
ISSN: 2832-4293
Pan-American Journal of Mathematics 5 (2026), 1
https://doi.org/10.28919/cpr-pajm/5-1
© 2026 by the authors

MODELING THE GLUCOSE-INSULIN-GLUCAGON INTERACTIONS

SALMA AL-TUWAIRQI∗, KHLOOD ALAMER, AND HUNIDA MALAIKAH

ABSTRACT. This research presents a mathematical model that investigates the regulation of glucose levels in the
human body through interactions with insulin and glucagon. The model accounts for the action of incretin hor-
mones in the intestine, which stimulates the release of insulin. The study uniquely combines sensitivity analysis
and equilibrium stability analysis to provide a comprehensive understanding of these interactions. A system of
nonlinear ordinary differential equations is formulated to describe the model’s dynamics. Qualitative analysis en-
sures the positivity and boundedness of state variables, identifies a unique steady-state solution, and establishes
its local and global asymptotic stability. Sensitivity analysis further elucidates the complicated relationships be-
tween glucose, insulin, and glucagon, highlighting the impact of key parameters on glucose equilibrium levels.
Numerical simulations validate the theoretical findings, demonstrating the model’s robustness and reliability.
The study’s findings have significant implications in the real world, particularly in the advancement of clinical
and therapeutic strategies for managing diabetes. By offering insights into the mechanisms of glucose regulation,
the model provides a valuable framework for optimizing treatments and developing targeted interventions for
metabolic disorders.

1. INTRODUCTION

The human body requires three fundamental types of fuel: glucose, lipids, and proteins to support opti-
mal physiological function. Among these, glucose is the most accessible energy source and plays a crucial
role in metabolism and hydration [1]. Maintaining a consistent glucose concentration in the blood plasma,
typically between 60 and 100 mg/dL, is vital for normal bodily function [2]. During physical activity or
stress, muscles demand a higher concentration of glucose to perform efficiently.

Pancreatic endocrine hormones, including insulin, glucagon, somatostatin, and amylin, primarily regu-
late blood glucose levels. Insulin, a peptide hormone secreted by pancreatic beta cells, facilitates the uptake
of glucose into cells, where it is utilized for energy production. In contrast, glucagon, secreted by pancre-
atic alpha cells, raises blood glucose levels by promoting glycogenolysis, the breakdown of glycogen into
glucose in the liver, and by stimulating gluconeogenesis, the synthesis of glucose from non-carbohydrate
sources [3]. This dynamic interplay between insulin and glucagon ensures that cells receive adequate en-
ergy while preventing persistent hyperglycemia or hypoglycemia [4].

Numerous studies have investigated the complex relationship between glucose and insulin, and several
models have been developed to describe glucose homeostasis. In [5], a delay differential equation model
was created to simulate pancreatic insulin secretion in type 1 diabetes patients with elevated glucose con-
centrations, along with exogenous insulin infusion. The study in [6] examined the impact of diabetes factors
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on the onset of the oscillatory regime and presented four strategies for restoring healthy control. Where it
was extended in [7] by incorporating a temporal delay in the glucose-insulin interaction term.

Ma and Li in [8] illustrated the interaction between glucose and insulin, aiming to assist patients in
reducing pain and achieving optimal hypoglycemic effects. In [9], they developed a simplistic model to
predict the role of vitamin D in the glucose-insulin regulation system. The model in [10] was formulated,
comprising glucose levels, insulin levels, and beta-cell mass.

A realistic model in [11] was developed by incorporating ingested glucose as a new parameter repre-
senting external glucose acquired through food consumption. In [12], a mathematical model of the glucose-
insulin regulation system was presented, incorporating ingested glucose as a new variable. The model
in [13] incorporated three compartments: plasma glucose, plasma insulin, and interstitial insulin, which
represent insulin in non-plasma tissues and are known as the remote insulin compartment.

Lombarte et al. [14] created a mathematical model to investigate glucose and insulin homeostasis in
healthy rats. Although this model has only been used on healthy rats, the ultimate goal is to adapt and
validate it in both in vivo and in silico models for diabetic animals. A new model, presented in [15], was
introduced, which provides a mathematical formulation of the theoretically predicted insulin concentra-
tions, representing insulin secretion from beta-cells after glucose intake. Furthermore, the glucose rate of
appearance is derived from glucose absorption along the gastrointestinal tract, represented by a sequence
of three comparable models. The model in [16] focused on the dynamic modeling of the glucose-insulin
system with pulse injection of insulin analogues and glucosidase inhibitors.

In [17], the model uses a fractional operator to analyze glucose homeostasis, incorporating beta-cells,
insulin, glucose, and growth hormone. It provides a comprehensive understanding of glucose-insulin dy-
namics and offers a framework for diabetes management strategies. Other models that utilize fractional
derivatives for glucose-insulin regulation are presented in [18, 19].

Other studies have analyzed models that incorporate the effect of glucagon on glucose regulation dy-
namics. For example, Uluseker et al. [20] presented a multi-level, closed-loop model of glucose homeosta-
sis, describing the interactions between glucose, hormones, and tissues. They illustrated simulations of
normal glucose regulation and conditions associated with type 2 diabetes.

