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ON CERTAIN TYPES OF NEUTROSOPHIC FUZZY GRAPHS

ALIAS B. KHALAF∗ AND PRITHIVIRAJAN PADMA

ABSTRACT. In this paper, we introduce some types of NF graphs and operations. Also we define the partial NF
subgraph, spanning NF subgraph, strong degree of the vertex, total strong degree of the vertex and its properties
are included.

1. INTRODUCTION

The notion of neutrosophic sets (NSs) was proposed by Smarandache [48] as a generalization of the
fuzzy sets [54], intuitionistic fuzzy sets [14], interval valued fuzzy set [49] and interval-valued intuitionistic
fuzzy sets [15] theories. The neutrosophic set is a powerful mathematical tool for dealing with incom-
plete, indeterminate and inconsistent information in real world. The neutrosophic sets are characterized
by a truth-membership function (t), an indeterminacy-membership function (i) and a falsity- membership
function (f) independently, which are within the real standard or nonstandard unit interval ]−0, 1+[. In
order to conveniently use NS in real life applications, Wang et al. [50] introduced the concept of the single-
valued neutrosophic set (SVNS), as a subclass of the neutrosophic sets. The same authors [51] introduced
the concept of the interval valued neutrosophic set (IVNS), which is more precise and flexible than the sin-
gle valued neutrosophic set. The IVNS is a generalization of the single valued neutrosophic set, in which
the three membership functions are independent and their value belong to the unit interval [0, 1]. Graph
theory has now become a major branch of applied mathematics and it is generally regarded as a branch
of combinatorics. Graph is a widely used tool for solving combinatorial problems in different areas such
as geometry, algebra, number theory, topology, optimization and computer science. If one has uncertainty
regarding either the set of vertices or edges, or both, the model becomes a fuzzy graph. The extension of
fuzzy graph [16, 29, 31] theory have been developed by several researchers, for instance vague graphs [17],
considering the vertex sets and edge sets as vague sets; intuitionistic fuzzy graphs [2, 30, 34], considering
the vertex sets and edge sets as intuitionistic fuzzy sets; interval valued fuzzy graphs [3, 4, 10, 11], con-
sidering the vertex sets and edge sets as interval valued fuzzy sets; interval valued intuitionistic fuzzy
graphs [27], considering the vertex sets and edge sets as interval valued intuitionistic fuzzy sets; bipo-
lar fuzzy graphs [5, 6, 8, 9], considering the vertex sets and edge sets as bipolar fuzzy sets; m-polar fuzzy
graphs [7], considering the vertex sets and edge sets as m-polar fuzzy sets. But, if the relations between
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nodes (or vertices) in problems are indeterminate, the fuzzy graphs and their extensions fail. For this pur-
pose, Smarandache [26, 44, 45, 47], defined four main categories of neutrosophic graphs; two are based on
literal indeterminacy (I), called: I-edge neutrosophic graph and I-vertex neutrosophic graph, deeply stud-
ied and gaining popularity among the researchers due to their applications via real world problems [26,28],
the two others are based on (t, i, f) components, called: (t, i, f)-edge neutrosophic graph and (t, i, f)-vertex
neutrosophic graph, concepts not developed at all by now. Broumi et al. [19] introduced a third neutro-
sophic graph model, which allows the attachment of truth-membership (t), indeterminacy-membership (i)
and falsity-membership degrees (f) both to vertices and edges, and investigated some of their properties.
The third neutrosophic graph model is called the single valued neutrosophic graph (SVNG for short). The
single valued neutrosophic graph is a generalization of fuzzy graph and intuitionistic fuzzy graph. Also,
the same authors [18] introduced neighborhood degree of a vertex and closed neighborhood degree of a
vertex in single valued neutrosophic graph as a generalization of neighborhood degree of a vertex and
closed neighborhood degree of a vertex in fuzzy graph and intuitionistic fuzzy graph. Recently, Broumi
et al. [22, 24, 25] introduced the concept of interval valued neutrosophic graph as a generalization of fuzzy
graph, intuitionistic fuzzy graph and single valued neutrosophic graph and discussed some of their prop-
erties with proof and examples. Shannon and Atanassov [43] presented the concept of relationship between
IFS. Then, they have introduced the concept of intuitionistic fuzzy graphs and presented many theorems
in [43]. Parvathi et al. [35–37] proposed some operations between two intuitionistic fuzzy graphs. In [38]
Rashmanlou et al. proposed many products operations such as lexicographic, direct product, strong prod-
uct, and semi-strong product on intuitionistic fuzzy graphs. They have described the cartesian production,
join, composition and union on intuitionistic fuzzy graphs in their paper. For further study on intuitionistic
fuzzy graphs, please refer to [4,38,39,42]. Smarandache [44] has introduced the n-SuperHyperGraph, with
super-vertices that is the most general form of graph as today. Akram et al. [5–7] have introduced the idea
of pythagorean fuzzy graph. They have described the several applications of pythagorean fuzzy graph in
their paper. Neutrosophic graph [21] is used to model many real-world problem which consists of incon-
sistent information. Recently, many scientists have researched on graph in neutrosophic environment, for
instance, Yang et al. [53], Akram [12, 13], Ye [53], Naz et al. [29] and Broumi [18]. Throughout the paper we
denote Neutrosophic fuzzy graph by NF-graph. In this paper, we introduce some types of NF graphs and
operations. Also we define the partial NF subgraph, spanning NF subgraph, strong degree of the vertex,
total strong degree of the vertex, neutrosophic sum and its properties are included.

