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EXISTENCE AND APPROXIMATION OF SOLUTION FOR VECTOR MIXED VARIATIONAL-LIKE
INEQUALITY UNDER DENSELY (η, f)-C-PSEUDOMONOTONE MAPPINGS

SUJEET KUMAR AND SABYASACHI PANI∗

ABSTRACT. In this paper we study vector mixed variational inequality problem under (η, C)-pseudo-
monotonicity and densely (η, f)-C-pseudo-monotonocity in reflexive Banach space. The existence and unique-
ness of solutions have been established with the help of KKM technique and further we have proposed iterative
algorithm to find the approximate solution of vector mixed variational inequality by defining an auxiliary prob-
lem.

1. INTRODUCTION

The theory of vector variational inequalities have wide scope and in their diverse form handle mathe-
matical models to a number of interesting physical phenomena that covers areas like equilibrium problems,
Optimization problems, etc. It was Giannessi [6] in 1980 who framed vector variational inequalities in the
context of finite dimensional Euclidean space by extending the classical variational inequality. People have
done many works on its different aspects; see e.g. [1, 4, 12, 23] and the references therein. In the litera-
ture, many papers appeared that establishes vector variational inequality as a powerful tool to study vector
optimization problems; have a look for instance [1, 21, 23] and the references therein.

Let X be a reflexive Banach space and Y be a real Banach space. Let K ⊂ X be nonempty, closed and
convex set, and C ⊂ Y be a closed, convex and pointed cone with apex at the origin. The dual of Y is
denoted by Y ∗ and the positive polar cone of C is denoted by C∗ ,

i.e C∗ = {u ∈ B∗ : 〈u, v〉 ≥ 0, ∀v ∈ C},

and

intC∗ ⊂ {u ∈ B∗ : 〈u, v〉 > 0, ∀v ∈ C}.

Then C induces a vector ordering in B as follows:

u ≤ v if and only if v − u ∈ C,
u � v if and only if v − u /∈ C,

u < v if and only if v − u ∈ intC,
u 6< v if and only if v − u /∈ intC.

Some elementary properties regarding the ordering are as follows:
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u /∈ −intC =⇒ −u /∈ intC,
u, v /∈ −intC, =⇒ (u+ v) /∈ −intC,

C + intC ⊆ intC.

It is clear that the above order relation (≤) is a partial order relation and therefore (Y,≤) is an ordered
Banach space. Let L(X,Y ) denotes the space of all continuous linear mappings from X into Y and let
〈T, x〉 denotes the value of T ∈ L(X,Y ) at x ∈ X . For l ∈ intC∗ and T ∈ L(X,Y ), we define the operator
Tl : X → X∗ by 〈Tl(u), v〉 = 〈l, 〈Tu, v〉〉 for all u, v ∈ X and there exists l ∈ intC∗ such that 〈l, u〉 ≥ 0 for all
u /∈ −intC, see [22]. Let f : K → Y , η : K ×K → X and G : K → L(X,Y ) be the mappings. The vector
mixed variational inequality (in short VMVI) is defined as follows:

(1.1) find u∗ ∈ K : 〈G(u∗), η(u, u∗)〉+ f(u)− f(u∗) /∈ −intC, ∀u ∈ K.

We are denoting this problem as VMVI(1.1) and U∗ denotes the set of solutions for the VMVI(1.1).
We consider another vector mixed variational inequality problem defined as follows

(1.2) find u∗ ∈ K : 〈G(u), η(u, u∗)〉+ f(u)− f(u∗) /∈ −intC, ∀u ∈ K.

We are denoting this problem as VMVI(1.2) and U∗ denotes the set of solutions for the VMVI(1.2).

1.1. Some Special Cases:

• When X = Rn, Y = R and C = [0,∞) then VMVI(1.1) gets reduced into the form which has been
considered by Ansari [18].

• When X = Rn, Y = R, η(u, u∗) = u − u∗ and C = [0,∞) then VMVI (1.1) reduces to the classical
Mixed variational inequality problem:

find u∗ ∈ K : (G(u∗), u− u∗) + f(u)− f(u∗) ≥ 0 ∀u ∈ K.

which was first studied by Lescarret and Browder [3,5] in 1966 and afterwards carried out by many
authers (e.g., [2, 13, 17]).
This theory has seen explosive growth in recent years and has been extended and enlarged by
many researchers. The importance and application of mixed variational inequality have been doc-
umented in the literature. One of the practiced approach to solve the mixed variational inequalities
is to convert them into the minimization of gap function and then use different possible numerical
techniques. I. V. Konnov, Pinyagina [9–11, 17] has used descent method and regularization method
to establish the solution of classical mixed variational inequality and for the more see the references
therein.

2. PRELIMINARIES

Definition 2.1. Let K be a non-empty subset of a Hausdorff topological vector space X then the set-valued
mapping F : K → 2X is said to be a KKM mapping if for any finite subset {u1, u2, . . . , un} ⊂ K, we have

co{u1, u2, . . . , un} ⊂
n⋃
i=1

F (ui).

