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SOME RESULTS ON PACHPATTE-TYPE OF OPIAL INEQUALITY

YISA OLUWATOYIN ANTHONIO, ABIMBOLA ABOLARINWA∗ AND KAMILU RAUF

ABSTRACT. This paper applies the modified Jensen inequality to generalize some cases of Pachpatte results of
Opial-type inequalities on time scales. These inequalities further generalize some existing results.

1. PRELIMINARIES

The famous Opial inequality was first obtained by Z. Opial [7] in the sixties as follows:

Theorem 1.1. ( [7]) Suppose g ∈ C1[0,Λ] satisfies g(0) = g(Λ) = 0 and g(y) > 0 for all y ∈ (0,Λ). Then, the
following integral inequality holds: ∫ Λ

0

|g(y)g′(y)|dy ≤ Λ

4

∫ Λ

0

(g′(y))2dy, (1.1)

where Λ/4 is the best possible constant.

Inequality (1.1) and some of its generalizations have different applications in the theories of differential,
difference and integro-differential equations. The inequality is accurately discussed in books exclusively
devoted to Opial-type inequalities, see [1, 8] for instance.

In the past few decades, several results have appeared in the literature on various generalizations and
refinements of Opial type inequality. Of specific interest is the new integral inequalities involving two func-
tions and their first order derivatives proved by Pachpatte [9], which is a special case of Opial’s inequality.
Specifically, Pachpatte stated this:

Theorem 1.2. ( [9, Theorem 2]). Let p($) and q($) be positive and continuous with q($) being a bounded and
nonincreasing function on [α, τ ] and

∫ τ
α
p−1($)d$ < ∞. Suppose η1($) and η2($) are absolutely continuous on

[α, τ ] and η1(α) = η2(α) = 0. Then, the following inequality∫ τ

α

q($) (|η′1($)η2($)|+ |η1($)η′2($)|) d$

≤ 1

2

∫ τ

α

d$

p($)

∫ τ

α

p($)q($)
[
|η′1($)|2 + |η′2($)|2

]
d$

(1.2)
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holds with equality if and only if q($) = constant and η1($) = η2($) = C
∫$
α
p−1(s)ds for $ ∈ [α, τ ] and C is a

constant.

In a related development, Lin and Yang [6] established the following inequality for two functions:

Theorem 1.3. ( [6]) Let p(t) and q(t) be positive and continuous with q(t) being a nonincreasing functions. Suppose
x1(t) and x2(t) are absolutely continuous on [α, τ ], and x1(α) = x2(α) = 0. If l ≥ 0 and m ≥ 1, then, the following
inequality holds: ∫ τ

α

q(t) |x1(t)x2(t)|l
[
|x1(t)x′2(t)|m + |x′1(t)x2(t)|m

]
dt

≤ m

2(l +m)
(τ − α)2l+m

∫ τ

α

p(t)
[
|x′1(t)|2(l+m)

+ |x′2(t)|2(l+m)
]
dt.

(1.3)

This paper therefore presents some generalization of special cases of Pachpatte results of Opial-type in-
equalities on time scales to the setting of several functions. The inequalities obtained here further generalize
some existing results involving many functions as will be discussed in the next sections.

It is in order at this point to recall some necessary background facts that will be useful in the statement
and proofs of our main results.

Time scale: A time scale T is an arbitrary nonempty closed subset of the real line R with topology of the
subspace R. Examples include R, Z, and qN0 =

{
qk : k ∈ N0 = N ∪ {0} , q > 0

}
. Since a time scale T may or

may not be connected, the concept of jump operators are required. Let t ∈ T, the forward jump operator
σ : T −→ T is defined by

σ(t) = inf {s ∈ T : s > t}

while the backward jump operator is defined by

ρ(t) = sup {s ∈ T : s < t} .

If σ(t) > t, then the t is called right-scattered and if ρ(t) < t then t is left-scattered. The points that are
both right-scattered and left-scattered are called isolated. If σ(t) = t then t is said to be right-dense, and
if ρ(t) = t then t is left-dense. The points that are simultaneously right-dense and left-dense are called
dense. The mapping µ : T −→ [0,∞) denoted by µ(t) = σ(t) − t is called the graininess function. If T has
a left-scattered maximum M , then Tk = T\M ; otherwise Tk = T. Let f : T −→ R be a function. Then, the
function fσ : T = R is defined by fσ(t) = f(σ(t)) for all t ∈ T. Also, for a function f : T −→ R, the delta
derivative is define by

f∆(t) = lim
s−→t,σ(s)6=t

fσ(s)− f(t)

σ(s)− t
.