Recently, in [21], a model was developed to understand the paracrine roles of insulin and glucagon
in glucose-stimulated hormonal secretion by pancreatic alpha- and beta-cells. This model predicted both
transient and steady-state profiles of insulin and glucagon secretion. Moreover, in [22], they analyzed the
effect of alpha-and beta-cell dysfunction on type 2 diabetes through a glucose-insulin-glucagon model using
isoglycemic intravenous glucose infusion (IIGI) data. They found a strong connection between glucagon
suppression and diabetes markers. In [23], they extended a model for type 1 diabetes to integrate glucagon
dynamics explicitly. By comparing simulations with the original model, they established that glucagon
contributes to the safety of the artificial pancreas.

The complex interactions between glucose, insulin, and glucagon are crucial in regulating blood glucose
levels. This study is motivated to capture these interactions and provide a robust analysis of stability
and sensitivity. A comprehensive mathematical framework is developed that incorporates, in addition to
the three main compartments, two compartments: glucose in the stomach and glucose in the intestine, to
account for the release of insulin influenced by incretin hormones in the intestine.

This work is organized as follows. In Section 2, we establish the model and demonstrate its well-
posedness. Section 3 provides a qualitative analysis of the model, which includes an examination of equilib-
rium points along with their local and global stabilities. Additionally, in Section 4, we conduct a numerical
analysis to validate the qualitative findings through numerical experiments. This section also includes a
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sensitivity analysis of the model’s parameters, as well as the sensitivity of the equilibrium point in relation
to these parameters.

2. MODEL STRUCTURE

The model comprises five compartments: glucose quantity in the stomach, S; glucose quantity in the
intestine, N ; plasma glucose concentration, G; insulin concentration, I ; and glucagon concentration, C. The
state variables, S, N, G, I, and C, are functions of the independent variable time, t. The assumptions
describing the dynamics of the model’s interaction between glucose, insulin, and glucagon are as follows.
An initial dose of glucose,D, is administered to the stomach. Then, the glucose within the stomach transfers
to the intestine at a rate of α. An initial release of glucose from the intestine to the plasma occurs at a rate
of β1, followed by a later release of glucose to the plasma at a rate of β2 [24]. When glucose enters the
digestive system, it stimulates the release of incretin hormones, promoting insulin secretion at a rate of σ1.
Also, the discharge of glucose into the plasma triggers the pancreas to secrete insulin into the plasma at a
rate of σ2. Some cells, such as brain cells, uptake glucose independently of insulin at a rate of µ2, while
others depend on insulin for uptake at a rate of µ1. As blood glucose levels decline, in the case of glycemia,
the pancreas activates α cells to secrete glucagon at a rate of σ3. Glucagon stimulates gluconeogenesis in
the liver, releasing glucose into the bloodstream at a rate of P [25].

Glucagon in the blood is associated with lower insulin levels; likewise, high insulin levels reduce
glucagon levels. We assume that the decay rates of insulin due to glucagon concentration and that of
glucagon due to insulin concentration are d3 and d4, respectively. Moreover, the kidneys and liver are re-
sponsible for the primary breakdown of insulin and glucagon [26]; therefore, we consider the clearance
rates of insulin and glucagon to be d1 and d2, respectively.

The following nonlinear system of ordinary differential equations governs the dynamics of the model:

S′ = −αS, S(0) = D,

N ′ = αS − (β1 + β2)N,

G′ = (β1 + β2)N − µ1GI − µ2G+ PC,

I ′ = σ1N + σ2G− d1I − d3C,
C ′ = σ3G− d2C − d4I.

(2.1)

All the parameters in the model are positive. Table 1 briefly summarizes the model’s parameters. Ad-
ditionally, Figure 1 presents a block diagram of the model, providing a schematic representation of the
compartments and their interactions.

FIGURE 1. Flowchart of model (2.1).
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TABLE 1. Description of models’ parameters.

Parameter Description
α Glucose transfer rate from stomach to intestine
β1 Glucose transfer rate from jejunum to plasma
β2 Glucose transfer rate from ileum to plasma
µ1 Insulin-dependent glucose elimination rate
µ2 Insulin-independent glucose elimination rate
P liver-glucose production rate due to glycemia
σ1 Insulin release rate due to incretins hormones in the intestine
σ2 Pancreatic insulin secretion rate
d1 Insulin elimination rate
d3 Decay rate of insulin due to glucagon concentration
σ3 Pancreatic glucagon secretion rate
d2 Glucagon elimination rate
d4 Decay rate of glucagon due to insulin concentration
D Dose of glucose

3. QUALITATIVE ANALYSIS

In this section, the model will be qualitatively examined [27]. Initially, an assessment will be made to
determine the region in which the state variables exhibit positivity and finite values. Subsequently, the
steady-state solutions of model (2.1) will be derived, and their stability will be analyzed. The subsequent
subsections will present the primary findings.

3.1. Positivity and boundedness.

Theorem 3.1. If (S(0), N(0), G(0), I(0), C(0)) ∈ R5
≥0 then the set Ω={(S,N,G, I, C) ∈ R5

≥0 : 0 ≤ S ≤ D, 0 ≤
N ≤ αD

(β1+β2)
, 0 ≤ G + I + C ≤ [G(0) + I(0) + C(0) + (β1 + β2 + σ1) αD

m(β1+β2)
]emz} is positively invariant for

model (2.1), where z ∈ [0, T ], T is any positive number and m = max{σ2 + σ3, P}.