Lemma 2.2. [7] Let K be a nonempty subset of a Hausdorff topological vector space X and F : K → 2X be a KKM
mapping. If F (y) is closed in X for all y ∈ K and compact for some y ∈ K, then⋂

y∈K
F (y) 6= ∅.
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Let K be a convex subset in X and K0 be a subset of K. By Luc [14], the set K0 is segment-dense in K if
for each x ∈ K, there exists an x0 ∈ K0 such that x is a cluster point of the set [x, x0] ∩ K0. Very recently
Sahu et al. [20] generalized the densely pseudomonotonicity of Luc [14] to generalized densely relaxed η-α
pseudomonotonicity. Motivated by Sahu et al. [20] and Luc [14], we have defined the notion of densely
(η, f)-C-pseudomonotonicity.

Definition 2.3. A map η : K × K → E is said to be Lipschitz continuous if there exists τ > 0 such that
||η(u, v)|| ≤ τ ||u− v|| for all u, v ∈ K.

Definition 2.4. A mapping G : K → L(X,Y ) is said to be (η, f)-C- pseudomonotone if for all u, v ∈ K, we
have

〈G(u), η(v, u)〉+ f(v)− f(u) /∈ −intC
=⇒ 〈G(v), η(v, u)〉+ f(v)− f(u) /∈ −intC.

Definition 2.5. Let K ⊂ X be a convex set. A mapping f : K → Y is said to be C- convex if for all u, v ∈ K
and for each t ∈ [0, 1], we have

f(tu+ (1− t)v)− tf(u)− (1− t)f(v) ∈ −C

Example 2.6. Let X = Y = R2 and K = [0, 1] × [0, 1]. Let C ⊂ R be a cone defined as
C = {(x, y) : y ≤ 2x, and x, y ≥ 0}. Let f : [0, 1] × [0, 1] → R2 be defined as f(x) = (x21, x

2
2)

where x = (x1, x2).
Now,
λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y) = λ(x21, x

2
2) + (1− λ)(y21 , y

2
2)

−f(λx1 + (1− λ)y1, λx2 + (1− λ)y2)

=

(
λx21 + (1− λ)y21 , λx

2
2 + (1− λ)y22

)
−
(

(λx1 + (1− λ)y1)2, (λx2 + (1− λ)y2)2
)

=

(
λx21 + (1− λ)y21 − (λx1 + (1− λ)y1)2, λx22 + (1− λ)y22 − λx2 + (1− λ)y2)2

)
.

Since, we know that 0 ≤ x− x2 ≤ x for x ∈ [0, 1], hence we can deduce that

λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y) ∈ C.

Hence f is C-convex.

Definition 2.7. A mapping G : K → L(X,Y ) is said to be densely (η, f)-C-pseudomonotone on K if there
exists a segment-dense subset K0 ⊂ K such that G is (η, f)-C-pseudomonotone at every point of K0.

Definition 2.8. Let K ⊂ X be a convex set and f : K → Y be a mapping. Then f is said to be

(i) C- upper semi-continuous at u if for any sequence {un} ⊂ X converging to u, we have
lim supn→∞ f(un)− f(u) ∈ −C.

(ii) C- lower semi-continuous at u if for any sequence {un} ⊂ X converging to u, we have
lim infn→∞ f(un)− f(u) ∈ C.

(iii) C-hemicontinuous if for any u, v ∈ K and t ∈ [0, 1], the mapping t 7→ f(u+ t(v − u)) is continuous at
0+.

Definition 2.9. Let G : K → L(X,Y ) and η : K × K → X be two mappings. G is said to be η-C-
hemicontinuous if for any u, v ∈ K and t ∈ [0, 1], the mapping t 7→ 〈G(u + t(v − u)), η(v, u)〉 is continuous
at 0+.
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Definition 2.10. Let T : K → L(X,Y ) be an operator and a ∈ intC, then T is said to be η-C strongly
monotone with modulus a if

〈Tu− Tv, η(u, v)〉 − ||u− v||2a ∈ C, ∀u, v ∈ K.

3. EXISTENCE RESULTS FOR VECTOR MIXED VARIATIONAL-LIKE INEQUALITIES

We begin with some lemmas with proof which will be useful for establishing the main results.

Lemma 3.1. LetK be a nonempty closed and convex subset of a real reflexive Banach space E andB be a real Banach
space ordered by a closed, convex and pointed cone C. Let G : K → L(E,B) is (η, f)-C-pseudomonotone, then
U∗ ⊂ U∗.

Proof. Let u∗ ∈ U∗, then we have

〈G(u∗), η(u, u∗)〉+ f(u)− f(u∗) /∈ −intC, ∀u ∈ K.

Since G is (η, f)-C-pseudomonotone, we have

〈G(u), η(u, u∗)〉+ f(u)− f(u∗) /∈ −intC, ∀u ∈ K.