A function f : T −→ R is called rd-continuous provided it is continuous at all right-dense points in T and
its left-sided limit exists at all left-dense points in T. See [2], [5] and [10] for detail discussion on the calculus
of time scale.

Jensen’s inequality. The Jensen inequality for convex functions in several variables on time scale and its
highlited properties for multivariate convex functions on an arbitrary time scale as established in [4] will
be required in this paper.

Lemma 1.4. (Jensen’s inequality [4]).
Suppose that U ⊂ Rn is a closed convex set, φ ∈ C(U,R) is convex and f(Ω2) ⊂ U . Moreover, let k : Ω1×Ω2 −→ R
be nonnegative such that k(x, .) is λ∆-integrable. Then one has

φ

(∫
Ω2
k(x, y)f(y)∆y∫

Ω2
k(x, y)∆y

)
≤
∫

Ω2
k(x, y)φ(f(y))∆y∫
Ω2
k(x, y)∆y

(1.4)
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for all functions f : Ω2 −→ U , where fj(y) are µ∆-integrable for all j ∈ {1, 2.3...m} and f(y) = (f1(y), ..., fm(y))

The required modified Jensen inequality as used in [3] is the following: Let ψ,ϕ ∈ C([α, β]). Suppose
ϕ is convex, ψ nonnegative and λ(s) is nondecreasing. Then Let ψ,ϕ ∈ C([α, β]). Suppose ϕ is convex, ψ
nonnegative and λ(s) is nondecreasing. Then(∫ t

ε

dλ(s)

)−ς
≤
(∫ t

ε

ϕ(ψ(s))
1
ζ dλ(s)

)ζ (∫ t

ε

ψ(t)dλ(s)

)−ς (∫ t

ε

dλ(s)

)−ζ
. (1.5)

Throughout this paper, the left-hand sides of the inequalities exist if the right-hand sides exist.

2. EXTENSION OF PACHPATTE RESULT ON TIME SCALES

The main results of this paper are presented and proved in this section.

Theorem 2.1. Let T be a time scale with s, ~ ∈ T. Let ς , ζ be real numbers, let ℵ, χ ∈ Crd([α, β]T,R) where h and
χ are positive rd-continuous functions on [α, β]T such that

∫
[0,t]

h(s)∆(s) <∞. Define ϕ as convex function and if
℘γ1 , ℘γ2 : [α, β]T −→ R are delta differentiable with α(0) = 0, then∫

[α,β]

(
√
χ(~))ς+1℘∆

γ1(~)℘ςγ2(~)∆(~)

≤ 1

1 + ζ
(β − α)

ς−ζ

(∫
[α,β]

∆(~)

(
√
ℵ(~))1+ζ

)∫
[α,β]

(
√
ℵ(~)χ(~))1+ζ℘∆

γ1(~)1+ζ∆(~).

(2.1)

Proof. Using the modified Jensen’s inequality

(∫ t

ε

dλ(s)

)−ς
≤
(∫ t

ε

ϕ(ψ(s))
1
ζ dλ(s)

)ζ (∫ t

ε

ψ(s)dλ(s)

)−ς (∫ t

ε

dλ(s)

)−ζ
.

with {
ψ(s) =

√
χ(s)

and dλ(s) = ℘∆
γ1∆(s).

Therefore

(β − α)
−ς ≤

(∫
[α,β]

ϕ(ψ(s))
1
ζ ℘∆

γ1(s)∆(s)

)ζ (∫
[α,β]

ψ(s)℘∆
γ1(s)∆(s)

)−ς
(β − α)

−ζ

=

(∫
[α,β]

ϕ
(√

χ(s)
) 1
ζ

℘∆
γ1(s)∆(s)

)ζ (∫
[α,β]

√
χ(s)℘∆

γ1(s)∆(s)

)−ς
(β − α)

−ζ

=

(∫
[α,β]

(√
χ(s)

) ς
ζ

℘∆
γ1(s)∆(s)

)ζ (∫
[α,β]

√
χ(s)℘∆

γ1∆(s)

)−ς
(β − α)

−ζ

≤

(∫
[α,β]

√
χ(s)℘∆

γ1∆(s)

)ζ (∫
[α,β]

√
χ(s)℘∆

γ1(s)∆(s)

)−ς
(β − α)

−ζ
.

