total Graphs with Crossing Numbers, J. Sci. Res. 2 (2010), 257-263.
- [10] V.R. Kulli, K.M. Niranjan, On Minimally Nonouterplanarity of The Semi-Total (Point) Graph of a Graph, J. Sci. Res. 1 (2009), 551-557.
- [11] V.R. Kulli and K.M. Niranjan, On Minimally Nonouterplanarity of a Semi Splitting Block Graph of a Graph, Int. J. Math. Trends Technol. 66 (2020), 217-133.
- [12] V.R. Kulli and K.M. Niranjan, The Semi-Splitting Block Graphs with Crossing numbers, Asian J. Current Res. 5 (2020), 9-16.
- [13] V.R. Kulli and K.M. Niranjan, The Semi-Image Neighbourhood Graph of a Graph, Asian J. Math. Computer Res. 27 (2020), 36-41.
- [14] V.R. Kulli and K.M. Niranjan, The Total Closed Neighbourhood Graphs with Crossing Number Three and Four, J. Anal. Comput. 1 (2005), 47-56.
- [15] Y.B. Maralabhavi, S.B. Anupama and V.M. Goudar, Domination Number of Jump Graph, Int. Math. Forum. 8 (2013), 753-758.
- [16] Y.B. Maralabhavi, V.M. Goudar and S.B. Anupama, Some Domination Parameters on Jump Graph, Int. J. Pure Appl. Math. 113 (2017), 47-55.
- [17] K.M. Niranjan, K.C. Rajendra Prasad and V.M. Goudar, Edge Semi-Middle Graph of a Graph (Submitted).
- [18] K.M. Niranjan, K.C. Rajendra Prasad, V.M. Goudar, D. Basavaraja, Forbidden Subgraphs for Planar Vertex Semi-Middle Graph, JNNCE J. Eng. Manage. 5 (2022), 44-47.
- [19] K.M. Niranjan, K.C. Rajendra Prasad, V.M. Goudar, Nonsplit Domination Number in Vertex Semi-Middle Graph, Int. J. Stat. Appl. Math. 7 (2022), 105-109.
- [20] K.M. Niranjan, R.R. Iyer, M.S. Biradar, D. Basavaraja, The Semi-Splitting Block Graphs with Crossing Numbers Three and Forbidden Subgraphs for Crossing Number One, Asian J. Current Res. 5 (2020), 25-32.
- [21] K.M. Niranjan, Forbidden Subgraphs for Planar and Outerplanar Interms of Blict Graphs, J. Anal. Comput. 2 (2006), 19-22.
- [22] K.M. Niranjan, P. Nagaraja, V. Lokesh, Semi-Image Neighborhood Block Graphs with Crossing Numbers, J. Sci. Res. 5 (2013), 295-299.
- [23] K.M. Niranjan, The Semi-Image Neighbourhood Block Graph Crossing Number and Forbidden Subgraphs, Int. J. Math. Trends Technol. 68 (2022), 52-58.
- [24] K.C. Rajendra Prasad, V.M. Goudar and K.M. Niranjan, Pathos Vertex Semi-Middle Graph of a Tree, South East Asian J. Math. Math. Sci. 16 (2020), 171-176.
- [25] K.C. Rajendra Prasad, V.M. Goudar and K.M. Niranjan, Pathos Edge Semi-Middle Graph of a Tree, Malaya J. Mat. 8 (2020), 2190-2193.
- [26] K.C. Rajendra Prasad, K.M. Niranjan and V.M. Goudar, Vertex Semi-Middle Graph of a Graph, Malaya J. Mat. 7 (2019), 786-789.
- [27] K.C. Rajendra Prasad, K.M. Niranjan and V.M. Goudar, Vertex Semi-Middle Domination in Graphs, J. Adv. Res. Dyn. Control Syst. 12 (2020), 83-89.
- [28] V.M. Goudar, Pathos Vertex Semientire Graph of a Tree, Int. J. Appl. Math. Res. 1 (2012), 666-670.
- [29] V.M. Goudar, K.S. Ashalatha, Venkatesha, M.H. Muddebihal, On the Geodetic Number of Line Graph, Int. J. Contemp. Math. Sci. 7 (2012), 2289-2295.
- [30] V.M. Goudar, K.C. Rajendra Prasad, K.M. Niranjan, Split Domination Number in Vertex Semi-Middle Graph, Int. J. Math. Trends Technol. 68 (2022), 18-22.
- [31] V.M. Goudar, K.M. Niranjan, K.C. Rajendra Prasad, Edge Semi Middle Domination in Graphs, J. Math. Stat. Res. 4 (2022), 159.