This shows that u∗ ∈ U∗. �

Lemma 3.2. Let K be a nonempty closed and convex subset of a real Banach space E and B be a real Banach spaces
ordered by a closed, convex and pointed cone C. Let the mapping G : K → L(E,B) be η-C-hemicontinuous and
the map u 7→ 〈G(w), η(u, v)〉 is C-convex. Suppose the mapping f : K → B is C-convex and η(x, x) = 0, then
U∗ ⊂ U∗.

Proof. Let u∗ ∈ U∗ i.e there is an u∗ ∈ K such that

(3.1) 〈G(u), η(u, u∗)〉+ f(u)− f(u∗) /∈ −intC, ∀u ∈ K.

Let u ∈ K be any point and ū = (1− t)u∗ + tu, t ∈ (0, 1). Since K is convex, ū ∈ K and substituting u = ū

in (3.1), we have

〈G(ū), η(ū, u∗)〉+ f(ū)− f(u∗) /∈ −intC.

Since u 7→ 〈G(w), η(u, v)〉 is C-convex and η(x, x) = 0, we obtain

(3.2) t〈G(ū), η(u, u∗)〉+ f((1− t)u∗ + tu)− f(u∗) /∈ −intC.

Now, by making use of the condition that f is C- convex, we have

t〈G((1− t)u∗ + tu), η(u, u∗)〉+ t(f(u)− f(u∗)) /∈ −intC.

Thus,

〈G((1− t)u∗ + tu), η(u, u∗)〉+ (f(u)− f(u∗)) /∈ −intC.

Since G is a η-C-hemicontinuous, we have

〈G(u∗), η(u, u∗)〉+ f(u)− f(u∗) /∈ −intC.

This shows that u∗ ∈ U∗ i.e U∗ ⊂ U∗. �

Therefore, under the conditions of Lemma 3.1 and Lemma 3.2, the solution set of VMVI(1.1) and VMVI(1.2)
coincide and is summarized as the following corollary.
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Corollary 1. Let K be a nonempty closed and convex subset of a real reflexive Banach space E and B be
a real Banach space ordered by a closed, convex and pointed cone C. Let G : K → L(E,B) is (η, f)-C-
pseudomonotone and η-C-hemicontinuous both. Let the map u 7→ 〈G(w), η(u, v)〉 is C-convex, the map-
ping f : K → B is C-convex and η(x, x) = 0, then VMVI(1.1) and VMVI(1.2) share the same solution
set.

Theorem 3.3. Let K be a nonempty closed, convex and bounded subset of a real reflexive Banach space E and B be a
real Banach spaces ordered by a closed, convex and pointed cone C. LetG : K → L(E,B) be an η-C-hemicontinuous
mapping and f : K → B be C-convex function. Suppose that the following conditions hold:

(i) G is (η, f)-C-pseudomonotone;
(ii) the map u 7→ 〈G(w), η(u, v)〉 is C-convex;

(iii) u 7→ 〈G(w), η(v, u)〉 is C-upper semicontinuous;
(iv) f is C-lower semicontinuous;
(v) η(u, u) = 0.

Then the problem VMVI(1.1) has a solution.

Proof. Let us define two set valued mappings σ, ρ : K → 2X by

σ(v) = {u ∈ K| 〈G(u), η(v, u)〉+ f(v)− f(u) /∈ −intC},

and

ρ(v) = {u ∈ K| 〈G(v), η(v, u)〉+ f(v)− f(u) /∈ −intC}.

We will show that σ, ρ are KKM mappings. Suppose σ is not a KKM mapping. Then there exist a set
{u1, ..., un} ⊂ K such that co{u1, ..., un} *

⋃i=n
i=1 σ(ui) i.e. there exist ū ∈ co{u1, ..., un}, ū =

∑i=n
i=1 λiui with∑i=n

i=1 λi= 1 where λi ≥ 0, but ū /∈
⋃i=n
i=1 σ(ui) i.e ū /∈ σ(ui) for any i ∈ {1, ..., n}. Thus,

〈G(ū), η(ui, ū)〉+ f(ui)− f(ū) ∈ −intC, ∀i ∈ {1, ..., n}.

Multiplying by λi and taking sum

(3.3)
i=n∑
i=1

λi

〈
G(ū), η(ui, ū)

〉
+

i=n∑
i=1

λif(ui)− f(ū) ∈ −intC.

Since map u 7→ 〈G(w), η(u, v)〉 is C-convex, we have

(3.4)
〈
G(ū), η

( i=n∑
i=1

λiui, ū

)〉
−
i=n∑
i=1

λi

〈
G(ū), η(ui, ū)

〉
∈ −C.

Again since f is C- convex, we get

(3.5) f

(
i=n∑
i=1

λiui

)
−
i=n∑
i=1

λif(ui) ∈ −C.

From (3.3)-(3.5), we deduce that

0 = 〈G(ū), η(ū, ū)〉 ∈ −intC.