Proof. First, we prove that the state variables are non-negative. Let (S(0), N(0), G(0), I(0), C(0)) ∈ Ω.
Rewrite the first equation in (2.1) as:

S′ + αS = 0. (3.1)

Multiply both sides by exp {
∫ t
0
α du} [28], then we can express (3.1) as:

d

dt

(
S exp {

∫ t

0

α du}
)

= 0. (3.2)

The integration of (3.2) from 0 to t yields,[
S exp {

∫ t

0

α du}
]t
0

= 0,

S(t) exp {
∫ t

0

α du} − S(0) = 0.

Hence,

S(t) = S(0) exp {−
∫ t

0

α du} ≥ 0.
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In a similar fashion, from the second equation in (2.1), we have

N ′ − αS + (β1 + β2)N = 0,

N ′ −
[
α
S

N
− (β1 + β2)

]
N = 0. (3.3)

Multiply (3.3) by exp {−
∫ t
0

[
α S
N − (β1 + β2)

]
du}, we obtain

d

dt

(
N exp {−

∫ t

0

[
α
S

N
− (β1 + β2)

]
du}

)
= 0. (3.4)

Integrating both sides of (3.4) from 0 to t,[
N exp {−

∫ t

0

[
α
S

N
− (β1 + β2)

]
du}

]t
0

= 0,

N(t) exp {−
∫ t

0

[
α
S

N
− (β1 + β2)

]
du} −N(0) = 0.

Hence,

N(t) = N(0) exp{
∫ t

0

[
α
S

N
− (β1 + β2)

]
du} ≥ 0.

In the same way, we can prove that G(t), I(t), and C(t) are non-negative. Thus, all non-negative solutions
initiated in Ω remain non-negative.
Next, we prove the boundedness of the solutions. By integrating both sides of the first equation in (2.1)
from 0 to t, we obtain

lnS(t)− lnS(0) = −αt.

Since S(0) = D, then

S(t) = De−αt ≤ D.

Similarly, the second equation in (2.1) becomes

N ′ ≤ αD − (β1 + β2)N,

N ′ + (β1 + β2)N ≤ αD.

Solving for N(t) [28], we have
d

dt
(e(β1+β2)tN) ≤ αDe(β1+β2)t,

N(t) ≤ αD

β1 + β2
+N(0)e−(β1+β2)t.

Thus,

lim
t→∞

supN(t) ≤ αD

β1 + β2
.

Adding the third, fourth, and fifth equations in (2.1), we have

G′ + I ′ + C ′ = (β1 + β2)N − µ1GI − µ2G+ PC + σ1N + σ2G− d1I − d3C + σ3G− d2C − d4I,

G′ + I ′ + C ′ ≤ (β1 + β2 + σ1)N + (σ2 + σ3)G+ PC.

Let m = max{σ2 + σ3, P}, then

G′ + I ′ + C ′ ≤ (β1 + β2 + σ1)
αD

β1 + β2
+ (σ2 + σ3)G+ PC +mI,

≤ (β1 + β2 + σ1)
αD

β1 + β2
+m(G+ C + I),
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that is,

(G+ I + C)′ −m(G+ I + C) ≤ (β1 + β2 + σ1)
αD

β1 + β2
.

Again, using the integrating factor method [28], we obtain

d

dt
(e−mt(G+ I + C)) ≤ (β1 + β2 + σ1)

αD

β1 + β2
e−mt.

Integrating both sides from 0 to t, we get

G(t) + I(t) + C(t) ≤ [G(0) + I(0) + C(0) + (β1 + β2 + σ1)
αD

m(β1 + β2)
]emz,

where z ∈ [0, T ], and T is any positive number.
Hence, all solutions of model (2.1) are bounded and non-negative. Therefore, Ω is positively invariant.

�

3.2. Steady-state solution. We can explore the steady-state solutions of (2.1), which is referred as the equi-
librium points of the system, by setting the rates of the equations in (2.1) to zero [27], that is,

− αS = 0, (3.5)

αS − (β1 + β2)N = 0, (3.6)

(β1 + β2)N − µ1GI − µ2G+ PC = 0, (3.7)

σ1N + σ2G− d1I − d3C = 0, (3.8)

σ3G− d2C − d4I = 0. (3.9)

From equations (3.5) and (3.6), we obtain the equilibrium values for S and N , that is,

S∗ = 0,

N∗ = 0.
(3.10)

Solving the equations (3.7), (3.8), and (3.9), we obtain the equilibrium values for I, G, and C,

I∗ =
Pσ2
d3µ1

− Pd1
d3µ1

(
σ2d2 − σ3d3
d1d2 − d3d4

)
− µ2

µ1
,

G∗ =

(
d1d2 − d3d4
σ2d2 − σ3d3

)
I∗, (3.11)

C∗ =

(
σ2
d3

(
d1d2 − d3d4
σ2d2 − σ3d3

)
− d1
d3

)
I∗.

For the equilibrium point to be biologically meaningful, it must be non-negative. Hence, we state the
following theorem.

Theorem 3.2. If
Pσ2
d3µ1

>

(
Pd1
d3µ1

(
σ2d2 − σ3d3
d1d2 − d3d4

)
+
µ2

µ1

)
, σ2d2 > σ3d3, d1d2 > d3d4, and σ2(d1d2 − d3d4) >

d1(σ2d2−σ3d3), then model (2.1) has a unique equilibrium point, E = (0, 0, G∗, I∗, C∗), where G∗, I∗, and C∗ are
given in (3.11).

3.3. Stability of equilibrium. The local stability of the steady-state solution is investigated using the lin-
earization method, and the global stability is examined using Lyapunov functions [27].