Then
(β − α)

−ς

≤

(∫
[α,β]

√
χ(s)℘∆

γ1(s)∆(s)

)ζ (∫
[α,β]

√
χ(s)℘∆

γ1(s)∆(s)

)−ς
(β − α)

−ζ

and (∫
[α,β]

√
χ(s)℘∆

γ1∆(s)

)ς
≤

(∫
[α,β]

√
χ(s)℘∆

γ1(s)∆(s)

)ζ
(β − α)

ς−ζ
. (2.2)
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Now

γ1(~) =

∫
[α,β]

√
χ(s)℘∆

γ1(s)∆(s)

γ∆
1 (~) =

√
χ(~)℘∆

γ1(~). (2.3)

In view of (2.2) and (2.3), we obtain

℘∆
γ1(~)

(∫
[α,β]

√
χ(s)℘∆

γ1(s)∆(s)

)ς
≤ (β − α)

ς−ζ γ
∆
1 (~)√
χ(~)

γ1(~)ζ

(
√
χ(~))ς+1℘∆

γ1(~)

(∫
[α,β]

℘∆
γ1(s)∆(s)

)ς
≤ (β − α)

ς−ζ
γ∆

1 (~)γ1(~)ζ . (2.4)

�

Remark 2.2. We observed that if T = R, ℘γ1(s) =
∫

[α,β]
℘∆
γ1(s)∆(s), ς = ζ and integrate with respect to ~

then, the last inequality becomes∫
[α,β]

χ(~)℘γ1℘
∆
γ1(~)∆(~) ≤

∫
[α,β]

γ∆
1 (~)γ1(~)∆(~) =

1

2
γ1

2(β) (2.5)

by the definition of γ1 and the Cauchy-Schwarz inequality, we have∫
[α,β]

χ(~)℘γ1℘
∆
γ1(~)∆(~) ≤ 1

2
γ1

2(β) =
1

2

(∫
[α,β]

1

ℵ(~)

√
ℵ(~)χ(~)γ∆

1 (~)

)2

≤ 1

2

∫
[α,β]

∆(~)

ℵ(~)

∫
[α,β]

ℵ(~)χ(~)(γ∆
1 (~))2∆(~),

(2.6)

which is Yang [6] inequality of Opial-type.

Furthermore, the proof of Theorem 2.1, can be refined as ψ(s) −→
√
χ(s) and dλ(s) −→ ℘∆

γ2(s) in the
above modified Jensen inequality, then(∫

[α,β]

ϕ
(√

χ(s)
) 1
ζ

℘∆
γ2(s)∆(s)

)ζ (∫
[α,β]

√
χ(s)℘∆

γ2(s)∆(s)

)−ς
(β − α)

−ζ

≤

(∫
[α,β]

(√
χ(s)

) ς
ζ

℘∆
γ2(s)∆(s)

)ζ (∫
[α,β]

√
χ(s)℘∆

γ1∆(s)

)−ς
(β − α)

−ζ

≤

(∫
[α,β]

√
χ(s)℘∆

γ2∆(s)

)ζ (∫
[α,β]

√
χ(s)℘∆

γ2(s)∆(s)

)−ς
(β − α)

−ζ

implying that

(β − α)
−ς

≤

(∫
[α,β]

√
χ(s)℘∆

γ2(s)∆(s)

)ζ (∫
[α,β]

√
χ(s)℘∆

γ2(s)∆(s)

)−ς
(β − α)

−ζ
.

Then (∫
[α,β]

√
χ(s)℘∆

γ2∆(s)

)ς
≤

(∫
[α,β]

√
χ(s)℘∆

γ2(s)∆(s)

)ζ
(β − α)

ς−ζ (2.7)

and

γ2(t) =

∫
[α,β]

√
χ(s)℘∆

γ2(s)∆(s)
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γ∆
2 (~) =

√
χ(~)℘∆

γ2(~) (2.8)

In view of (2.7) and (2.8), we get

(
√
χ(~))ς+1℘∆

γ2(~)

(∫
[α,β]

℘∆
γ2(s)∆(s)

)ς
≤ (β − α)

ς−ζ
γ∆

2 (~)γ2(~)ζ . (2.9)

Adding both side of (2.4) and (2.9) yields

(
√
χ(~))ς+1℘∆

γ1(~)

(∫
[α,β]

℘∆
γ1(s)∆(s)

)ς
+ (
√
χ(~))ς+1℘∆

γ2(~)

(∫
[α,β]

℘∆
γ2(s)∆(s)

)ς
≤ (β − α)

ς−ζ
γ∆

1 (~)γ1(~)ζ + (β − α)
ς−ζ

γ∆
2 (~)γ2(~)ζ .

(2.10)

Integrating both side of (2.10) with respect to delta derivative gives∫
[α,β]

(
√
χ(~))ς+1

(
℘∆
γ2(~)℘ςγ1(~) + ℘∆

γ1(~)℘ςγ2(~)
)

∆(~)

≤ 1

1 + ζ
(β − α)

ς−ζ

(∫
[α,β]

∆(~)

(
√
ℵ(~))1+ζ

)

×
∫

[α,β]

(
√
ℵ(~)χ(~))1+ζ

(
℘∆
γ1(~)1+ζ + ℘∆

γ2(~)1+ζ
)

∆(~).