Which contradicts the assumption that C is a pointed cone. Hence σ is a KKM mapping. Clearly σ(v) ⊂
ρ(v). Indeed, for given v ∈ K, let u ∈ σ(v), then

〈G(u), η(v, u)〉+ f(v)− f(u) /∈ −intC.

By (η, f)-C-pseudomonotonicity of G, we have

〈G(v), η(v, u)〉+ f(v)− f(u) /∈ −intC.
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Thus, u ∈ ρ(v). Therefore we conclude that ρ is also a KKM mapping. Since K is closed, bounded and
convex subset of the reflexive Banach space E, it is weakly compact. Now we will show that ρ(v) is weakly
closed for all v ∈ K. Let {un} be a sequence in ρ(v) such that un ⇀ u. Then, we have

〈G(v), η(v, un)〉+ f(v)− f(un) /∈ −intC.

Which implies that

(3.6) lim sup[〈G(v), η(v, un)〉+ f(v)− f(un)] /∈ −intC.

Since the map u 7→ 〈G(w), η(v, u)〉 is C-upper semicontinuous and the mapping f is C-lower semicontinu-
ous, we have

(3.7) 〈G(v), η(v, u)〉 − f(u)− lim sup[〈G(v), η(v, un)〉 − f(un)] ∈ −C.

Combining (3.6) and (3.7), we conclude that

〈G(v), η(v, u)〉+ f(v)− f(u) /∈ −intC.

This shows that u ∈ ρ(v). Thus, ρ(v) is closed in K and therefore weakly compact. From Lemma 2.2, it
follows that ⋂

v∈K
σ(v) =

⋂
v∈K

ρ(v) 6= ∅.

Thus, there exists an u ∈ K such that 〈G(u), η(v, u)〉 + f(v) − f(u) /∈ intC, for all v ∈ K. Which completes
the proof of the theorem. �

Theorem 3.4. Let K be a nonempty closed, convex and unbounded subset of a real reflexive Banach space E and
B be a real Banach spaces ordered by a closed, convex and pointed cone C. Let G : K → L(E,B) be an η-C-
hemicontinuous mapping and f : K → B be a C-convex function. Suppose that the following conditions hold:

(i) G is (η, f)-C-pseudomonotone;
(ii) the map u 7→ 〈G(w), η(u, v)〉 is C-convex;

(iii) u 7→ 〈G(w), η(v, u)〉 is C-upper semicontinuous;
(iv) f is C-lower semicontinuous;
(v) η(u, u) = 0;

(vi) G is weakly coercive with respect to f that is there exists v0 ∈ K such that 〈G(u), η(v0, u)〉+ f(v0)− f(u) ∈
−intC, whenever ||u|| → +∞ and u ∈ K.

Then the problem VMVI(1.1) has a solution.

Proof. For δ > 0, let Bδ = {u ∈ K : ||u|| < δ}. Consider the problem of finding uδ ∈ K ∩Bδ such that

(3.8) 〈G(uδ), η(v, uδ)〉+ f(v)− f(uδ) /∈ −intC, ∀v ∈ K ∩Bδ.

By Theorem 3.3, problem (3.8) has at least one solution uδ ∈ K∩Bδ . Choose δ > ||v0||with v0 as in condition
(vi). Then we have

〈G(uδ), η(v0, uδ)〉+ f(v0)− f(uδ) /∈ −intC.

If ||uδ|| = δ for all δ, we may choose δ large enough and condition (vi) forces to have

〈G(uδ), η(v0, uδ)〉+ f(v0)− f(uδ) ∈ −intC.

Therefore, we are getting a contradiction. Hence, there exist a δ such that ||uδ|| < δ. Now, for any v ∈ D,
there is a t ∈ (0, 1) such that ū = uδ + t(v − uδ) ∈ K ∩Bδ . From (3.8), we have

〈G(uδ), η(ū, uδ)〉+ f(ū)− f(uδ) /∈ −intC.
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Which implies that

〈G(uδ), η(tv + (1− t)uδ, uδ)〉+ f(tv + (1− t)uδ)− f(uδ) /∈ −intC.

Since f is C-convex, by using condition (ii) and (v), we get

〈G(uδ), η(v, uδ)〉+ f(v)− f(uδ) /∈ −intC, ∀v ∈ D.

This shows that uδ is the solution of problem (1.1). �

Next result is about the existence of solution of VMVI(1.1) when the function G is densely (η, f)-C-
monotone operator.

Theorem 3.5. Let K be a nonempty convex and compact subset of a real reflexive Banach space E and B be a real
Banach space ordered by a closed, convex and pointed cone C. Let G : K → L(E,B) be an η-C-hemicontinuous
and densely (η, f)-C-pseudomonotone operator on K. Let f : K → B be a C-convex function. Suppose that the
following conditions hold:

(i) G is (η, f)-C-pseudomonotone;
(ii) the map u 7→ 〈G(w), η(u, v)〉 is C-convex;

(iii) u 7→ 〈G(w), η(v, u)〉 is C-upper semicontinuous;
(iv) f is C-lower semicontinuous;
(v) η(tu+ (1− t)v, w) = tη(u,w) + (1− t)η(v, w) for all u, v, w ∈ K;

(vi) η(u, u) = 0.