Theorem 3.3. If the equilibrium point E = (0, 0, G∗, I∗, C∗) exists, it is locally asymptotically stable when µ2(d1 +

d2) ≥ Pσ3, and (µ2d1d2 + µ1σ2d2G
∗ + Pσ2d4) > σ3(µ1d3G

∗ + Pd1).
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Proof. The Jacobian matrix of model (2.1) at E is given by

J(E) =


−α 0 0 0 0

α −(β1 + β2) 0 0 0

0 (β1 + β2) −µ1I
∗ − µ2 −µ1G

∗ P

0 σ1 σ2 −d1 −d3
0 0 σ3 −d4 −d2

 .

Solving the characteristic equation |J(E) − λI| = 0, we get the eigenvalues, λ1 = −α, λ2 = −(β1 + β2),
which are both negative, however λ3,4,5 satisfy the following equation:

a3λ
3 + a2λ

2 + a1λ+ a0 = 0,

where,

a3 = 1,

a2 = µ1I
∗ + µ2 + d1 + d2,

a1 = µ1d1I
∗ + µ1d2I

∗ + µ1G
∗σ2 − Pσ3 + µ2d1 + µ2d2 + d1d2 − d3d4,

a0 = µ1d1d2I
∗ − µ1I

∗d3d4 − µ1G
∗σ3d3 + µ1σ2d2G

∗ − Pσ3d1 + Pσ2d4 + µ2d1d2 − µ2d3d4.

In order to find the signs of λ3,4,5, we use Descartes’ rule of signs [29], λ3,4,5 are negative if a0,1,2,3 > 0.
Clearly, a2 > 0, and a3 > 0. To get a1 > 0 we must have d1d2 > d3d4, and µ2(d1 + d2) ≥ Pσ3, and to
get a0 > 0 we must have d1d2 > d3d4, and (µ2d1d2 + µ1σ2d2G

∗ + Pσ2d4) > σ3(µ1d3G
∗ + Pd1). Hence,

the equilibrium point, E is locally asymptotically stable if µ2(d1 + d2) ≥ Pσ3, and (µ2d1d2 + µ1σ2d2G
∗ +

Pσ2d4) > σ3(µ1d3G
∗ + Pd1). �

Theorem 3.4. The equilibrium point E = (0, 0, G∗, I∗, C∗) is globally asymptotically stable if 4d1d2µ2 >

6(d1Pσ3 + µ2d3d4).

Proof. Define the Lyapunov function as

L(S,N,G, I, C) = A1S +A2N +
A3

2
(G−G∗)2 +

A4

2
(I − I∗)2 +

A5

2
(C − C∗)2, (3.12)

where A1, A2, A3, A4 and A5 are positive defined as follows

A1 = A2 =
1

(β1 + β2)

(
3(β1 + β2)2

4µ2
A3 +

3σ2
1

4d1

)
, (3.13)

A3 =
−b1 +

√
b21 − 4a1c1

2a1
, (3.14)

A4 =1, (3.15)

A5 =
−b2 +

√
b22 − 4a2c2

2a2
, (3.16)

and

a1 =µ2
1G
∗2, b1 = −(2µ1σ2G

∗ +
4

9
µ2d1), c1 = σ2

2 , (3.17)

a2 =3d1σ
2
3 + 3A3µ2d

2
4, (3.18)

b2 =(−4d1d2µ2 + 6(d1Pσ3 + µ2d3d4))A3, (3.19)

c2 =3A2
3d1P

2 + 3A3µ2d
2
3. (3.20)

It is easy to show that L is a positive definite function. Evaluating the derivative of L, we obtain

L′ = A1S
′ +A2N

′ +A3(G−G∗)G′ +A4(I − I∗)I ′ +A5(C − C∗)C ′.
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Along the solution of model (2.1) and employing equations (3.7)-(3.9) at the equilibrium E, we have

L′ =−A1αS +A2αS −A2(β1 + β2)N +A3(G−G∗)[(β1 + β2)N − µ1GI − µ2G+ PC

+ µ1G
∗I∗ + µ2G

∗ − PC∗] +A4(I − I∗)[σ1N + σ2G− d1I − d3C − σ2G∗ + d1I
∗ + d3C

∗]

+A5(C − C∗)[σ3G− d2C − d4I − σ3G∗ + d2C
∗ + d4I

∗].

Rearranging the terms and noting that A1 = A2 and A4 = 1, we get

L′ =−A2(β1 + β2)N +A3(β1 + β2)(G−G∗)N + σ1(I − I∗)N −A3µ1(G−G∗)(GI −G∗I∗)

−A3µ2(G−G∗)2 +A3P (G−G∗)(C − C∗) + σ2(I − I∗)(G−G∗)− d1(I − I∗)2

− d3(I − I∗)(C − C∗) +A5σ3(C − C∗)(G−G∗)−A5d2(C − C∗)2 −A5d4(C − C∗)(I − I∗).

Rewriting GI −G∗I∗ = GI −G∗I +G∗I −G∗I∗ = (G−G∗)I + (I − I∗)G∗ and collecting terms, we obtain

L′ =−A2(β1 + β2)N +A3(β1 + β2)(G−G∗)N + σ1(I − I∗)N −A3µ1(G−G∗)2I

− (A3µ1G
∗ − σ2)(G−G∗)(I − I∗)−A3µ2(G−G∗)2 + (A3P +A5σ3)(G−G∗)(C − C∗)

− (d3 +A5d4)(C − C∗)(I − I∗)− d1(I − I∗)2 −A5d2(C − C∗)2.