2. PRELIMINARIES

In this section, we mainly recall some notions related to neutrosophic sets, single valued neutrosophic
sets, single valued neutrosophic graphs, relevant to the present article. See [48, 50] for further details and
background.

Definition 2.1. [48] Let X be a space of points (objects) with generic elements in X denoted by x; then,
the neutrosophic set A (in short NS A) is an object having the form A = {[x : TA(x), IA(x), FA(x)], x ∈ X}
where the functions TA : V → [0, 1], IA : V → [0, 1], FA : V → [0, 1] define respectively a truth membership
function, an indeterminacy membership function, a falsity membership function of the element x ∈ X to
the set A with the condition:

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

The functions TA(x) , IA(x) and FA(x) are real standard or nonstandard subsets of ]−0, 1+[.

Since it is difficult to apply NSs to practical problems, Wang et al. [50] introduced the concept of SVNS,
which is an instance of a NS, and can be used in real scientific and engineering applications.
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Definition 2.2. [50] Let X be a non-empty set. The neutrosophic set A (NS set) is written as A = {[x :

TA(x), IA(x), FA(x)], x ∈ X} and the functions TA : V → [0, 1], IA : V → [0, 1], FA : V → [0, 1] denotes the
degree of truth membership , the degree of indeterminacy membership , the degree of falsity membership
of elements of X respectively and for all x ∈ X we have

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3

Definition 2.3. [19] A single valued neutrosophic graph (SVN-graph) with underlying set V is defined to
be a pair G = (A,B), where :

(1) The functions TA : V → [0, 1], IA : V → [0, 1] and FA : V → [0, 1] denote the degree of truth-
membership, degree of indeterminacy-membership and falsity-membership of the element vi ∈ V
respectively, and 0 ≤ TA(vi) + IA(vi) + FA(vi) ≤ 3, for all vi ∈ V .

(2) The functions TB : E ⊆ V × V → [0, 1], IB : E ⊆ V × V → [0, 1] and FB : E ⊆ V × V → [0, 1] are
defined by

TB(vi, vj) ≤ min[TA(vi), TA(vj)],

IB(vi, vj) ≥ max[IA(viIA(vj)],

FB(vi, vj) ≥ max[FA(vi), FA(vj)],

denoting the degree of truth-membership, indeterminacy-membership and falsity-membership of
the edge (vi, vj) ∈ E respectively, where :

0 ≤ TB(vi, vj) + IB(vi, vj) + FB(vi, vj) ≤ 3,

for all (vi, vj) ∈ E (i, j = 1, 2, . . . , n).

We call A the single valued neutrosophic vertex set of V , and B the single valued neutrosophic edge set of
E.

Definition 2.4. [26] Let G = (V,E) be a graph where V , E are the set of its vertices and edges respectively.
The fuzzy graph is a pair of functions FG = (σ, µ) where σ is a fuzzy subset of a non empty set V and µ is a
symmetric fuzzy relation on σ . i.e σ : V → [0, 1] and µ : V × V → [0, 1] such that µ(u, v) ≤ µ(u) ∧ µ(v) for
all u, v ∈ V where (u, v) denotes the edge between u and v and µ(u) ∧ µ(v) denotes the minimum of µ(u)

and µ(v). σ is called the fuzzy vertex set of V and µ is called the fuzzy edge set of E.