(2.11)

�

Lemma 2.3. Let ℘γ1(s) and ℘γ2(s) are absolutely continuous functions. Then, for θ ≥ 0 the following inequality
holds: (

℘γ1(s)℘γ2(s)

)ϑ ≤ (γ1(s)γ2(s))
ϑ
. (2.12)

The proof of the last Lemma is trivial and it is not included here.

In (2.3), if γ1(s) = γ2(s), ℘γ1(s) =
(∫

[α,β]
℘∆
γ2(s)∆(s)

)ς
and similarly, in (2.8) γ2(s) = γ1(s), ℘γ2(s) =(∫

[α,β]
℘∆
γ1(s)∆(s)

)ς
. Therefore, (2.4) and (2.9) becomes

(χ(~))℘γ2(~)℘∆
γ1(~) ≤ γ∆

2 (~)γ1(~) (2.13)

and

(χ(~))℘γ1(~)℘∆
γ2(~) ≤ γ∆

1 (~)γ2(~) (2.14)

respectively, if χ(~) = ς = ζ = 1. Taking the addition of both (2.13) and (2.14) yields[
℘γ2(~)℘∆

γ1(~) + ℘γ1(~)℘∆
γ2(~)

]
≤ γ1(~)γ∆

2 (~) + γ2(~)γ∆
1 (~). (2.15)

On combining (2.12) and (2.15) and then integrate both side of (2.15) with respect to delta derivative, we
get ∫

[α,β]

℘ϑγ1(~)℘
ϑ
γ2(~)

[
℘γ2(~)℘∆

γ1(~) + ℘γ1(~)℘∆
γ2(~)

]
∆(~)

≤
∫

[α,β]

γ1(~)ϑγ2(~)ϑ
[
γ1(~)γ∆

2 (~) + γ2(~)γ∆
1 (~)

]
∆(~)

(2.16)

that is ∫
[α,β]

℘ϑγ1(~)℘
ϑ
γ2(~)

[
℘γ2(~)℘∆

γ1(~) + ℘γ1(~)℘∆
γ2(~)

]
∆(~)

≤
∫

[α,β]

∆

∆(~)

(
1

ϑ+ 1
γϑ+1

1 (β)γϑ+1
2 (β)

)
∆(~)

(2.17)
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which is ∫
[α,β]

℘ϑγ1(~)℘
ϑ
γ2(~)

[
℘γ2(~)℘∆

γ1(~) + ℘γ1(~)℘∆
γ2(~)

]
∆(~)

≤ 1

2(ϑ+ 1)

(
1

ϑ+ 1
γ

2(ϑ+1)
1 (β) + γ

2(ϑ+1)
2 (β)

)
.

(2.18)

Applying Hölder’s inequality with indices 2(ϑ+ 1) and 2(ϑ+1)
(2ϑ+1) yields

γ
2(ϑ+1)
1 (β) =

(∫
[α,β]

℘∆
γ2(~)∆(~)

)2(ϑ+1)

≤ (β − α)2(ϑ+1)

∫
[α,β]

℘∆
γ2(~)2(ϑ+1)∆(~)

and

γ
2(ϑ+1)
2 (β) =

(∫
[α,β]

℘∆
γ1(~)∆(~)

)2(ϑ+1)

≤ (β − α)2(ϑ+1)

∫
[α,β]

℘∆
γ1(~)2(ϑ+1)∆(~).

Hence, we have Pachpatte′s result [9] as follows:∫
[α,β]

℘ϑγ1(~)℘
ϑ
γ2(~)

[
℘γ2(~)℘∆

γ1(~) + ℘γ1(~)℘∆
γ2(~)

]
∆(~)

≤ 1

2(ϑ+ 1)
(β − α)2(ϑ+1)

∫
[α,β]

[
℘2(ϑ+1)
γ1 (~) + ℘2(ϑ+1)

γ2 (~)
]

∆(~).

(2.19)

�

Theorem 2.4. Let T be a time scale with s, ~ ∈ T. Let ς , ζ be real numbers, let γ1, γ2, ~, ϑ,$, χ ∈ Crd([α, β]T,R)

where h and χ(s) are positive rd-continuous functions on [α, β]T such that
∫

[0,t]
h(s)∆(s) <∞. Define ϕ as convex

function and if ℘γ1 , ℘γ2 : [α, β]T −→ R is delta differentiable such that ℘γ1(α) = ℘γ2(α) = 0. For ϑ ≥ 0 and
$ ≥ 1, then

χ(~)
$(ς+1)
2(ϑ+$)℘$ςγ1 (s)∆(s)℘$∆

γ2 (~) ≤ γζ1(~)γ
ζ∆
2 (~) (β − α)

ς−ζ
.