Equivalently,

L′ =−A2(β1 + β2)N +A3(β1 + β2)(G−G∗)N + σ1(I − I∗)N −A3µ1(G−G∗)2I

− (A3µ1G
∗ − σ2)(G−G∗)(I − I∗)− A3µ2

3
(G−G∗)2 − A3µ2

3
(G−G∗)2 − A3µ2

3
(G−G∗)2

+ (A3P +A5σ3)(G−G∗)(C − C∗)− (d3 +A5d4)(C − C∗)(I − I∗)− d1
3

(I − I∗)2

− d1
3

(I − I∗)2 − d1
3

(I − I∗)2 −A5d2(C − C∗)2.

Next, we complete the squares in the terms,

L′ =N

{
−A2(β1 + β2)− A3µ2

3

[
(G−G∗)2 − 3

µ2
(β1 + β2)(G−G∗) + (

3

2µ2
(β1 + β2))2

− (
3

2µ2
(β1 + β2))2

]
− d1

3

[
(I − I∗)2 − 3σ1

d1
(I − I∗) + (

3σ1
2d1

)2 − (
3σ1
2d1

)2
]}
−A3µ1(G−G∗)2I

− A3µ2

3

[
(G−G∗)2 +

3(A3µ1G
∗ − σ2)

A3µ2
(G−G∗)(I − I∗) +

(
3(A3µ1G

∗ − σ2)

2A3µ2

)2

(I − I∗)2

−
(

3(A3µ1G
∗ − σ2)

2A3µ2

)2

(I − I∗)2
]
− d1

3
(I − I∗)2 − A3µ2

3

[
(G−G∗)2

− 3(A3P +A5σ3)

A3µ2
(G−G∗)(C − C∗) +

(
3(A3P +A5σ3)

2A3µ2

)2

(C − C∗)2

−
(

3(A3P +A5σ3)

2A3µ2

)2

(C − C∗)2
]
− d1

3

[
(I − I∗)2 +

3(d3 +A5d4)

d1
(I − I∗)(C − C∗)

+

(
3(d3 +A5d4)

2d1

)2

(C − C∗)2 −
(

3(d3 +A5d4)

2d1

)2

(C − C∗)2
]
−A5d2(C − C∗)2.

Collecting the terms again, we get

L′ =N

{
−A2(β1 + β2)− A3µ2

3

[
(G−G∗)− 3

2µ2
(β1 + β2)2

]2
+

3A3

4µ2
(β1 + β2)2

− d1
3

[
(I − I∗)− 3σ1

2d1

]2
+

3σ2
1

4d1

}
−A3µ1(G−G∗)2I
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− A3µ2

3

[
(G−G∗) +

3(A3µ1G
∗ − σ2)

2A3µ2
(I − I∗)

]2
+

[
3(A3µ1G

∗ − σ2)2

4A3µ2
− d1

3

]
(I − I∗)2

− A3µ2

3

[
(G−G∗)− 3(A3P +A5σ3)

2A3µ2
(C − C∗)

]2
− d1

3

[
(I − I∗) +

3(d3 +A5d4)

2d1
(C − C∗)

]2
+

[
3(A3P +A5σ3)2

4A3µ2
+

3(d3 +A5d4)2

4d1
−A5d2

]
(C − C∗)2.

For L′ to be negative, we must show that

−A2(β1 + β2) +
3A3

4µ2
(β1 + β2)2 +

3σ2
1

4d1
=0, (3.21)

3(A3µ1G
∗ − σ2)2

4A3µ2
− d1

3
=0, (3.22)

3(A3P +A5σ3)2

4A3µ2
+

3(d3 +A5d4)2

4d1
−A5d2 =0. (3.23)

Rearranging equation (3.22), we obtain

µ2
1G
∗2A2

3 − (2µ1σ2G
∗ +

4

9
µ2d1)A3 + σ2

2 = 0,

Solving for A3, we have

A3 =
−b1 +

√
b21 − 4a1c1

2a1
,

a1 = µ2
1G
∗2, b1 =− (2µ1σ2G

∗ +
4

9
µ2d1), c1 = σ2

2 .

Similarly, equation (3.23) becomes

(3d1σ
2
3 + 3A3µ2d

2
4)A2

5 −A3(4d1d2µ2 − 6d1Pσ3 − 6µ2d3d4)A5 + 3A2
3d1P

2 + 3A3µ2d
2
3 = 0.

Solving for A5, we get

A5 =
−b2 +

√
b22 − 4a2c2

2a2
,

a2 =3d1σ
2
3 + 3A3µ2d

2
4,

b2 =(−4d1d2µ2 + 6(d1Pσ3 + µ2d3d4))A3,

c2 =3A2
3d1P

2 + 3A3µ2d
2
3.

Therefore, from (3.21), we find

A2 =
1

(β1 + β2)

(
3(β1 + β2)2

4µ2
A3 +

3σ2
1

4d1

)
.

