SPLIT DOMINATION NUMBER IN EDGE SEMI-MIDDLE GRAPH

VENKANAGOUDA M. GOUDAR, K.C. RAJENDRA PRASAD*, AND K.M. NIRANJAN

Abstract

Let $G=(p, q)$ be a connected graph and $M_{e}(G)$ be its corresponding edge semi-middle graph. A dominating set $D \subseteq V\left[M_{e}(G)\right]$ is split dominating set $\left\langle V\left[M_{e}(G)\right]-D\right\rangle$ is disconnected. The minimum size of D is called the split domination number of $M_{e}(G)$ and is denoted by $\gamma_{s}\left[M_{e}(G)\right]$. In this paper we obtain several results on split domination number.

1. Introduction

Domination is an area in graph theory with an extensive research activity. We consider simple, finite, undirected, non-trivial and connected graphs for our study. In literature, the concept of graph theory terminology not presented here can be found in [1]. In a graph G, a set $D \subseteq V$ is dominating set of G if every vertex in $V-D$ is adjacent to some vertex in D. The domination number of a graph G is the minimum size of D. Some studies on domination in graphs were found in the papers [2-4,6-15,18-30]. The edge semi middle graph $M_{e}(G)$ of a graph G was studied [17] and is defined as follows. Let $V(G), E(G)$ and $R(G)$ be the vertex set, edge set and regions set respectively. The edge semi-middle graph of a graph G, denoted by $M_{e}(G)$ is a graph whose vertex set is $V(G) \cup E(G) \cup R(G)$. The vertices of $M_{e}(G)$ are adjacent if and only if they corresponds to two adjacent edges of G or one corresponds to a vertex and other to an edge incident with it or one corresponds to edge and other to a region in which edge lie on the region.

Let $R^{\prime}=\left\{r_{1}^{\prime}, r_{2}^{\prime}, \ldots r_{m}^{\prime}\right\} \subseteq V\left[M_{e}(G)\right]$ for the region set $\left\{r_{1}, r_{2}, \ldots r_{m}\right\}$ of G. Let $V^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{p}^{\prime}\right\} \subseteq$ $V\left[M_{e}(G)\right]$ for the vertex set $\left\{v_{1}, v_{2}, \ldots v_{p}\right\}$ of G. Let $E^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots e_{q}^{\prime}\right\} \subseteq V\left[M_{e}(G)\right]$ for the edge set $\left\{e_{1}, e_{2}, \ldots e_{q}\right\}$ of G. The study of some domination parameters on jump graph [16] motivated us to introduce split domination number in edge semi middle graph.

2. Preliminaries

Theorem 2.1. [5] For any graph $G, \gamma(G) \geq\left\lceil\frac{p}{1+\Delta(G)}\right\rceil$.
Theorem 2.2. [31] For the path $P_{n}, \gamma\left[M_{e}\left(P_{n}\right)\right]=\left\lceil\frac{n}{2}\right\rceil$.
Theorem 2.3. [31] For the cycle $C_{n}, \gamma\left[M_{e}\left(C_{n}\right)\right]=\left\lceil\frac{n}{2}\right\rceil$.
Theorem 2.4. [31] For any graph $G(p, q), \gamma\left[M_{e}(G)\right] \geq\left\lceil\frac{p}{1+\Delta(G)}\right\rceil$.

[^0]
3. Split Domination Number in Edge Semi-Middle Graph

A dominating set D of $M_{e}(G)$ is a split dominating set if $\left\langle V\left[M_{e}(G)\right]-D\right\rangle$ is disconnected. The minimum cardinality of D is called split domination number of $M_{e}(G)$ and is denoted by $\gamma_{s}\left[M_{e}(G)\right]$. A minimum split dominating set is denoted by $\gamma_{s}-$ set.