Proof. By the modified Jensen’s inequality of the form:(∫
[α,t]

√
χ(s)℘∆

γ2(s)∆(s)

)ς
≤

(∫
[α,t]

√
χ(s)℘∆

γ2(s)∆(s)

)ζ
(β − α)

ς−ζ (2.20)

with 
ψ(s) = χ(s)

$
2(ϑ+$)

and
dλ(s) = (℘∆

γ1(s))$∆(s)

then (∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ1(s))$∆(s)

)ς
≤

(∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ1(s))$∆(s)

)ζ
(β − α)

ς−ζ (2.21)

γζ1(s) =

(∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ1(s))$∆(s)

)ζ
(γ∆

2 (~))ζ

χ(~)
$

2(ϑ+$)
= (℘∆

γ1(~))$. (2.22)

In view of (2.21) and (2.22), we get

(∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ1(s))$∆(s)

)ς
≤

(∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ1(s))$∆(s)

)ζ
(β − α)

ς−ζ
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χ(~)
$(ς+1)
2(ϑ+$)

(∫
[α,t]

(
(℘∆
γ1(s)

)$
∆(s)

)ς
(℘∆
γ1(~))$ ≤ γζ1(~)γ

ζ∆
2 (~) (β − α)

ς−ζ
,

that is,

χ(~)
$(ς+1)
2(ϑ+$)℘$ςγ1 (s)∆(s)℘$∆

γ2 (~) ≤ γζ1(~)γ
ζ∆
2 (~) (β − α)

ς−ζ
. (2.23)

�

Theorem 2.5. Let T be a time scale with s, ~ ∈ T, let ς , ζ real numbers, γ1, γ2, ~, ϑ,$, χ ∈ Crd([α, β]T,R) where
h and χ(s) are positive rd-continuous functions on [α, β]T such that

∫
[0,t]

h(s)∆(s) < ∞. We define ϕ as convex
function and if ℘γ2 , ℘γ1 : [α, β]T −→ R is delta differentiable with ℘γ1(α) = ℘γ2(α) = 0. For, ϑ ≥ 0 and $ ≥ 1,
then

χ(~)
$(ς+1)
2(ϑ+$)℘$ςγ2 (s)∆(s)℘$∆

γ1 (~) ≤ γζ2(~)γ
ζ∆
1 (~) (β − α)

ς−ζ
.

The proof of Theorem 2.5 is similar to the proof of Theorem 2.4.

Proof. The modified Jensen inequality can also be used as follows:(∫
[α,t]

√
χ(s)℘∆

γ2(s)∆(s)

)ς
≤

(∫
[α,t]

√
χ(s)℘∆

γ1(s)∆(s)

)ζ
(β − α)

ς−ζ (2.24)

with 
ψ(s) = χ(s)

$
2(ϑ+$)

and
dλ(s) = (℘∆

γ2(s))$∆(s)

then (∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ2(s))$∆(s)

)ς
≤

(∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ2(s))$∆(s)

)ζ
(β − α)

ς−ζ (2.25)

γζ2(s) =

(∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ2(s))$∆(s)

)ζ

(γ∆
1 (~))ζ

χ(~)
$

2(ϑ+$)
= (℘∆

γ2(~))$. (2.26)

In view of (2.25) and (2.26), we get(∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ2(s))$∆(s)

)ς
≤

(∫
[α,t]

χ(s)
$

2(ϑ+$) (℘∆
γ2(s))$∆(s)

)ζ
(β − α)

ς−ζ

χ(~)
$(ς+1)
2(ϑ+$)

(∫
[α,t]

(
(℘∆
γ2(s)

)$
∆(s)

)ς
(℘∆
γ1(~))$ ≤ γζ2(~)γ

ζ∆
1 (~) (β − α)

ς−ζ

that is

χ(~)
$(ς+1)
2(ϑ+$)℘$ςγ2 (s)∆(s)℘$∆

γ1 (~) ≤ γζ2(~)γ
ζ∆
1 (~) (β − α)

ς−ζ
. (2.27)
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On combining (2.12), (2.23) and (2.27) then integrate with respect to ~ from α to β yields the following
inequality ∫

[α,β]

χ(~) (℘γ1(~)℘γ2(~))
ϑ [
℘$ςγ2 (~)∆(~)℘$∆

γ1 (~) + χ(~)℘$ςγ1 (~)∆(~)℘$∆
γ2 (~)

]
∆(~)

≤ (β − α)
($−1)(2ϑ+$)+$(ς−ζ)

$

∫
[α,β]

(γ1(~)γ2(~))
ϑ
$

[
γζ2(~)γ

ζ∆
1 (~) + γζ1(~)γ

ζ∆
2 (~)

]
∆(~)

=
$

ϑ+$
(β − α)

($−1)(2ϑ+$)+$(ς−ζ)
$

(
γζ1(β)γζ2(β)

)ϑ+$
$

≤ $

2(ϑ+$)
(β − α)

($−1)(2ϑ+$)+$(ς−ζ)
$

(
γ

2ζ(ϑ+$)
$

1 (β) + γ
2ζ(ϑ+$)

$
2 (β)

)
.