Then the problem VMVI(1.1) has a solution.

Proof. SinceG is densely (η, f)-C-pseudomonotone onK, it follows that there exists a segment-dense subset
K0 ⊂ K such that G is (η, f)-C-pseudomonotone at every point of K0. For any y ∈ K0, define a set valued
mapping σ : K0 → 2K by

σ(v) = {u ∈ K : 〈G(u), η(v, u)〉+ f(v)− f(u) /∈ −intC}.

Clearly σ(v) 6= ∅ as v ∈ σ(v). Now, we claim that σ is a KKM mapping. Suppose σ is not a KKM
mapping. Then there exist a set {u1, ..., un} ⊂ K0 such that co{u1, ..., un} *

⋃i=n
i=1 σ(ui) i.e. there exist

ū ∈ co{u1, ..., un}, ū =
∑i=n
i=1 λiui with

∑i=n
i=1 λi= 1 where λi ≥ 0, but ū /∈

⋃i=n
i=1 σ(ui) i.e ū /∈ σ(ui) for any

i ∈ {1, ..., n}. Thus,
〈G(ū), η(ui, ū)〉+ f(ui)− f(ū) ∈ −intC, ∀i ∈ {1, ..., n}.

Multiplying by λi and taking sum

(3.9)
i=n∑
i=1

λi

〈
G(ū), η(ui, ū)

〉
+

i=n∑
i=1

λif(ui)− f(ū) ∈ −intC.

Since map u 7→ 〈G(w), η(u, v)〉 is C-convex, we have

(3.10)
〈
G(ū), η

( i=n∑
i=1

λiui, ū

)〉
−
i=n∑
i=1

λi

〈
G(ū), η(ui, ū)

〉
∈ −C.

Again since f is C- convex, we get

(3.11) f

(
i=n∑
i=1

λiui

)
−
i=n∑
i=1

λif(ui) ∈ −C.

Taking account of relations (3.9)-(3.11), we deduce that

0 = 〈G(ū), η(ū, ū)〉 ∈ −intC.
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Which contradicts the assumption that C is a pointed cone. Hence σ is a KKM mapping. Define another
map ρ : K0 → 2K by

ρ(v) = {u ∈ K : 〈G(v), η(v, u)〉+ f(v)− f(u) /∈ −intC}.

Clearly σ(v) ⊂ ρ(v), for each v ∈ K0. Indeed, for given v ∈ K0, let u ∈ σ(v), then

〈G(u), η(v, u)〉+ f(v)− f(u) /∈ −intC.

By (η, f)-C-pseudomonotonicity of G, we have

〈G(v), η(v, u)〉+ f(v)− f(u) /∈ −intC.

Thus, u ∈ ρ(v). Therefore we conclude that ρ is also KKM mapping. Since K is closed, by the same
argument as in Theorem 3.3, we conclude that for each v ∈ K0, ρ(v) is closed in K and hence weakly
compact. From Lemma 2.2, it follows that ⋂

v∈K0

ρ(v) 6= ∅.

Let u∗ ∈
⋂
v∈K0

ρ(v) then,

(3.12) 〈G(v), η(v, u∗)〉+ f(v)− f(u∗) /∈ −intC, ∀v ∈ K0

We are going to show that u∗ is the solution of the problem. For this, let w ∈ K be any arbitrary element.
Since K0 is segment dense in K, then there exist an element w0 ∈ K0 such that w is a cluster point of
[w,w0] ∩K0. Therefore there is a sequence {wn} ∈ [w,w0] ∩K0 such that {wn} converges to w. Put wn =

(1 − tn)w + tnw0 = w + tn(w0 − w) ∈ K0, where tn ∈ [0, 1] and tn → 0. Substituting v = wn in (3.12), we
have

〈G(wn), η(wn, u
∗)〉+ f(wn)− f(u∗) /∈ −intC.

It follows from condition (ii) that

(1− tn)〈G(wn), η(w, u∗)〉+ tn〈G(wn), η(w0, u
∗)〉+ f(wn)− f(u∗) /∈ −intC.

Taking tn → 0, and using η-C-hemicontinuity of G and C-hemicontinuity of f , we have

〈G(w), η(w, u∗)〉+ f(w)− f(u∗) /∈ −intC.

This shows that u∗ is a solution of VMVI(1.1). �

4. APPROXIMATION OF SOLUTION THROUGH AUXILIARY PRINCIPLE TECHNIQUE

In this section,we find the approximate solution to vector mixed variational inequality problem through
iterative technique of Glowinski et al. [15,16,19] which is known as a auxiliary principle technique. For this
purpose we construct the following auxiliary problem in order to approximate the solution of VMVI(1.1).
For a given u ∈ K and a real θ > 0, the auxiliary problem is to find a w ∈ K such that

(4.1) θ [〈G(w), η(v, w)〉+ f(v)− f(w)] + 〈Tv − Tw, η(w, u)〉 /∈ −intC, ∀v ∈ K.

where T : K → L(E,B) is a map. If w = u, then w coincides with the solution of VMVI(1.1).
Now, we present the following iterative scheme for the approximate solution of VMVI(1.1).