In the Figure 1, the split dominating set of $M_{e}(G)$ is $D_{4}=\left\{e_{1}^{\prime}, e_{3}^{\prime}, e_{5}^{\prime}, e_{6}^{\prime}\right\}, \gamma_{s}\left[M_{e}(G)\right]=4$;

Figure 1. The graph G and its $M_{e}(G)$
We begin with the following observations.
Observation 3.1. For every star $K_{1, n}, \gamma\left[M_{e}\left(K_{1, n}\right)\right]=\gamma_{s}\left[M_{e}\left(K_{1, n}\right)\right]=n$.
Observation 3.2. Let G be a tree, $\gamma_{s}\left[M_{e}(T)\right]=\gamma\left[M_{e}(T)\right]$.

4. Results

Theorem 4.1. For the path $P_{n}, \gamma_{s}\left[M_{e}\left(P_{n}\right)\right]=\left\lceil\frac{n}{2}\right\rceil$.
Proof. Consider $G=P_{n}$. Let D be the dominating set of $M_{e}(G)$ and is defined as follows.

$$
D= \begin{cases}e_{1}^{\prime}, e_{3}^{\prime}, \ldots e_{n-1}^{\prime} & \text { if } \mathrm{n}=2 \mathrm{k} \\ e_{1}^{\prime}, e_{3}^{\prime}, \ldots e_{n-2}^{\prime} v_{n}^{\prime} & \text { if } \mathrm{n}=2 \mathrm{k}+1\end{cases}
$$

Clearly, $V\left[M_{e}\left(P_{n}\right)\right]-D$ is disconnected. Thus $\gamma_{s}\left[M_{e}\left(P_{n}\right)\right]=\left\lceil\frac{n}{2}\right\rceil$.

Theorem 4.2. For the cycle C_{n},

$$
\gamma_{s}\left[M_{e}\left(C_{n}\right)\right]= \begin{cases}\left\lceil\frac{n}{2}\right\rceil+1 & \text { if } n=2 k, k \geq 2 \\ \left\lceil\frac{n}{2}\right\rceil & \text { if } n=2 k+1, k \geq 1\end{cases}
$$

Proof. Consider $G=C_{n}, V\left(C_{n}\right)=\left\{v_{i}, 1 \leq i \leq n\right\}$ and $e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1$. Let D be the dominating set of $M_{e}\left(C_{n}\right)$ and is defined as follows.

$$
D= \begin{cases}e_{1}^{\prime}, e_{3}^{\prime}, \ldots e_{n-1}^{\prime} & \text { if } \mathrm{n}=2 \mathrm{k}, \mathrm{k} \geq 2 \\ e_{1}^{\prime}, e_{3}^{\prime}, \ldots e_{n}^{\prime} & \text { if } \mathrm{n}=2 \mathrm{k}+1, \mathrm{k} \geq 1\end{cases}
$$

Clearly, D is $\gamma_{s}-$ set for $n=2 k+1$ but D is not for $n=2 k$. Further, consider $D^{\prime}=D \cup\left\{e_{n}^{\prime}\right\}$ is a set for $n=2 k$ such that $V\left[M_{e}\left(C_{n}\right)\right]-D^{\prime}$ is disconnected. Thus

$$
\gamma_{s}\left[M_{e}\left(C_{n}\right)\right]= \begin{cases}\left\lceil\frac{n}{2}\right\rceil+1 & \text { if } \mathrm{n}=2 \mathrm{k}, \mathrm{k} \geq 2 \\ \left\lceil\frac{n}{2}\right\rceil & \text { if } \mathrm{n}=2 \mathrm{k}+1, \mathrm{k} \geq 1\end{cases}
$$

Theorem 4.3. For any graph $G, \gamma_{s}\left[M_{e}(G)\right] \geq \gamma\left[M_{e}(G)\right]$.
Proof. From $M_{e}(G)$ definition, $V\left[M_{e}(G)\right]=V^{\prime} \cup E^{\prime} \cup R^{\prime}$. Let the dominating set of $M_{e}(G)$ be $D=\left\{u_{i}^{\prime} / u_{i}^{\prime} \in V\left[M_{e}(G)\right]\right\}$. We shall prove this in the below cases.