Clearly, A3 and A2 are positive. Also, A5 is positive if 4d1d2µ2 > 6(d1Pσ3 + µ2d3d4). The obtained values
of A2, A3 and A5 are the same as in (3.13)-(3.16). Thus,

L′ =− A3µ2

3

[
(G−G∗)− 3

2µ2
(β1 + β2)2

]2
N − d1

3

[
(I − I∗)− 3σ1

2d1

]2
N −A3µ1(G−G∗)2I

− A3µ2

3

[
(G−G∗) +

3(A3µ1G
∗ − σ2)

2A3µ2
(I − I∗)

]2
− A3µ2

3

[
(G−G∗)− 3(A3P +A5σ3)

2A3µ2
(C − C∗)

]2
− d1

3

[
(I − I∗) +

3(d3 +A5d4)

2d1
(C − C∗)

]2
.



Pan-Amer. J. Math. 5 (2026), 1 10

Hence, if 4d1d2µ2 > 6(d1Pσ3 + µ2d3d4) then L′ is negative, therefore, the equilibrium point E is globally
asymptotically stable. �

The theoretical analysis of stability, particularly the establishment of global asymptotic stability, serves
as a foundational step in validating the model’s predictions. By demonstrating that the equilibrium point is
both locally and globally stable, the study ensures that the system’s behavior aligns with biological expec-
tations of maintaining glucose homeostasis over time. This theoretical insight is further reinforced through
numerical simulations, which consistently show that the model’s solutions converge to the stable equilib-
rium point under various initial conditions.

4. NUMERICAL ANALYSIS

This section presents the numerical results of model (2.1) obtained by solving the equations through the
MATLAB solver ode45. Various experimental simulations of the model are depicted. Moreover, we analyze
parameter sensitivity to attain a comprehensive understanding of the essential factors that may contribute
to the development of the most effective therapeutic strategies.

4.1. Numerical experiments. We solve model (2.1) numerically with the following different initial values:
(a) G(0) = 0.7, I(0) = 0.5, C(0) = 0.3, N (0)=0, S(0) = D;
(b) G(0) = 0.5, I(0) = 0.5, C(0) = 0.5, N (0)=0, S(0) = D;
(c) G(0) = 0.3, I(0) = 0.5, C(0) = 0.7, N (0)=0, S(0) = D.
The parameter values are displayed in Table 2. They are estimated to satisfy the existence and stability
conditions of the equilibrium derived from the qualitative analysis.

TABLE 2. The model parameter values.

Parameter Value Unit
S - mM

N - mM

G - mM

I - mM

G - mM

α 5× 10−2 min−1

β1 4× 10−2 min−1

β2 2× 10−2 min−1

µ1 7× 10−2 min−1mM−1

µ2 3× 10−2 min−1

P 4× 10−2 min−1

σ1 2× 10−2 min−1

σ2 2× 10−2 min−1

d1 2× 10−2 min−1

d3 5× 10−3 min−1

σ3 3× 10−2 min−1

d2 2× 10−2 min−1

d4 5× 10−3 min−1

D 5 mM
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FIGURE 2. Time variations of S,N,G, I, and C with parameter values from Table 2 and
initial conditions (a)-(c).

We observe in Figure 2 that, for different initial conditions, the numerical solutions eventually converge
to the equilibrium pointE. In particular, the equilibrium points in the above experiments are the following:
Ea = (0, 0, 0.4851, 0.3220, 0.6394), Eb = (0, 0, 0.4966, 0.3308, 0.6605), and Ec = (0, 0, 0.4902, 0.3259, 0.6487)

where they agree with the qualitative equilibrium point E = (0, 0, 0.5, 0.3333, 0.6667). This means that the
equilibrium point is stable, which is consistent with the qualitative results. The agreement between the ana-
lytical stability results and the numerical experiments underscores the model’s reliability and robustness in
capturing the dynamics of glucose, insulin, and glucagon interactions. This bridging of theory and simula-
tion not only validates the model’s predictions but also underscores its potential as a tool for understanding
long-term physiological behavior and designing effective therapeutic strategies.

4.2. Parameters analysis. We investigate how the parameters in model (2.1) relate to the variable G, rep-
resenting plasma glucose concentration, using numerical methods. The findings are illustrated in Figure 3,
which demonstrates significant implications for understanding the biological roles of insulin and glucagon
in glucose regulation.

Insulin plays a crucial role in regulating plasma glucose levels through multiple mechanisms. The re-
lease of insulin is influenced by incretin hormones in the intestine (σ1) and the pancreatic insulin secretion
rate (σ2), both of which decrease plasma glucose concentration by facilitating glucose uptake. Insulin-
dependent (µ1) and insulin-independent (µ2) glucose elimination rates further contribute to lowering glu-
cose levels. Conversely, insulin increases plasma glucose concentration by enhancing the insulin elimi-
nation rate (d1) and promoting insulin decay due to glucagon’s presence (d3). These dynamics highlight
insulin’s dual role in glucose regulation, balancing glucose uptake and elimination.
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Glucagon, on the other hand, acts as a counter-regulatory hormone to insulin, promoting an increase in
plasma glucose concentration. It achieves this by stimulating liver glucose production (P ) and pancreatic
glucagon secretion (σ3), which are critical during hypoglycemic conditions. However, glucagon also de-
creases plasma glucose concentration through its elimination rate (d2) and decay rate due to insulin (d4).
This interplay between glucagon and insulin underscores the complexity of glucose homeostasis, where
both hormones work in tandem to maintain stable glucose levels.