Algorithm 1. Let {θn} be a decreasing sequence of positive numbers that converges to 0 and ε > 0 be
a fixed given number.

(i) For n = 0, let u0 be the initial solution.
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(ii) At nth step solve the auxiliary problem (4.1) with u = un. Let the solution be w = un+1. That is, find
w = un+1 of the problem:

θn+1 [〈G(un+1), η(v, un+1)〉+ f(v)− f(un+1)] + 〈Tv − Tun+1, η(un+1, un)〉
/∈ −intC.

(iii) stop when ||un+1 − un|| ≤ ε otherwise move to (ii).

Theorem 4.1. LetK be any non-empty convex subset of a reflexive Banach spaceE andB be a real Banach space. Let
G : K → L(E,B) and f : K → B be a C-convex and C-upper semi-continuous function. Let T : K → L(E,B) be
an operator and η : K ×K → E be a mapping. Suppose the following conditions hold:

(i) u 7→ T (u) is continuous from weak topology to strong topology;
(ii) η(u,w) = η(u, v) + η(v, w) and η(u, v) + η(v, u) = 0 ∀u, v, w ∈ K;

(iii) η(u, u) = 0;
(iv) G is (η, C)- monotone;
(v) T is (η, C)- strongly monotone with modulus a ∈ intC ;

(vi) for a nonempty, compact and convex subset D of K there exist u0 ∈ D such that

〈G(u), η(u0, u)〉+ f(u0)− f(u) ∈ −intC, ∀u ∈ K\D.

Then the auxiliary problem (4.1) has a unique solution.

Proof. First we will show that there exists a nonempty, compact and convex subset D of K and u0 ∈ K such
that

〈G(u), η(u0, u)〉+ f(u0)− f(u) + 〈Tu0 − Tu, η(u,w)〉 ∈ −intC.

For this, take b := −a ∈ −intC and let u0 ∈ K be arbitrary but fixed .
For λ > 0, by condition (ii) we have

λ||u− u0||b− 〈Tu0 − Tu, η(u,w)〉 = λ||u− u0||b + 〈Tu− Tu0, η(u, u0)〉
+〈Tu− Tu0, η(u0, w)〉

It follows from condition (v),

(4.2) λ||u− u0||b− 〈Tu0 − Tu, η(u,w)〉 ∈ C + a||u− u0||2 − λ||u− u0||a + 〈Tu− Tu0, η(u0, w)〉.

Since u0 and w are some arbitrary fixed points so 〈Tu− Tu0, η(u0, w)〉 is a function of u. From condition
(i) it follows that T is C- lower semicontinuous. Hence for r > 0 there exists r ∈ B such that

(4.3) 〈Tz − Tu0, η(u0, w)〉 − r ∈ intC ∀z ∈ K0 = {u ∈ K : ||u− u0|| ≤ r}

Now, let u ∈ K\K0 and z := r
||u−u0||u+

(
1− r

||u−u0||
)
u0 ∈ K0 and putting the value of z in (4.3) we have,

r

||u− u0||
〈Tu− Tu0, η(u0, w)〉 − r ∈ intC, ∀u ∈ K\K0,

(4.4) 〈Tu− Tu0, η(u0, w)〉 ∈ ||u− u0||
r

r + intC, ∀u ∈ K\K0.

Since a ∈ intC and r ∈ B therefore 0 ∈ −a + intC and 0 ∈ −ar + intC. Then there exists β ∈ (0, 1) such
that, for all γ ∈ (0, β) we have γr ∈ −ar + intC.

(4.5) r ∈ −rλa + intC, for λ >
1

β
,

from (4.2) and (4.4),we obtain
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λ||u− u0||b− 〈Tu0 − Tu, η(u,w)〉

∈ intC + a||u− u0||2 − λ||u− u0||a + ||u−u0||
r r

∈ intC + a||u− u0||2 − 2λ||u− u0||a + ||u− u0|| rr + λ||u− u0||a,

(4.6) λ||u− u0||b− 〈Tu0 − Tu, η(u,w)〉 ∈ intC + [||u− u0|| − 2λ]||u− u0||a +
||u− u0||

r
[r + rλa].

Choose Rλ = max{α, 2λ}, from (4.5) and (4.6) we obtain that for u ∈ K such that ||u− u0|| ≥ Rλ we have

λ||u− u0||b− 〈Tu0 − Tu, η(u,w)〉 ∈ intC,

(4.7) i.e 〈Tu0 − Tu, η(u,w)〉 ∈ −intC ∀u ∈ K\K0.

By combining condition (v) and (4.7),we can state that there exist a compact convex subset D of K and
u0 ∈ K, such that

(4.8) 〈G(u), η(u0, u)〉+ f(u0)− f(u) + 〈Tu0 − Tu, η(u,w)〉 ∈ −intC.