(2.28)

Applying Hölder’s inequality with indices 2(ϑ+$)
$ and 2(ϑ+$)

2ϑ+$ yields

γ
2ζ(ϑ+$)

$
1 (β) =

∫
[α,β]

χ(s)℘
2ζ(ϑ+$)

$
γ1 ∆(s) (2.29)

γ
2ζ(ϑ+$)

$
2 (β) =

∫
[α,β]

χ(s)℘
2ζ(ϑ+$)

$
γ2 ∆(s). (2.30)

We therefore substitute (2.29) and (2.30) to obtain the following inequality∫
[α,β]

χ(~) (℘γ1(~)℘γ2(~))
ϑ [
℘$ςγ2 (~)∆(~)℘$∆

γ1 (~) + χ(~)℘$ςγ1 (~)∆(~)℘$∆
γ2 (~)

]
∆(~)

≤ $

2(ϑ+$)
(β − α)

(2ϑ+$)+$(ς−ζ)
$

∫
[α,β]

χ(~)
[
γ
ζ∆
1 (~) + γ

ζ∆
2 (~)

]
∆(~),

(2.31)

which is Lin and Yang′s [6] result.

2.1. Remark. We see that if T = R and q(t) = χ(~), ζ = ς = 1, ℘γ1(~) = η1($), η2($) = ℘γ2(~), ℵ(~) =

p($) and ∆(~) = d$ (2.11) reduces to (1.2).

3. ON OPIAL-TYPE INEQUALITY OF PACHPATTE′S RESULT OF MANY FUNCTIONS

The modified Jensen′s inequality would be used to obtain an extension and refinement of Opial-type
inequalities on time scales to several functions. The results are as follows.

Theorem 3.1. Let T be a time scale with s, ~ ∈ T. Let ς , ζ be real numbers , let ℵi, χ1...χn ∈ Crd([α, β]T,R) where
h and χ are positive rd-continuous functions on [α, β]T such that

∫
[0,t]

r(t)∆(s) <∞. Define ϕ as a convex function
and if ℘γ1 , ℘γ2 , ...℘γn : [α, β]T −→ R is delta differentiable with α(0) = 0, then we have∫

[α,β]

(√
χ1(~), ...,

√
χn(~)

)ς+1 (
℘∆
γ1(~), ℘∆

γ2(~), ..., ℘∆
γn(~)

)
×
(
℘γ2(~), ℘γ3(~), ..., ℘γn+1

(~)
)ς

∆(~)

≤ 1

1 + ζ
(β − α)

ς−ζ

(∫
[α,β]

∆(~)

(
√
ℵi(~))1+ζ

)

×
∫

[α,β]

(
(
√
ℵi(~))(χ1(~), ..., χn(~))

)1+ζ

(℘∆
γ1)1+ζ(~), ..., (℘∆

γn)1+ζ(~), (℘∆
γn+1

)1+ζ(~)∆(~).

(3.1)

Proof. By the Modified Jensen’s inequality, letting ψ(s) =
√
χ1(s), ...,

√
χn(s),

√
χn+1(s) and dnλ(s) =

℘∆
γ1(s), ℘∆

γ2(s), ..., ℘∆
γn(s)∆(s).
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(β − α)
−ς ≤

(∫
[α,β]

ϕ(
√
χ1(s), ...,

√
χn(s))

1
ζ × ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)ζ

×

(∫
[α,β]

ψ(s)× ℘∆
γ1(s), ℘∆

γ2(s), ..., ℘∆
γn(s)∆(s)

)−ς
(β − α)

−ζ

=

(∫
[α,β]

ϕ
(√

χ1(s), ...,
√
χn(s)

) 1
ζ × ℘∆

γ1(~), ℘∆
γ2(~), ..., ℘∆

γn(~)∆(s)

)ζ

×

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)
× ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)−ς
(β − α)

−ζ

≤

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

) ς
ζ × ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)ζ

×

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)
× ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)−ς
(β − α)

−ζ

=

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)
× ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)ζ

×

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)
× ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)−ς
(β − α)

−ζ
,

which implies

(β − α)
−ς ≤

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)∆(s)

)
× ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)ζ

×

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)
× ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)−ς
(β − α)

−ζ
.

