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ON TRIDIAGONAL CORRELATION MATRICES

SIYANG TAO

ABSTRACT. We investigate the conditions under which symmetric tridiagonal matrices represent valid corre-
lation matrices. By exploiting a recursive determinant relationship, we derive explicit sufficient conditions for
positive definiteness and highlight connections with several existing criteria. For dimensions up to four, we
precisely characterize feasible parameter regions, providing both analytical expressions and intuitive geometric
interpretations. We pay special attention to two structured cases: stationary processes, where we establish a
sharp necessary and sufficient bound, and alternating period-2 correlation structures, whose spectral properties
yield exact semidefiniteness criteria. The derived results furnish practical guidelines for verifying the validity of
banded correlation models in various applied contexts.

1. INTRODUCTION

Consider a 1-dependent stochastic process {Xt, t = 1, 2, . . .}, meaning that Xs and Xt are independent
whenever |t − s| > 1. The autocorrelation matrix of n successive observations from this process takes the
form

(1.1) An =



1 α1 0 0 · · · 0

α1 1 α2
. . . . . .

...

0 α2
. . . . . . . . . 0

0
. . . . . . . . . αn−2 0

...
. . . . . . αn−2 1 αn−1

0 · · · 0 0 αn−1 1


n×n

,

where αi := Corr (Xi, Xi+1) ∈ [−1, 1], for i = 1, . . . , n− 1. The matrix An is clearly symmetric and tridiag-
onal, with all diagonal entries equal to one.

Our goal is to characterize the values of αi for which An is a valid correlation matrix. Banded correlation
structures such as An are commonly encountered in applied settings, particularly in longitudinal studies,
panel data models, and spatial processes with local (e.g., nearest-neighbor) dependence. It is well known
that a matrix with unit diagonal entries is a correlation matrix if and only if it is symmetric and positive
semidefinite; that is, v>Anv ≥ 0 for any n × 1 vector v. Equivalently, An is positive semidefinite if and
only if all of its principal minors are nonnegative (see, e.g., Theorem 7.2.5 in [5]). In particular, if all leading
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principal minors are strictly positive, then An is positive definite. Let fi = |Ai|, i = 1, . . . , n, denote the
determinant of the leading principal minor of An. It satisfies the following recurrence relation:

(1.2) fi = fi−1 − α2
i−1fi−2, i = 1, . . . , n,

with initial conditions f−1 = 0 and f0 = 1; see [4].
To verify that An is a valid correlation matrix, one must, in principle, ensure that all principal minors are

nonnegative, which may require checking up to 2n−1 submatrices. However, by leveraging the recurrence
relation in (1.2), we can derive sufficient conditions on the αi values that guarantee positive semidefinite-
ness. In Section 2, we present several such sufficient conditions. In Section 3, we characterize necessary and
sufficient conditions for An when n ≤ 4. In Section 4, we examine specific parametric classes of An and
establish sharp conditions for their positive semidefiniteness.

2. SUFFICIENT CONDITIONS

A simple yet useful sufficient condition for positive semidefiniteness is that all αi values lie within
[−0.5, 0.5]. This is formalized in the following proposition.

Proposition 2.1. Let An be a symmetric tridiagonal matrix with unit diagonal elements defined in (1.1). If

max
1≤i≤n−1

|αi| ≤ 1
2 ,

then An is a correlation matrix; in particular, it is positive semidefinite.

Proof. LetZi, for i = 1, . . . , n, and εi, for i = 1, . . . , n−1, be independent standard normal random variables.
Define

Xi =
√
1− |αi−1| − |αi| · Zi +

√
|αi−1| · εi−1 + sgn(αi)

√
|αi| · εi, for i = 1, . . . , n,

with the conventions α0 = αn = 0, ε0 = εn = 0, and where sgn denotes the sign function. Since
max1≤i≤n−1 |αi| ≤ 1

2 , we have |αi−1| + |αi| ≤ 1 for all i, ensuring Xi is well-defined. Note that each
Xi has zero mean and unit variance:

Var(Xi) = (1− |αi−1| − |αi|) + |αi−1|+ |αi| = 1.