Definition 2.5. [47] If X is any crisp set, and A, B are two neutrosophic sets. we say that A =N B if
TA(x) = TB(x), IA(x) = IB(x), FA(x) = FB(x) for all x ∈ X and A ≤N B if TA(x) ≤ TB(x), IA(x) ≤
IB(x), FA(x) ≤ FB(x) for all x ∈ X

3. SOME TYPES OF NF -GRAPHS AND OPERATIONS

Definition 3.1. Consider the graphG = (V,E) where V andE is the set of its vertex and edges respectively.
The neutrosophic fuzzy graph (NF -graph) NFG = (A,B) where A = [TA, IA, FA] and the functions TA :

V → [0, 1], IA : V → [0, 1], FA : V → [0, 1] denotes the degree of truth membership vertex, the degree of
indeterminacy membership vertex, the degree of falsity membership vertex respectively and for all v ∈ V
we have

0 ≤ TA(v) + IA(v) + FA(v) ≤ 3

and B = [TB , IB , FB ] where the functions TB : V × V → [0, 1], IB : V × V → [0, 1] and FB : V × V → [0, 1]

defined by
TB(v, w) ≤ TA(v)× TA(w),

IB(v, w) ≤ IA(v)× IA(w),
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FB(v, w) ≤ FA(v)× FA(w),

and
0 ≤ TB(v, w) + IB(v, w) + FB(v, w) ≤ 3,

for all v, w ∈ V . A = [TA, IA, FA] and B = [TB , IB , FB ] are called the vertex set and the edge set of
NFG = (A,B) respectively.

Definition 3.2. A NF -graph NFG = (A,B) is called complete if

TB(v, w) = TA(v)× TA(w),

IB(v, w) = IA(v)× IA(w),

FB(v, w) = FA(v)× FA(w)

for all v, w ∈ V .

Definition 3.3. The complement of a NF -graph NFG = (A,B) is the NF -graph NFG = (A,B) if
V = V , where V , V are the vertex set of G and its complement G respectively,
TA(v) = TA(v), IA(v) = IA(v), FA(v) = FA(v).

TB(v, w) = TA(v)× TA(w)− TB(v, w),

IB(v, w) = IA(v)× IA(w)− IB(v, w),

FB(v, w) = FA(v)× FA(w)− FB(v, w),

for all v, w ∈ V .

Example 3.4. Consider the following graph G = (V,E) where V = {v1, v2, v3} and
E = {(v1, v2), (v1, v3), (v3, v2)}. The NF -graph NFG = (A,B) is defined as in the following diagram

v1

(0.4; 0.8; 0.2)

v2

(0.9; 0.3; 0.4)

v3(0.6; 0.7; 0.9)

(0.3,0.2,0.05)

(0.5,0.2,0.3)(0
.2

,0
.5

,0
.0

8)

(A) The NF -graph NFG = (A,B)

v1

(0.4; 0.8; 0.2)

v2

(0.9; 0.3; 0.4)

v3(0.6; 0.7; 0.9)

(0.06,0.04,0.03)

(0.04,0.01,0.06)(0
.0

4,
0.

06
,0

.1
)

(B) The NF -graph NFG = (A,B)

FIGURE 1. Two NF -graphs one is the complement of the other.

Remark 3.5. It is obvious that NFG = NFG.

Definition 3.6. Let G1 = (V1, E1), G2 = (V2, E2) and G2 = (V,E) be any crisp graphs. The neutrosophic
sum of the NF-graph NFG1 = (A1, B1) and NFG2 = (A2, B2) is the NF-graph NFG = (A,B) (denoted
NFG = NFG1 ⊕NFG2 if the following conditions are true:

(1) V1 = V2 = V , where TA1
(v) = TA2

(v), IA1
(v) = IA2

(v), FA1
(v) = FA2

(v) for all v ∈ V ,
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(2) E = E1 ∪ E2 and for all (v, w) ∈ E.

TB(v, w) =

{
TB1(v, w) + TB2(v, w)− TA(v)× TA(w) : TB1(v, w) + TB2(v, w) > TA(v)× TA(w);

TB1
(v, w) + TB2

(v, w) : otherwise,

IB(v, w) =

{
IB1(v, w) + IB2(v, w)− IA(v)× IA(w) : IB1(v, w) + IB2(v, w) > IA(v)× IA(w);

IB1
(v, w) + IB2

(v, w) : otherwise,

FB(v, w) =

{
FB1(v, w) + FB2(v, w)− FA(v)× FA(w) : FB1(v, w) + FB2(v, w) > FA(v)× FA(w);

FB1
(v, w) + FB2

(v, w) : otherwise,

Example 3.7. Consider the following NF -graphs

v1

(0.9; 0.4; 0.7)

v2

(0.6; 1; 0.3)

v3(1; 0.3; 0.5)

(0.2,0.2,0.2)

(0.5,0.2,0.1)(0
.5

,0
.1

,0
.3

)

(A) The NF -graph NFG1 = (A1, B1)

v1

(0.9; 0.4; 0.7)

v2

(0.6; 1; 0.3)

v3((1; 0.3; 0.5))

(0.3,0.2,0.2)

(0.3,0.2,0.04)(0
.4

,0
.0

1,
0.

2)
(B) The NF -graph NFG2 = (A2, B2)

FIGURE 2. Two NF -graphs.