Hence (∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)
× ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)ς

≤

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)
× ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

)ζ
(β − α)

ς−ζ
.

(3.2)

Now

γi(~) =

∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)
× ℘∆

γ1(s), ℘∆
γ2(s), ..., ℘∆

γn(s)∆(s)

γ∆
i (~) =

(√
χ1(~), ...,

√
χn(~)

)
× ℘∆

γ1(~), ℘∆
γ2(~), ..., ℘∆

γn(~). (3.3)

Combining (3.2) and (3.3), we obtain

℘∆
γ1(~), ℘∆

γ2(~), ..., ℘∆
γn(~)×

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

) [
℘∆
γ1(s), ℘∆

γ2(s), ..., ℘∆
γn(s)

]
∆(s)

)ς

≤ (β − α)
ς−ζ γ∆

i (~)γi(~)ζ√
χ1(~), ...,

√
χn(~)

,
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that is (√
χ1(~), ...,

√
χn(~)

)ς+1

× ℘∆
γ1(~), ℘∆

γ2(~), ..., ℘∆
γn(~)

(∫
[α,β]

℘∆
γ1(s), ℘∆

γ2(s), ..., ℘∆
γn(s)∆(s)

)ς
≤ (β − α)

ς−ζ
γ∆
i (~)γi(~)ζ .

Integrating both side of the last inequality with respect to delta derivative, we have the following inequality∫
[α,β]

(√
χ1(~), ...,

√
χn(~)

)ς+1 (
℘∆
γ1(~), ℘∆

γ2(~), ..., ℘∆
γn(~)

)
×
(
℘γ2(~), ℘γ3(~), ℘γn+1

(~)
)ς

∆(~)

≤ (β − α)
ς−ζ

∫
[α,β]

γ∆
i (~)γi(~)ζ∆(~) =

1

1 + ζ
(β − α)

ς−ζ
γi(β)1+ζ

≤ 1

1 + ζ
(β − α)

ς−ζ

(∫
[α,β]

1√
ℵi(~)1+ζ

∫
[α,β]

√
(ℵi(~))(χ1(~), ..., χn(~))× ℘∆

γ1(~), ..., ℘∆
γn(~), ℘∆

γn+1
(~)

)1+ζ

which implies∫
[α,β]

(√
χ1(~), ...,

√
χn(~)

)ς+1 (
℘∆
γ1(~), ℘∆

γ2(~), ..., ℘∆
γn(~)

)
×
(
℘γ2(~), ℘γ3(~), ..., ℘γn+1

(~)
)ς

∆(~)

≤ 1

1 + ζ
(β − α)

ς−ζ

(∫
[α,β]

∆(~)

(
√
ℵi(~))1+ζ

)

×
∫

[α,β]

(
(
√
ℵi(~))(χ1(~), ..., χn(~))

)1+ζ

(℘∆
γ1)1+ζ(~), ..., (℘∆

γn)1+ζ(~), (℘∆
γn+1

)1+ζ(~)∆(~).

(3.4)

Furthermore, letting ψ(s) −→
√
χ1(s), ...,

√
χn(s) and

diλ(s) −→ ℘∆
γ2(s), ℘∆

γ3(s), ..., ℘∆
γn+1

(s)∆(s) in the proof of Theorem 3.1, then we have

(β − α)
−ς ≤

(∫
[α,β]

ϕ(ψ(s))
2
ζ ℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)ζ

×

(∫
[α,β]

ψ(s)℘∆
γ2(s), ℘∆

γ3(s), ..., ℘∆
γn+1

(s)∆(s)

)−ς
(β − α)

−ζ

≤

(∫
[α,β]

ϕ
(√

χ1(s), ...,
√
χn(s)

) 1
ζ

℘∆
γ2(s), ℘∆

γ3(s), ..., ℘∆
γn+1

(s)∆(s)

)ζ
(∫

[α,β]

√
χ1(s), ...,

√
χn(s)× ℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)−ς
(β − α)

−ζ

≤

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

) ς
ζ

℘∆
γ2(s), ℘∆

γ3(s), ..., ℘∆
γn+1

(s)∆(s)

)ζ
(∫

[α,β]

√
χ1(s), ...,

√
χn(s)× ℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)−ς
(β − α)

−ζ

≤

(∫
[α,β]

√
χ1(s), ...,

√
χn(s)℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)ζ
(∫

[α,β]

√
χ1(s), ...,

√
χn(s)× ℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)−ς
(β − α)

−ζ
,
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which is

(β − α)
−ς ≤

(∫
[α,β]

√
χ1(s), ...,

√
χn(s)× ℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)ζ
(∫

[α,β]

√
χ1(s), ...,

√
χn(s)℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)−ς
(β − α)

−ζ
.