Case 1. Let $G=P_{n}$. By the Theorem 2.2 and Theorem 4.1, which implies $\gamma_{s}\left[M_{e}\left(P_{n}\right)\right] \geq \gamma\left[M_{e}\left(P_{n}\right)\right]$.
Case 2. Assume that G be a tree and D be the dominating set of $M_{e}(G)$. By Observation 3.2, $\gamma_{s}\left[M_{e}(T)\right]=\gamma\left[M_{e}(T)\right]$ then D itself is a $\gamma_{s}-$ set. Hence the result follows.

Case 3. Let $G=C_{n}$. By the Theorem 2.3 and Theorem 4.2, we can say that $\gamma_{s}\left[M_{e}\left(C_{n}\right)\right] \geq \gamma\left[M_{e}\left(C_{n}\right)\right]$.

Case 4. Let G be any graph. By Theorem 2.2, Theorem 4.1, Observation 3.2, Theorem 2.3 and Theorem 4.2, it follows that $\gamma_{s}\left[M_{e}(G)\right] \geq \gamma\left[M_{e}(G)\right]$.

It follows that from the above cases, $\gamma_{s}\left[M_{e}(G)\right] \geq \gamma\left[M_{e}(G)\right]$.

Theorem 4.4. For any graph $G(p, q), \gamma_{s}\left[M_{e}(G)\right] \geq\left\lceil\frac{p}{1+\Delta(G)}\right\rceil$.
Proof. By Theorem 2.4,

$$
\begin{equation*}
\gamma\left[M_{e}(G)\right] \geq\left\lceil\frac{p}{1+\triangle(G)}\right\rceil \tag{4.1}
\end{equation*}
$$

By Theorem 4.3,

$$
\begin{equation*}
\gamma_{s}\left[M_{e}(G)\right] \geq \gamma\left[M_{e}(G)\right] \tag{4.2}
\end{equation*}
$$

From equation (4.1) and (4.2),

$$
\begin{equation*}
\gamma_{s}\left[M_{e}(G)\right] \geq\left\lceil\frac{p}{1+\triangle(G)}\right\rceil \tag{4.3}
\end{equation*}
$$

Theorem 4.5. $\gamma_{s}\left[M_{e}(G)\right] \geq\left\lceil\frac{\operatorname{diam}(G)+1}{2}\right\rceil$ for every graph $G(p, q)$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{p}\right\}$ such that $\exists u, v \in V(G)$ and $d(u, v)$ forms a diametral path in G. Clearly, $d(u, v)=\operatorname{diam}(G)$. Consider the set D be the dominating set of $M_{e}(G)$. If there are at least two components in $\left\langle V\left[M_{e}(G)\right]-D\right\rangle$ then $\langle D\rangle$ itself is the $\gamma_{s}-$ set of $M_{e}(G)$. If not, $\exists\left\{e_{j}^{\prime}\right\} \in V\left[M_{e}(G)\right]-D$ having maximum degree such that $\left\langle V\left[M_{e}(G)\right]-D \cup\left\{e_{j}^{\prime}\right\}\right\rangle$ is disconnected. Clearly, $D \cup\left\{e_{j}^{\prime}\right\}$ forms a $\gamma_{s}-$ set of $M_{e}(G)$. Therefore the diametral path contains at most $\gamma_{s}\left[M_{e}(G)\right]-1$ edges connecting the neighbourhood of the vertices of $D \cup\left\{e_{j}^{\prime}\right\}$. Hence $\gamma_{s}\left[M_{e}(G)\right]+\gamma_{s}\left[M_{e}(G)\right]-1 \geq \operatorname{diam}(G)$ which gives $\gamma_{s}\left[M_{e}(G)\right] \geq\left\lceil\frac{\operatorname{diam}(G)+1}{2}\right\rceil$.