Then the neotrosophic sum of NFG1
and NFG2

is the NF -graph NFG = (A,B) as follows:

v1

(0.9; 0.4; 0.7)

v2

(0.6; 1; 0.3)

v3(1; 0.3; 0.5)

(0.5,0.4,0.19)

(0.2,0.1,0.14)(0
.8

,0
.1

1,
0.

15
)

FIGURE 3. The NF -graph NFG = NFG1
⊕NFG2

Proposition 3.8. Let G1 = (V,E1), G2 = (V,E2) be two crisp graphs with the corresponding NF-graphs NFG1 =

(A1, B1), NFG2
= (A2, B2). Then their neutrosophic sum is complete if and only if one of them is neutrosophic

complement of the other.
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Proof. Let NFG1 = (A1, B1) and NFG2 = (A2, B2) be neutrosophic complement of each other and suppose
that NFH = (A,B) is their neutrosophic sum that is NFH = NFG1 ⊕NFG2 . Hence, by Definition 3.2, we
have

TB1(v, w) = TA(v)× TA(w)− TB2(v, w),

IB1
(v, w) = IA(v)× IA(w)− IB2

(v, w),

FB1
(v, w) = FA(v)× FA(w)− FB2

(v, w),

for all (v, w) ∈ E.
From Definition 3.6, we have

TB(v, w) = TB1
(v, w) + TB2

(v, w),

IB(v, w) = IB1(v, w) + IB2(v, w),

FB(v, w) = FB1
(v, w) + FB2

(v, w),

for all (v, w) ∈ E. Substituting we obtain

TB(v, w) = TA(v)× TA(w),

IB(v, w) = IA(v)× IA(w),

FB(v, w) = FA(v)× FA(w),

for all (v, w) ∈ E. This implies that NFH = (A,B) is complete.
Conversely, by reversing the steps, we get the result. �

Proposition 3.9. Let NFG = (A,B) be the complement of the NF -graph NFG = (A,B). Then NFG = (A,B) is
a complete NF-graph if and only if

TB(v, w) = IB(v, w) = FB(v, w) = 0 ∀v, w ∈ V.

Proof. Suppose that NFG = (A,B) is a complete NF-graph, then by Definition 3.2, we have

TB(v, w) = TA(v)× TA(w),

IB(v, w) = IA(v)× IA(w),

FB(v, w) = FA(v)× FA(w)

for all v, w ∈ V . From Definition 3.3,

TB(v, w) = TA(v)× TA(w)− TB(v, w),

IB(v, w) = IA(v)× IA(w)− IB(v, w),

FB(v, w) = FA(v)× FA(w)− FB(v, w),

for all v, w ∈ V . Hence,
TB(v, w) = IB(v, w) = FB(v, w) = 0 ∀v, w ∈ V.

conversely, if
TB(v, w) = IB(v, w) = FB(v, w) = 0 ∀v, w ∈ V.

Then we obtain that
0 = TA(v)× TA(w)− TB(v, w),

0 = IA(v)× IA(w)− IB(v, w),

0 = FA(v)× FA(w)− FB(v, w),

for all v, w ∈ V . Hence,
TB(v, w) = TA(v)× TA(w),
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IB(v, w) = IA(v)× IA(w),

FB(v, w) = FA(v)× FA(w)

for all v, w ∈ V . Implies NFG = (A,B) is a complete NF-graph. �

Definition 3.10. Let H = (V1, E1) and G = (V2, E2) be any two graphs. A NF-graph NFH = (A1, B1) is
partial NF-subgraph of the NF-graph NFG = (A2, B2) if the following conditions are true:

(1) V1 ⊆ V2, where TA1(v) ≤ TA2(v), IA1(v) ≤ IA2(v), FA1(v) ≤ FA2(v) for all v ∈ V1,
(2) E1 ⊆ E2, where TB1(v, w) ≤ TB2(v, w), IB1(v, w) ≤ IB2(v, w), FB1(v, w) ≤ FB2(v, w) for all (v, w) ∈

E1.

Definition 3.11. Let H = (V1, E1) and G = (V2, E2) be any two graphs. A NF-graph NFH = (A1, B1) is
called a NF-subgraph of the NF-graph NFG = (A2, B2) if the following conditions are true:

(1) V1 ⊆ V2, where TA1(v) = TA2(v), IA1(v) = IA2(v), FA1(v) = FA2(v) for all v ∈ V1,
(2) E1 ⊆ E2, where TB1

(v, w) = TB2
(v, w), IB1

(v, w) = IB2
(v, w), FB1

(v, w) = FB2
(v, w) for all (v, w) ∈

E1.