Now (4.8) serves as coercivity condition, we are to show the existence of solution of the auxiliary problem
(4.1).

Let W = {u1, u2, ..., un} be any finite subset of K and setting D̃ = co{W ∪ D} which is a convex and
compact set.
Let us consider maps σ̃ : D̃ → 2D̃ defined as

σ̃(v) = {u ∈ D̃ : 〈G(u), η(v, u)〉+ f(v)− f(u) + 〈Tv − Tu, η(u,w)〉 /∈ −intC}

and ρ̃ : D̃ → 2D̃ defined as

ρ̃(v) = {u ∈ D̃ : 〈G(v), η(u, v)〉+ f(v)− f(u) + 〈Tv − Tu, η(u,w)〉 /∈ −intC}

Then by moving in the same direction as we have done in Theorem 3.5, existence of solution of (4.1) is
guaranteed. Next remaining part is to establish the uniqueness of solution. By contradiction we assume u
and u∗ are to be the solutions, then we have

(4.9) 〈G(u), η(v, u)〉+ f(v)− f(u) + 〈Tv − Tu, η(u,w)〉 /∈ −intC, ∀v ∈ K

and

(4.10) 〈G(u∗), η(v, u∗)〉+ f(v)− f(u∗) + 〈Tv − Tu∗, η(u∗, w)〉 /∈ −intC, ∀v ∈ K

putting v = u∗ in (4.9) and v = u in (4.10) and by adding, we get

〈G(u)−G(u∗), η(u∗, u)〉+ 〈Tu∗ − Tu, η(u,w)− η(u∗, w)〉 /∈ −intC

〈G(u)−G(u∗), η(u∗, u)〉+ 〈Tu∗ − Tu, η(u,w) + η(w, u∗)〉 /∈ −intC

〈Tu∗ − Tu, η(u, u∗)〉 /∈ −intC + 〈G(u∗)−G(u), η(u∗, u)〉

Since G is (η, C)- monotone, it follows that

〈Tu∗ − Tu, η(u, u∗)〉 /∈ −intC

〈Tu− Tu∗, η(u, u∗)〉 − ||u− v||2a /∈ −intC
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Adding above two inequalities, we obtain

−||u− v||2a /∈ −intC,

i.e
−a /∈ −intC.

which is a contradiction. Hence the solution is unique. �

Theorem 4.2. Suppose all conditions of Theorem 4.1 hold and in addition assume that there exists l ∈ intC∗ such
that 〈l, u〉 ≥ 0 for all u /∈ −intC. Let the map η : K ×K → E be Lipschitz continuous. Assume that there exist
ε ∈ (0, 1) such that τ θn+1

θn〈l,a〉 ||Tl|| < ε. Then the iterative scheme converges.

Proof. From algorithm 1, we have

(4.11)
〈G(un), η(v, un)〉+ f(v)− f(un) + 1

θn
〈Tv − Tun, η(un, un−1)〉

/∈ −intC, ∀v ∈ K.

and

(4.12)
〈G(un+1), η(v, un+1)〉+ f(v)− f(un+1) + 1

θn+1
〈Tv − Tun+1, η(un+1, un)〉

/∈ −intC, ∀v ∈ K.

Putting v = un+1 in (4.11) and v = un in (4.12) then adding both, we get

〈G(un)−G(un+1), η(un+1, un)〉+ 1
θn
〈Tun+1 − Tun, η(un, un−1)〉

+ 1
θn+1
〈Tun − Tun+1, η(un+1, un)〉 /∈ −intC,

which implies
1
θn
〈Tun+1 − Tun, η(un, un−1)〉+ 1

θn+1
〈Tun − Tun+1, η(un+1, un)〉

/∈ −intC + 〈G(un+1)−G(un), η(un+1, un)〉
/∈ −intC.

Since G is (η, C)- monotone

θn+1

θn
〈Tun+1 − Tun, η(un, un−1)〉 − 〈Tun+1 − Tun, η(un+1, un)〉 /∈ −intC.

Since T is (η, C)- strongly monotone, we obtain

θn+1

θn
〈Tun+1 − Tun, η(un, un−1)〉 − a||un+1 − un||2 /∈ −intC.

Making use of the condition that there exist l ∈ intC∗ such that 〈l, u〉 ≥ 0 for all u /∈ −intC therefore we
have,

θn+1

θn
〈l, 〈Tun+1 − Tun, η(un, un−1)〉〉 − 〈l, a〉||un+1 − un||2 ≥ 0,

which gives

〈l, a〉||un+1 − un||2 ≤
θn+1

θn
〈l, 〈Tun+1 − Tun, η(un, un−1)〉〉,

which implies

〈l, a〉||un+1 − un||2
θn+1

θn
≤ ||Tl|| ||un+1 − un|| ||η(un, un−1)||,

It implies

||un+1 − un|| ≤
θn+1

θn〈l, a〉
||Tl|| ||η(un, un−1)||.