Theorem 4.6. For any graph $G(p, q), \gamma_{s}\left[M_{e}(G)\right] \geq \alpha_{1}(G)$.
Proof. Suppose the minimum set of edges in G be $E_{1}=\left\{e_{1}, e_{2}, e_{3}, \ldots e_{k}, 1 \leq k \leq q\right\}$ such that $\left|E_{1}\right|=\alpha_{1}(G)$. In $M_{e}(G)$, let D be the dominating set. If at least two components are found in $\left\langle V\left[M_{e}(G)\right]-D\right\rangle$ then $\langle D\rangle$ is the $\gamma_{s}-$ set of $M_{e}(G)$. If not, $\exists\left\{e_{j}^{\prime}\right\} \in V\left[M_{e}(G)\right]-D$ with a maximum degree such that $\left\langle V\left[M_{e}(G)\right]-D \cup\left\{e_{j}^{\prime}\right\}\right\rangle$ has more than one component. Evidently, $D \cup\left\{e_{j}^{\prime}\right\}$ forms a $\gamma_{s}-$ set of $M_{e}(G)$. We can say that, $\gamma_{s}\left[M_{e}(G)\right] \geq \alpha_{1}(G)$.

Theorem 4.7. Let $G(p, q)$ be any graph, $\gamma_{s}\left[M_{e}(G)\right] \leq q$.
Proof. Consider G be a any graph such that $|E|=q$. Let D be a dominating set in $M_{e}(G)$. If $\left\langle V\left[M_{e}(G)\right]-D\right\rangle$ is disconnected then $\langle D\rangle$ itself forms a $\gamma_{s}-$ set of $M_{e}(G)$. Otherwise, $\exists e_{j}^{\prime} \in V\left[M_{e}(G)\right]-D$ having maximum degree such that $\left\langle V\left[M_{e}(G)\right]-\left(D \cup\left\{e_{j}^{\prime}\right\}\right)\right\rangle$ has more than one component. Evidently, $D \cup\left\{e_{j}^{\prime}\right\}$ forms a $\gamma_{s}-$ set of $M_{e}(G)$. Clearly, $|D| \leq|E|$. Therefore, $\gamma_{s}\left[M_{e}(G)\right] \leq q$.

5. CONCLUSION

In this paper we established some domination results on edge semi-middle graphs. Many bounds on domination number of edge semi-middle graph are obtained.