Definition 3.12. Let H = (V,E1) and G = (V,E2) be any two graphs. A NF-graph NFH = (A1, B1) is
called a spanning NF-subgraph of the NF-graph NFG = (A2, B2) if the following conditions are true:

(1) TA1
(v) = TA2

(v), IA1
(v) = IA2

(v), FA1
(v) = FA2

(v) for all v ∈ V ,
(2) E1 ⊆ E2, where TB1

(v, w) = TB2
(v, w), IB1

(v, w) = IB2
(v, w), FB1

(v, w) = FB2
(v, w) for all (v, w) ∈

E1.

Definition 3.13. Let H1 = (V,E1) and H2 = (V,E2) be two crisp graphs and NFH1 = (A1, B1), NFH2 =

(A2, B2) are two spanning NF-subgraphs of the NF-graph NFG = (A,B), we call that NFH1 u NFH2 = Φ

if E1 ∩ E2 = φ.
Moreover, if G = (V,E), H1(V,E1), H2(V,E2), . . . are crisp graphs such that NFH1

= (A1, B1), NFH2
=

(A2, B2), . . . are spanning NF-subgraphs of the NF-graph NFG = (A,B). If E =
⋃∞

i=1Ei, then we say that

NFG =

∞⊔
i=1

NFHi

.

Proposition 3.14. Let G = (V,E) be any crisp graph. Then the NF -graph NFG = (A,B) is a complete NF -graph
if and only if NFH ⊕NFH = NFH for every spanning NF-subgraph NFH of the NF -graph NFG.

Proof. Suppose that NFG = (A,B) is complete and NFH is any spanning subgraph of it. Since NFG =

(A,B) is complete, so by Definition 3.2, we have

TB(v, w) = TA(v)× TA(w),

IB(v, w) = IA(v)× IA(w),

FB(v, w) = FA(v)× FA(w)

for all v, w ∈ V . Since NFH is a spanning subgraph of NFG, so we obtain that

TB1
(v, w) = TA(v)× TA(w),

IB1
(v, w) = IA(v)× IA(w),

FB1
(v, w) = FA(v)× FA(w)
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for all v, w ∈ V . Hence, by Definition 3.6, we deduce that the truth, intermidacy and fulsity membership of
NFH ⊕NFH is

TB1(v, w) = 2TA(v)× TA(w)− TA(v)× TA(w) = TA(v)× TA(w),

IB1(v, w) = 2IA(v)× IA(w)− IA(v)× IA(w) = IA(v)× IA(w),

FB1(v, w) = 2FA(v)× FA(w)− FA(v)× FA(w) = FA(v)× FA(w)

for all v, w ∈ V . Hence, NFH ⊕NFH = NFH .
Conversely, Since NFH ⊕NFH = NFH for every spanning NF-subgraph NFH of the NF -graph NFG and
NFG is a spanning NF-subgraph of itself, so by hypothesis NFG ⊕NFG = NFG. Therefore, by Definition
3.6, we get

TB(v, w) + TB(v, w)− TA(v)× TA(w) = TB(v, w),

IB(v, w) + IB(v, w)− IA(v)× IA(w) = IB(v, w),

FB(v, w) + FB(v, w)− FA(v)× FA(w) = FB(v, w)

for all v, w ∈ V . This implies that

TB(v, w) = TA(v)× TA(w),

IB(v, w) = IA(v)× IA(w),

FB(v, w) = FA(v)× FA(w)

for all v, w ∈ V . Therefore, NFG is complete. �

4. DEGREES AND STRONG DEGREES IN NF -GRAPHS

Definition 4.1. Consider the graphG = (V,E) where V andE is the set of its vertex and edges respectively.
NFG = (A,B) be the NF -graph. Then the degree of the vertex v ∈ V is denoted by d(v) and defined as
d(v) = [dT (v), dI(v), dF (v)] (or dG(v) = [dTG

(v), dIG(v), dFG
(v)]) where

dT (v) =
∑
v 6=w

TB(v, w), dI(v) =
∑
v 6=w

IB(v, w), dF (v) =
∑
v 6=w

FB(v, w)

denotes the degree of truth membership vertex, the degree of indeterminacy membership vertex, the degree
of falsity membership vertex respectively. If TB(v, w) = IB(v, w) = FB(v, w) = 0 for v, w ∈ V , then we say
that they are not adjacent.

Definition 4.2. Consider the graphG = (V,E) where V andE is the set of its vertex and edges respectively.
NFG = (A,B) be the NF -graph. Then the total degree of the vertex v ∈ V is denoted by td(v) and defined
as td(v) = [tdT (v), tdI(v), tdF (v)] where

tdT (v) =
∑
v 6=w

TB(v, w) + TA(v), tdI(v) =
∑
v 6=w

IB(v, w) + IA(v), tdF (v) =
∑
v 6=w

FB(v, w) + FA(v).