Hence (∫
[α,β]

√
χ1(s), ...,

√
χn(s)× ℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)ς

≤

(∫
[α,β]

√
χ1(s), ...,

√
χn(s)℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)ζ
(β − α)

ς−ζ
.

(3.5)

Now

γj(~) =

∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)(
℘∆
γ2(s), ℘∆

γ3(s), ..., ℘∆
γn+1

(s)
)

∆(s)

γ∆
j (~) =

√
χ1(~), ...,

√
χn(~)× ℘∆

γ2(~), ℘∆
γ3(~), ..., ℘∆

γn+1
(~) (3.6)

In view of (2.6) and (2.7), we obtain

℘∆
γ2(~), ℘∆

γ3(~), ..., ℘∆
γn+1

(~)

(∫
[α,β]

(√
χ1(s), ...,

√
χn(s)

)
× ℘∆

γ2(s), ℘∆
γ3(s), ..., ℘∆

γn+1
(s)∆(s)

)ς

≤ (β − α)
ς−ζ γ∆

j (~)γj(~)ζ√
χ1(s), ...,

√
χn(s)

,

which implies

(
√
χ1(s), ...,

√
χn(s))ς+1

(
℘∆
γ2(~), ℘∆

γ3(~), ..., ℘∆
γn+1

(~)
)(∫

[α,β]

℘∆
γ2(s), ℘∆

γ3(s), ..., ℘∆
γn+1

(s)∆(s)

)ς
≤ (β − α)

ς−ζ
γ∆
j (~)γj(~)ζ .

Integrating both side of the latter inequality with respect to delta derivative, we have the following
inequality:

∫
[α,β]

(
√
χ1(s), ...,

√
χn(s))ς+1

(
℘∆
γ2(~), ℘∆

γ3(~), ..., ℘∆
γn+1

(~)
)
× ℘γ1(~), ℘γ2(~), ..., ℘γn(~)∆(~)

≤ (β − α)
ς−ζ

∫
[α,β]

γ∆
j (~)γj(~)ζ∆(~) =

1

1 + ζ
(β − α)

ς−ζ
γj(β)1+ζ

≤ 1

1 + ζ
(β − α)

ς−ζ

(∫
[α,β]

∆(~)√
ℵi(~)

∫
[α,β]

√
ℵi(s)(χ1(s), ..., χn(s))℘∆

γ2(~)∆(~)

)1+ζ

,

which implies∫
[α,β]

(
√
χ1(s), ...,

√
χn(s))ς+1

(
℘∆
γ2(~), ℘∆

γ3(~), ..., ℘∆
γn+1

(~)
)
× ℘γ1(~), ℘γ2(~), ..., ℘γn(~)∆(~)

≤ 1

1 + ζ
(β − α)

ς−ζ

(∫
[α,β]

∆(~)

(
√
ℵi(~))1+ζ

)∫
[α,β]

(
√
ℵi(~)(χ1(s), ..., χn(s)))1+ζ℘∆

γ1(~)1+ζ∆(~).
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Adding both side of (3.5) and (3.6) yields∫
[α,β]

(
√
χ1(s), ...,

√
χn(s))ς+1

(
℘∆
γ2(~)℘ςγ1(~) + ℘∆

γ1(~)℘ςγ2(~)
)

+
(
℘∆
γ4(~)℘ςγ3(~) + ℘∆

γ3(~)℘ςγ4(~)
)

+ ...+
(
℘∆
γn+1

(~)℘ςγn(~) + ℘∆
γn(~)℘ςγn+1

(~)
)

∆(~)

≤ 1

1 + ζ
(β − α)

ς−ζ

(∫
[α,β]

∆(~)

(
√
ℵ(~))1+ζ

)∫
[α,β]

(
√
ℵ(~)(χ1(s), ..., χn(s)))1+ζ

×
(
℘∆
γ1(~)1+ζ + ℘∆

γ2(~)1+ζ
)

+
(
℘∆
γ3(~)1+ζ + ℘∆

γ4(~)1+ζ
)

+ ....+
(
℘∆
γn(~)1+ζ + ℘∆

γn+1
(~)1+ζ

)
∆(~).

�

4. CONCLUSION

This paper has established some new Opial inequalities of Pachpatte-type on time scale through the
application of modified Jesen’s inequality. The results obtained extend and generalize some known results
in literature. Indeed, in special cases the results in [6] and [9] are derived. Considerable applications of
a class of these inequalities are abound in the theories of differential, difference and integro-differential
equations as well boundary value problems, see [1, 8] for instance. The inequalities obtained here may be
useful for future research.
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