Additionally, glucose concentration is directly influenced by the glucose transfer rate from the stomach
to the intestine (α). The comparison between the glucose transfer rate from the jejunum to plasma (β1) and
the glucose transfer rate from the ileum to plasma (β2) reveals that higher β1 values lead to faster plasma
glucose elevation. In contrast, higher β2 values result in slower glucose absorption. This insight emphasizes
the importance of understanding glucose absorption dynamics for maintaining healthy glucose levels.

The biological interpretation of these parameter dynamics provides a comprehensive understanding of
how insulin and glucagon regulate glucose levels in the human body. These findings could inform thera-
peutic strategies aimed at optimizing glucose regulation in individuals with metabolic disorders.
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FIGURE 3. The relationship between G and the parameters in model (2.1).
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4.3. Sensitivity analysis. We seek to analyze the sensitivity of G∗ to the parameters in model (2.1). To
achieve this goal, we are utilizing both analytical and numerical methods. In the analytical approach, we
investigate the sensitivity of equilibrium values by evaluating the changes that occur in the equilibrium
value when a parameter is altered. For instance, we are calculating ∂G∗

∂δ , where δ represents any parameter
in model (2.1). In the numerical approach, all parameters except one are held constant, and the changes in
the equilibrium value with respect to the variation of this parameter are plotted.

Our analysis aims to provide an in-depth understanding of how variations in the parameters impact the
equilibrium glucose level.

We start the sensitivity analysis with the analytical approach. The changes of the equilibrium value G∗

with respect to the parameters in the model are demonstrated below.

∂G∗

∂µ1
=

Pd1
d3µ2

1

+ (
µ2

µ2
1

− Pσ2
d3µ2

1

)(
d1d2 − d3d3
σ2d2 − σ3d3

) < 0,

∂G∗

∂µ2
= − 1

µ1
(
d1d2 − d3d3
σ2d2 − σ3d3

) < 0,

∂G∗

∂P
=

σ2
d3µ1

(
d1d2 − d3d3
σ2d2 − σ3d3

)− d1
d3µ1

> 0,

∂G∗

∂σ2
=
−d2(d1d2 − d3d4)

(σ2d2 − σ3d3)2
I∗ + (

d1d2 − d3d4
σ2d2 − σ3d3

)
∂I∗

∂σ2
< 0, (4.1)

∂G∗

∂σ3
= (

d3(d1d2 − d3d4)

(σ2d2 − σ3d3)2
)I∗ + (

d1d2 − d3d4
σ2d2 − σ3d3

)
∂I∗

∂σ3
> 0,

∂G∗

∂d1
=

d2
(σ2d2 − σ3d3)

I∗ + (
d1d2 − d3d4
σ2d2 − σ3d3

)
∂I∗

∂d1
> 0,

∂G∗

∂d4
=

−d3
(σ2d2 − σ3d3)

I∗ + (
d1d2 − d3d4
σ2d2 − σ3d3

)
∂I∗

∂d4
< 0,

∂G∗

∂d3
=
d2(σ3d1 − σ2d4)

(σ2d2 − σ3d3)2
I∗ + (

d1d2 − d3d4
σ2d2 − σ3d3

)
∂I∗

∂d3
,

∂G∗

∂d2
=
−d3(σ3d1 − σ2d4)

(σ2d2 − σ3d3)2
I∗ + (

d1d2 − d3d4
σ2d2 − σ3d3

)
∂I∗

∂d2
.

Noting that,

∂I∗

∂σ2
=

P

d3µ1
(1− d1d2

d1d2 − d3d4
) < 0,

∂I∗

∂σ3
=

Pd1
µ1(d1d2 − d3d4)

> 0, (4.2)

∂I∗

∂d1
=
Pd4
µ1

[
σ2d2 − σ3d3

(d1d2 − d3d4)2

]
> 0,

∂I∗

∂d4
=
−Pd1
µ1

[
σ2d2 − σ3d3

(d1d2 − d3d4)2

]
< 0,

∂I∗

∂d3
=
Pd4
µ1

[
σ3d1 − σ2d4

(d1d2 − d3d4)2

]
,

∂I∗

∂d2
=
−Pd1
µ1

[
σ3d1 − σ2d4

(d1d2 − d3d4)2

]
.

Equation (4.1) demonstrates that when either the insulin-dependent (µ1) or insulin-independent (µ2) glu-
cose elimination rate increases, or when the pancreatic insulin secretion rate (σ2) increases, the glucose
equilibrium levels (G∗) decrease. Conversely, when the insulin elimination rate (d1) increases, G∗ increases.
This emphasizes insulin’s crucial role in glucose regulation, highlighting its function in facilitating glucose
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uptake and maintaining lower plasma glucose levels. It also suggests that faster insulin clearance can result
in higher plasma glucose levels.
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FIGURE 4. The sensitivity of G∗ to the most effective parameters for model (2.1).

Moreover, if either the liver-glucose production rate (P ) or the pancreatic glucagon secretion rate (σ3)
increases, G∗ also increases. This reflects glucagon’s role in elevating plasma glucose levels during hypo-
glycemia. However, if the decay rate of glucagon due to the presence of insulin (d4) increases,G∗ decreases.
This demonstrates insulin’s ability to suppress glucagon activity and lower glucose levels.
Additionally, the increase in the decay rate of insulin due to the presence of glucagon (d3) has a dual im-
pact on G∗. If the ratio of the pancreatic glucagon secretion rate (σ3) to the pancreatic insulin secretion rate
(σ2) is higher than the ratio of the decay rate of glucagon due to the presence of insulin (d4) to the insulin
elimination rate (d1), then G∗ increases. Alternatively, if the ratios are the opposite, G∗ decreases.