Definition 4.3. Consider the graph G = (V,E) where V and E are the set of its vertex and edges respec-
tively. The neighborhood of a vertex v ∈ V is denoted by N (v) and is defined as N (v) = {w ∈ V : (v, w) ∈
E}.

Example 4.4. Consider the following graph G = (V,E) where V = {v1, v2, v3, v4} and
E = {(v1, v2), (v1, v3), (v2, v4), (v3, v4), (v3, v2)}. The NF -graph NFG = (A,B) is defined as in the following
diagram
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v1(0.1; 0.3; 0.7) v2 (0.5; 0.8; 0.3)

v4 (0.9; 0.6; 0.4)v3(0.6; 0.4; 0.2)

(0.05,0.2,0.2)

(0.
2,0

.3,
0.0

5)

(0.5,0.2,0.05)

(0
.0
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FIGURE 4. NF -graph NFG = (A,B)

By simple calculation, we get
d(v1) = [dT (v1), dI(v1), dF (v1)] = [0.1, 0.3, 0.3], d(v2) = [dT (v2), dI(v2), dF (v2)] = [0.65, 0.9, 0.35]

d(v3) = [dT (v3), dI(v3), dF (v3)] = [0.75, 0.6, 0.2], d(v4) = [dT (v4), dI(v4), dF (v4)] = [0.9, 0.6, 0.15].
td(v1) = [0.2, 0.6, 1], td(v2) = [1.15, 1.7, 0.65]

td(v3) = [1.35, 1, 0.4], td(v4) = [1.8, 1.2, 0.55].

Proposition 4.5. Let G = (V,E) where V is its vertex set and E its edge set. NFG = (A,B) be the NF -graph.
Then the degree of truth membership vertex, the degree of indeterminacy membership vertex, the degree of falsity
membership vertex respectively is of the vertex v ∈ V is given by

dT (v) ≤ TA(v)(
∑

w∈N (v)

TA(w)),

dI(v) ≤ IA(v)(
∑

w∈N (v)

IA(w)),

dF (v) ≤ FA(v)(
∑

w∈N (v)

FA(w))

and

tdT (v) ≤ TA(v)(
∑

w∈N (v)

TA(w) + 1),

tdI(v) ≤ IA(v)(
∑

w∈N (v)

IA(w) + 1),

tdF (v) ≤ FA(v)(
∑

w∈N (v)

FA(w) + 1)

Proof. From Definition 4.1, we have

dT (v) =
∑
v 6=w

TB(v, w), dI(v) =
∑
v 6=w

IB(v, w), dF (v) =
∑
v 6=w

FB(v, w)

and from Definition 3.1, we have

TB(v, w) ≤ TA(v)× TA(w),

IB(v, w) ≤ IA(v)× IA(w),

FB(v, w) ≤ FA(v)× FA(w).
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Since TB(v, w) = IB(v, w) = FB(v, w) = 0 ∀(v, w) /∈ E Therefore,

dT (v) ≤
∑

w∈N (v)

TA(v)(TA(w)) = TA(v)(
∑

w∈N (v)

TA(w)),

dI(v) ≤
∑

w∈N (v)

IA(v)(IA(w)) = IA(v)(
∑

w∈N (v)

IA(w)),

dF (v) ≤
∑

w∈N (v)

FA(v)(FA(w)) = FA(v)(
∑

w∈N (v)

FA(w)).

From Definition 4.2, and above equations, we obtain that

tdT (v) ≤
∑

w∈N (v)

TA(v)(TA(w)) + TA(v) = TA(v)(
∑

w∈N (v)

TA(w) + 1),

tdI(v) ≤
∑

w∈N (v)

IA(v)(IA(w)) + IA(v) = IA(v)(
∑

w∈N (v)

IA(w) + 1),

tdF (v) ≤
∑

w∈N (v)

FA(v)(FA(w)) + FA(v) = FA(v)(
∑

w∈N (v)

FA(w) + 1).

�

Proposition 4.6. Let NFG = (A,B) be a complete NF -graph. Then

dT (v) = TA(v)(
∑

w∈N (v)

TA(w)),

dI(v) = IA(v)(
∑

w∈N (v)

IA(w)),

dF (v) = FA(v)(
∑

w∈N (v)

FA(w))

and
tdT (v) = TA(v)(

∑
w∈N (v)

TA(w) + 1),

tdI(v) = IA(v)(
∑

w∈N (v)

IA(w) + 1),

tdF (v) = FA(v)(
∑

w∈N (v)

FA(w) + 1)

Proof. Follows from Definition 3.2 and Proposition 4.5. �

Proposition 4.7. (1) Let NFH = (C,D) be any partial subgraph of the NF -graph NFG = (A,B) . Then

dTH
(v) ≤ dTG

(v), dIH (v) ≤ dIG(v), dFH
(v) ≤ dFG

(v),

and
tdTH

(v) ≤ tdTG
(v), tdIH (v) ≤ tdIG(v), tdFH

(v) ≤ tdFG
(v),

for all v ∈ V (H).
(2) Let G = (V,E) be any graph and let {v1, v2, . . . } be the set of isolated vertices of G. If H = (V1, E1) is a

subgraph of G such that V1 = V \ {vi : i ∈ N}. Then

dTH
(v) = dTG

(v), dIH (v) = dIG(v), dFH
(v) = dFG

(v),

and
tdTH

(v) = tdTG
(v), tdIH (v) = tdIG(v), tdFH

(v) = tdFG
(v),

for all v ∈ V (H).