References

[1] F. Harary, Graph Theory, Addison Wesley Reading Mass, 1972.
[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker: New York, (1997).
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker: New York, 1998.
[4] V.R. Kulli and B. Janakiram, The Split Domination Number of Graph, Graph Theory Notes N.Y. XXXII (1997) 16-19.
[5] V.R. Kulli, Theory of domination in graphs, Vishwa International Publication, Gulbarga, India, 2010.
[6] V.R. Kulli, B. Janakiram, K.M. Niranjan, The dominating graph, Graph Theory Notes N.Y. 46 (2004), 5-8.
[7] V.R. Kulli, B. Janakiram, K.M. Niranjan, The Vertex Minimal Dominating Graph, Acta Ciencia Indica. 28 (2002), 435-440.
[8] V.R. Kulli, K.M. Niranjan, The Semi-Splitting Block Graph of a Graph, J. Sci. Res. 2 (2010), 485-488.
[9] V.R. Kulli, B. Basavanagouda, K.M. Niranjan, Quasi-Total Graphs with Crossing Numbers, J. Sci. Res. 2 (2010), 257-263.
[10] V.R. Kulli, K.M. Niranjan, On Minimally Nonouterplanarity of The Semi-Total (Point) Graph of a Graph, J. Sci. Res. 1 (2009), 551-557.
[11] V.R. Kulli and K.M. Niranjan, On Minimally Nonouterplanarity of a Semi Splitting Block Graph of a Graph, Int. J. Math. Trends Technol. 66 (2020), 217-133.
[12] V.R. Kulli and K.M. Niranjan, The Semi-Splitting Block Graphs with Crossing numbers, Asian J. Current Res. 5 (2020), 9-16.
[13] V.R. Kulli and K.M. Niranjan, The Semi-Image Neighbourhood Graph of a Graph, Asian J. Math. Computer Res. 27 (2020), 36-41.
[14] V.R. Kulli and K.M. Niranjan, The Total Closed Neighbourhood Graphs with Crossing Number Three and Four, J. Anal. Comput. 1 (2005), 47-56.
[15] Y.B. Maralabhavi, S.B. Anupama and V.M. Goudar, Domination Number of Jump Graph, Int. Math. Forum. 8 (2013), 753-758.
[16] Y.B. Maralabhavi, V.M. Goudar and S.B. Anupama, Some Domination Parameters on Jump Graph, Int. J. Pure Appl. Math. 113 (2017), 47-55.
[17] K.M. Niranjan, K.C. Rajendra Prasad and V.M. Goudar, Edge Semi-Middle Graph of a Graph (Submitted).
[18] K.M. Niranjan, K.C. Rajendra Prasad, V.M. Goudar, D. Basavaraja, Forbidden Subgraphs for Planar Vertex Semi-Middle Graph, JNNCE J. Eng. Manage. 5 (2022), 44-47.
[19] K.M. Niranjan, K.C. Rajendra Prasad, V.M. Goudar, Nonsplit Domination Number in Vertex Semi-Middle Graph, Int. J. Stat. Appl. Math. 7 (2022), 105-109.
[20] K.M. Niranjan, R.R. Iyer, M.S. Biradar, D. Basavaraja, The Semi-Splitting Block Graphs with Crossing Numbers Three and Forbidden Subgraphs for Crossing Number One, Asian J. Current Res. 5 (2020), 25-32.
[21] K.M. Niranjan, Forbidden Subgraphs for Planar and Outerplanar Interms of Blict Graphs, J. Anal. Comput. 2 (2006), 19-22.
[22] K.M. Niranjan, P. Nagaraja, V. Lokesh, Semi-Image Neighborhood Block Graphs with Crossing Numbers, J. Sci. Res. 5 (2013), 295-299.
[23] K.M. Niranjan, The Semi-Image Neighbourhood Block Graph Crossing Number and Forbidden Subgraphs, Int. J. Math. Trends Technol. 68 (2022), 52-58.
[24] K.C. Rajendra Prasad, V.M. Goudar and K.M. Niranjan, Pathos Vertex Semi-Middle Graph of a Tree, South East Asian J. Math. Math. Sci. 16 (2020), 171-176.
[25] K.C. Rajendra Prasad, V.M. Goudar and K.M. Niranjan, Pathos Edge Semi-Middle Graph of a Tree, Malaya J. Mat. 8 (2020), 2190-2193.
[26] K.C. Rajendra Prasad, K.M. Niranjan and V.M. Goudar, Vertex Semi-Middle Graph of a Graph, Malaya J. Mat. 7 (2019), 786-789.
[27] K.C. Rajendra Prasad, K.M. Niranjan and V.M. Goudar, Vertex Semi-Middle Domination in Graphs, J. Adv. Res. Dyn. Control Syst. 12 (2020), 83-89.
[28] V.M. Goudar, Pathos Vertex Semientire Graph of a Tree, Int. J. Appl. Math. Res. 1 (2012), 666-670.
[29] V.M. Goudar, K.S. Ashalatha, Venkatesha, M.H. Muddebihal, On the Geodetic Number of Line Graph, Int. J. Contemp. Math. Sci. 7 (2012), 2289-2295.
[30] V.M. Goudar, K.C. Rajendra Prasad, K.M. Niranjan, Split Domination Number in Vertex Semi-Middle Graph, Int. J. Math. Trends Technol. 68 (2022), 18-22.
[31] V.M. Goudar, K.M. Niranjan, K.C. Rajendra Prasad, Edge Semi Middle Domination in Graphs, J. Math. Stat. Res. 4 (2022), 159.

[^0]: Department of Mathematics, Sri Siddhartha Institute of Technology, Tumakuru, Karnataka, India 572105
 Department of Mathematics, Jain Institute of Technology, Davanagere, Karnataka, India 577003
 Department of Mathematics, U B D T College of Engineering, Davanagere, Karnataka, India 577003
 E-mail addresses: vmgouda@gmail.com, rajendraprasadkp@gmail.com, niranjankm64@gmail.com. Submitted on Jul. 11, 2022.
 2020 Mathematics Subject Classification. Primary 05C05, 05C10; Secondary 05C38, 05C45.
 Key words and phrases. Domination number, Edge semi-middle graph.

 * Corresponding author.