Meanwhile, suppose the ratio of the insulin elimination rate (d1) to the decay rate of glucagon due to the
presence of insulin (d4) is higher than the ratio of the pancreatic insulin secretion rate (σ2) to the pancreatic
glucagon secretion rate (σ3). In that case, the increase in the glucagon elimination rate (d2) leads to a
decrease in G∗. On the other hand, if the ratios are reversed, G∗ increases. These findings highlight the
intricate interplay between glucose, insulin, and glucagon, demonstrating how specific parameters affect
glucose equilibrium levels.

Next, we investigate the sensitivity of the model parameters through numerical analysis. Figure 4 depicts
how the variation in model parameters can impact the value of G∗. Notably, the numerical results agree
with the analytical results, highlighting the accuracy and reliability of the model.
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The sensitivity analysis underlines insulin’s pivotal role in regulating glucose levels. Increased insulin
secretion or enhanced glucose elimination rates consistently lower G∗, demonstrating insulin’s effective-
ness in maintaining glucose homeostasis. Conversely, glucagon plays a critical role in elevating glucose
levels during hypoglycemia, with its secretion and liver-glucose production rates significantly impacting
G∗. The dual effects of insulin and glucagon decay rates further emphasize the complexity of their interac-
tions. By identifying the most influential parameters, this analysis guides the optimization of therapeutic
strategies that manage diabetes and other metabolic disorders.

5. DISCUSSION AND CONCLUSIONS

The regulation of blood glucose levels is a critical physiological process governed by the interplay of sev-
eral hormones produced by the pancreas. Insulin facilitates glucose uptake into cells for energy production,
while glucagon raises blood glucose levels by converting glycogen into glucose in the liver. The delicate
balance between these hormones ensures that cells receive sufficient energy while preventing prolonged
hyperglycemia. Disruptions in this balance can lead to metabolic disorders such as diabetes, which pose
significant health and economic challenges globally.

This study aimed to develop a mathematical model to investigate the regulation of glucose levels in the
human body and their interactions with insulin and glucagon. The model includes the effect of incretin
hormones in the intestine on insulin release. By formulating a nonlinear system of ordinary differential
equations, the study provided a robust framework for understanding the dynamics of glucose regulation.

Through qualitative analysis, the model demonstrated that the state variables remain positive and
bounded, ensuring the system’s biological relevance. A unique steady-state solution was derived, and its
stability was analyzed. The results revealed that the equilibrium point exists under specific conditions and
is both locally and globally asymptotically stable. Numerical simulations further validated these findings,
showing that the solutions converge to the stable equilibrium point across various initial conditions.

Sensitivity analysis provided more profound insights into the intricate relationship between glucose,
insulin, and glucagon. Analytical and numerical approaches revealed how variations in model parame-
ters impact the equilibrium glucose level (G∗). For instance, an increase in insulin-dependent or insulin-
independent glucose elimination rates, as well as pancreatic insulin secretion rates, decreases G∗. Con-
versely, an increase in liver-glucose production rates or pancreatic glucagon secretion rates raises G∗. The
analysis also highlighted the dual impact of insulin’s decay rate due to the presence of glucagon, which
can either increase or decrease G∗ depending on specific parameter ratios. These results underscore the
complexity of glucose regulation and the critical roles of insulin and glucagon in maintaining homeostasis.

The findings of this study closely aligned with established biological behavior and clinical observa-
tions. For instance, the model demonstrated how insulin secretion decreases plasma glucose concentration
through insulin-dependent and insulin-independent glucose elimination rates, which is consistent with
the physiological role of insulin in promoting glucose uptake by cells. Similarly, the model highlighted
glucagon’s role in increasing plasma glucose concentration by stimulating liver glucose production, a well-
documented biological process during hypoglycemia. The sensitivity analysis further emphasized the crit-
ical balance between insulin and glucagon, showing how changes in their secretion or elimination rates
can significantly impact glucose equilibrium levels. These results align with clinical observations, where
disruptions in insulin or glucagon dynamics are associated with conditions such as type 2 diabetes mellitus
and hypoglycemia. By providing a mathematical framework that captures these interactions, the model of-
fers valuable insights into the mechanisms underlying glucose regulation and potential therapeutic targets.

The study uniquely combined equilibrium stability analysis with sensitivity analysis to investigate the
impact of key parameters on glucose equilibrium levels. This dual focus enabled a deeper exploration of
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the mechanisms underlying glucose homeostasis, highlighting the intricate interplay between insulin and
glucagon.

While the model offers valuable insights, it is limited to the interactions between glucose, insulin, and
glucagon, excluding other hormones such as somatostatin and amylin, as well as external factors like stress,
physical activity, and diet, which also influence glucose homeostasis.

In conclusion, this study provided a comprehensive mathematical framework for understanding the
complex dynamics of glucose regulation in the human body. The findings could serve as a foundation for
developing more effective treatments for diabetes and other metabolic disorders.

Future research may expand the model to include additional hormones and external factors. Addition-
ally, exploring the discrete-time counterpart of the model would enable the examination of its dynamical
behavior in scenarios where data are collected at discrete intervals, such as in clinical or experimental set-
tings. Numerical analysis of the discrete-time model could reveal new patterns and behaviors, further
enhancing the understanding of glucose regulation and its applications in therapeutic strategies.
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