Pan-Amer. J. Math. 1 (2022), 8 11

Proof. (1) Follows from the definition.
(2) Since {v1, v2, . . . } is the set of isolated vertices of G. Hence TB(v, vi) = IB(v, vi) = FB(v, vi) = 0 ∀i =

1, 2, . . . . Therefore

dTH
(v) = dTG

(v), dIH (v) = dIG(v), dFH
(v) = dFG

(v),

and

tdTH
(v) = tdTG

(v), tdIH (v) = tdIG(v), tdFH
(v) = tdFG

(v),

for all v ∈ V (H). �

Proposition 4.8. Let G = (V,E) where V is its vertex set and E its edge set. NFG = (A,B) be the NF -graph.
Then ∑

v∈V
dT (v) = 2

∑
v 6=w

TB(v, w),

∑
v∈V

dI(v) = 2
∑
v 6=w

IB(v, w),

∑
v∈V

dF (v) = 2
∑
v 6=w

FB(v, w).

Proof. Since TB(v, w) = TB(w, v), IB(v, w) = IB(w, v), FB(v, w) = FB(w, v) for every v, w ∈ V , so in∑
v∈V dT (v),

∑
v∈V dI(v) and

∑
v∈V dF (v), we get TB(v, w) + TB(w, v), IB(v, w) + IB(w, v), FB(v, w) +

FB(w, v). Hence, the result. �

Definition 4.9. Let G = (V,E) be any graph, an edge e = (v, w) ∈ E, then the corresponding NF -edge of
the NF-graph NFG = (A,B) is called a strong edge (denoted by Es), if

TB(v, w) = TA(v)× TA(w),

IB(v, w) = IA(v)× IA(w),

FB(v, w) = FA(v)× FA(w).

In this case, the vertex v is called a strong neighbor of w and conversely.
SN (v) = {w ∈ V : (u,w) ∈ Es} is called the strong neighborhood of v. and the set SN [v] = {v} ∪ SN (v) is
called the closed strong neighborhood of v.

Example 4.10. Consider the following graph G = (V,E) where V = {v1, v2, v3, v4, v5} and
E = {(v1, v2), (v1, v3), (v2, v4), (v3, v4), (v3, v2)}. The NF -graph NFG = (A,B) is defined as in the following
diagram:

It is easy to see that SN (v1) = {v2, v4}, SN (v2) = {v1, v4, v5}, SN (v3) = φ, SN (v4) = {v1, v2, v5} and
SN (v5) = {v2, v4}.

Definition 4.11. Consider the graphG = (V,E) where V andE is the set of its vertex and edges respectively.
NFG = (A,B) be theNF -graph. Then the strong degree of the vertex v ∈ V is denoted by sd(v) and defined
as sd(v) = [sdT (v), sdI(v), sdF (v)] where

sdT (v) =
∑

w∈SN (v)

TB(v, w), sdI(v) =
∑

w∈SN (v)

IB(v, w), sdF (v) =
∑

w∈SN (v)

FB(v, w)

denotes the strong degree of truth, indeterminacy and falsity membership vertex v respectively. If
sTB(v, w) = sIB(v, w) = sFB(v, w) = 0 for some v, w ∈ V , then we say that w ∈ SN (v).
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FIGURE 5. NF -graph NFG = (A,B)

Definition 4.12. Consider the graphG = (V,E) where V andE is the set of its vertex and edges respectively.
NFG = (A,B) be the NF -graph. Then the total strong degree of the vertex v ∈ V is denoted by tsd(v) and
defined as tsd(v) = [tsdT (v), tsdI(v), tsdF (v)] where

tsdT (v) =
∑

w∈SN (v)

TB(v, w) + TA(v),

tsdI(v) =
∑

w∈SN (v)

IB(v, w) + IA(v),

tsdF (v) =
∑

w∈SN (v)

FB(v, w) + FA(v).