Since η is Lipschitz continuous,

||un+1 − un|| ≤ τ
θn+1

θn〈l, a〉
||Tl|| ||un − un−1||,
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||un+1 − un|| ≤ ε||un − un−1||.
Hence un converges to w ∈ K. �

5. CONCLUDING REMARKS

In this paper, we discussed the existence and uniqueness of solution for vector mixed variational
inequality in reflexive Banach spaces under (η, C)-pseudo-monotonicity and densely (η, f)-C-pseudo-
monotonocity, where the practiced partial ordering is not a usual partial ordering on n-dimensional Eu-
clidean space En rather a partial ordering induced by a closed convex pointed cone in Banach space.

REFERENCES

[1] A. P. Farajzadeh, B. S. Lee, Vector Variational-like inequality Problem and vector Optimization Problem, Appl. Math. Lett. 23
(2010), 48–52.

[2] C. Baiocchi, A. Capelo, Variational and Quasi-variational Inequalities, Application to free Boundary Problems, John Wiley and
Sons, New York, 1984; Nauka, Mascow, 1988.

[3] C. Lescarret, Cas d’ Addition des Applications Monotones Maximales dans un Espace de Hilbert, Compt. Rend. Acad. Sci. (Paris),
261 (1965), 1160–1163.

[4] C. S. Lalitha, Monika Mehta, Vector Variational Inequalities with Cone-pseudomonotone Bifunctions, Optimization, 54 (2005),
327–338.

[5] F. E. Browder, On the Unification of the Calculus of Variation and the theory of Monotone Nonlinear Operators in Banach Spaces,
Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 419–425.

[6] F. Giannessi, Theorem of Alterative, Quadratic Programs and Complementary Problems, J.C. Lions, (eds) Variational Inequality
and Complementary Problems, Wiley, New York, 1980.

[7] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961), 305–310.
[8] P. Hartman, G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 115 (1966), 153–188.
[9] I. V. Konnov, O. V. Pinyagina, Solution Method for Monotone Mixed Variational Inequalities, Lobachevskii J. Math. 32 (2011),

446–452.
[10] I. V. Konnov, Descent Method with Inexact Linesearch for Mixed Variational Inequalities, Russian Math. 53 (2009), 29–35.
[11] I. V. Konnov, Descent Methods for Mixed Variational Inequalities in Hilbert space, Nonlinear Anal. 53 (2001), 561–572.
[12] I. V. Konnov, J. C. Yao, On the Generalized Vector Variational Inequality Problem, J. Math. Anal. Appl. 206 (1997), 42–58.
[13] X. Li, N. Huang, D. O’Regan, Differential Mixed Variational Inequalities in Finite Dimensional Spaces, Nonlinear Anal. Theory

Method Appl. 72 (2010), 3875–3886.
[14] D. T. Luc, Existence Results for Densely Pseudomonotone Variational Inequalities, J. Math. Anal. Appl. 254 (2001), 291–308.
[15] N. Huang, C. Deng, Auxiliary Principle and Iterative Algorithms for Generalized Set-Valued Strongly Nonlinear Mixed

Variational-like Inequalities, J. Math. Anal. Appl. 256 (2001), 345–359.
[16] O. Chadli et al., Existence of Solutions and Algorithms for Bilevel Vector Equilibrium Problems: An Auxiliary Principle Tech-

nique, J. Optim. Theory Appl. 172 (2017), 726–758.
[17] O. V. Pinyagina, M. S. S. Ali, Descent Method for Monotone Mixed Variational Inequality, Calcolo, 45 (2008), 1–15.
[18] Q. H. Ansari, J. C. Yao. Iterative Schemes for Solving Mixed Variational-Like Inequalities, J. Optim. Theory Appl. 108 (2001),

527–54.
[19] R. Glowinski et al., Numerical Analysis of Variational inequalities, North-Holland, Amsterdam, 1981.
[20] B.K. Sahu, G. Nguyen, G. Pany, O. Chadli, Densely relaxed pseudomonotone and quasimonotone generalized variational-like

inequalities, Optimization. 142 (2020), 305–310.
[21] S. K.Mishra, B. B.Upadhyay, Some Relations between Vector Variational Inequality Problem and Nonsmooth Vector Optimization

Problems using Quasi-efficiancy, Positivity, 17 (2013), 1071–1083.
[22] S. J. Yu, J. C. Yao, On vector variational inequalities, J. Optim. Theory Appl. 89 (1996), 749–769.
[23] S.M. Guua, J. Li, Vector Variational-like Inequalities with Generalized Bifunctions defined on Nonconvex Sets, Nonlinear Anal.

Theory Meth. Appl. 71 (2009), 2847–2855.


	1. Introduction
	1.1. Some Special Cases:

	2. Preliminaries
	3. Existence Results for Vector Mixed Variational-like Inequalities
	4. Approximation of solution through Auxiliary Principle Technique
	5. Concluding Remarks
	References