From Example 4.10, we conclude that
sd(v1) = [0.66, 0.48, 0.72], sd(v2) = [1.05, 1.2, 0.38], sd(v3) = [0, 0, 0], sd(v4) = [1.2, 0.3, 0.98] and sd(v5) =

[0.99, 0.72, 0.36].
tsd(v1) = [1.26, 0.88, 1.52], tsd(v2) = [1.55, 2.2, 0.58], tsd(v3) = [0.8, 0.4, 0.5], tsd(v4) = [1.8, 0.5, 1.68] and
sd(v5) = [1.89, 1.32, 0.76].

Proposition 4.13. Let G = (V,E) be any graph and NFG(A,B) is its corresponding NF-graph, then the following
are true:

(1) If v ∈ V is an isolated vertex, then d(v) = [0, 0, 0] and td(v) = [TA(v), IA(v), FA(v)].
(2) If SN (v) = φ, then sd(v) = [0, 0, 0] and tsd(v) = [TA(v), IA(v), FA(v)].
(3) If v ∈ V is an isolated vertex, then d(v) = sd(v) and td(v) = tsd(v).
(4) sd(v) ≤ d(v) and tsd(v) ≤ td(v) for all v ∈ V .
(5) The NF-graph NFG(A,B) is complete if and only if sd(v) = d(v) and tsd(v) = td(v) for all v ∈ V .

Proof.
(1), (2) The proof of (1) and (2) follow from their definitions.
(3) Follows from (1) and (2).
(4) Since sd(v) = [sdT (v), sdI(v), sdF (v)] and sdT (v), sdI(v), sdF (v) is a sum taken from only strong edges
which are adjacent to v, so this sum is less than or equal to the sum taken over all edges adjacent to v.
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Therefore, sd(v) ≤ d(v) and if we add TA(v), IA(v), FA(v) to both sides of the inequality respectively, then
we get tsd(v) ≤ td(v) for all v ∈ V .

(5) Suppose that NFG(A,B) is a complete graph, then by definition every edge is strong and hence sd(v) =

d(v) and tsd(v) = td(v) for all v ∈ V . Now if sd(v) = d(v) for all v ∈ V implies that∑
w∈N (v)

TB(v, w) = dT (v) = sdT (v) =
∑

w∈SN (v)

TB(v, w),

and this will be true only when SN (v) = N (v) for all v ∈ V . Hence, every edge is strong means that

TB(v, w) = TA(v)× TA(w),

IB(v, w) = IA(v)× IA(w),

FB(v, w) = FA(v)× FA(w)

for all (v, w) ∈ E. Therefore, NFG(A,B) is a complete graph. �

Proposition 4.14. if G = (V,E), H1(V,E1), H2(V,E2), . . . are crisp graphs such that NFH1
= (A1, B1),

NFH2
= (A2, B2), . . . are spanning NF-subgraphs of the NF-graph NFG = (A,B) with E =

⋃∞
i=1Ei. Then

NFG =

∞⊔
i=1

NFHi ,

and

dT (v) =

∞∑
i=1

diT (v)−
∑

(u,v)∈Ei∩Ej

TB(u, v),

dI(v) =

∞∑
i=1

diI(v)−
∑

(u,v)∈Ei∩Ej

IB(u, v),

dF (v) =

∞∑
i=1

diF (v)−
∑

(u,v)∈Ei∩Ej

FB(u, v),

where diT (v), diI(v) and diF (v) denotes the degree of truth membership vertex, the degree of indeterminacy membership
vertex, the degree of falsity membership vertex respectively in the neuotrosophic soft graph NFHi

. Moreover, if Ei is
pairwise disjoint for all i = 1, 2, . . . , then

dT (v) =

∞∑
i=1

diT (v),

dI(v) =

∞∑
i=1

diI(v),

dF (v) =

∞∑
i=1

diF (v).

Proof. Since for each edge e = (u, v) ∈ Ei ∩ Ej , we have diT (v) and djT (v) contain the term TBi
(u, v) =

TB(u, v), TBi
(u, v) = TBi

(u, v) respectively. Hence, we conclude that dT (v) = diT (v) + djT (v) − TB(u, v)

whenever Ei ∩ Ej contains the only edge e = (u, v). Hence if Ei ∩ Ej more than one edge, so we subtract
them from the sum of the degree of truth membership vertex v ∈ V . Similarly, the degree of indeterminacy
membership vertex, the degree of falsity membership are obtained.
If Ei ∩Ej = φ for all 1 ≤ i, j, so if TB(u, v) 6= 0 in NFHi

, then TB(u, v) = 0 in NFHj
this means that TB(u, v)

will occur only one time. Hence, the result. �
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5. CONCLUSIONS

The neutrosophic strong degree and total strong degree of the vertex of graphs were introduced with
interesting properties on them. Furthermore, this paper discussed the concepts of strong edge, neutrosophic
sum in NF – graph with suitable examples.
Conflicts of Interest: The authors declare no conflict of interest.
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