The covariance between adjacent variables is Cov(Xi, Xi+1) = αi, and for |i − j| > 1, Xi and Xj are
uncorrelated due to independence. Thus, the correlation matrix of X = (X1, . . . , Xn)

> is precisely An,
establishing its positive semidefiniteness. �

Alternatively, Proposition 2.1 can also be proven using the recurrence relation in (1.2):

Proof. Consider any principal k × k submatrix Ak of An of the same tridiagonal form:

Ak =



1 αi1 0 0 · · · 0

αi1 1 αi2
. . . . . .

...

0 αi2
. . . . . . . . . 0

0
. . . . . . . . . αik−2

0
...

. . . . . . αik−2
1 αik−1

0 · · · 0 0 αik−1
1


k×k

,

where ij ∈ {1, . . . , n − 1}, for j = 1, . . . , k − 1. Let fi = |Ai|, i = 1, . . . , k, denote the determinant of
the leading principal minor of Ak. We prove by induction that fk ≥ 0 for all k ≥ 1. The base cases are
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immediate: f−1 = 0, f0 = 1, and f1 = 1. Assume inductively that fk−2 ≥ 0 and fk−1 ≥ 0. Then, using the
recurrence relation (1.2) and noting that |αij | ≤ 1

2 , for j = 1, . . . , k − 1, we obtain

fk = fk−1 − α2
ik−1

fk−2 ≥ fk−1 −
1

4
fk−2 =

3

4
fk−2 − αik−2

fk−3

≥ 3

4
fk−2 −

1

4
fk−3 ≥ · · · ≥

k + 1

2k
f0 −

k

2k+1
f−1 =

k + 1

2k
≥ 0,

for all k ≥ 1. Hence, all principal minors are nonnegative, and An is positive semidefinite. �

Several other sufficient conditions for positive semidefiniteness of symmetric tridiagonal matrices have
been proposed. In particular, [1] summarizes a collection of such criteria, generalizing earlier work by [2]
and [7]. When applied to matrices with unit diagonal entries, their results yield the following:

Proposition 2.2. Let An be a symmetric tridiagonal matrix with unit diagonal elements of the form (1.1). If

max
i
|αi| <

1

2 cos
(

π
n+1

) ,
then An is positive definite.

Note that 1

2 cos( π
n+1 )

≥ 1
2 for all n ≥ 1, so Proposition 2.2 is strictly stronger than Proposition 2.1. The

bound is visualized in Figure 1. Using a Taylor expansion,

cos

(
π

n+ 1

)
= 1− π2

2(n+ 1)2
+O(n−4),

it follows that the threshold converges to 1
2 at a quadratic rate.

2 4 6 8 10 12 14 16 18 20
n

0.5

0.6

0.7

0.8

0.9

1

FIGURE 1. Threshold in Proposition 2.2 as a function of n.

An alternative sufficient condition was derived by [3] (Theorem 2.3), using properties of the numerical
range. Under the assumption of unit diagonals, their result becomes:

Proposition 2.3. Let An be a symmetric tridiagonal matrix with unit diagonal elements of the form (1.1). If

(2.1)
n−1∑
i

α2
i <

2

n(n− 1)
,
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then An is positive definite.

Both Propositions 2.2 and 2.3 restrict the magnitude of the αi values, though the latter is strictly more
restrictive, as shown below.

Lemma 2.4. The condition in Proposition 2.3 is strictly more restrictive than that in Proposition 2.2.

Proof. When n = 2, both conditions yield |α1| < 1. For n = 3, Proposition 2.2 implies max{|α1|, |α2|} <
√
2
2 ,

while Proposition 2.3 requires α2
1 + α2

2 <
1
3 , which implies max{|α1|, |α2|} <

√
1/3 <

√
2
2 . For n ≥ 4, the

condition in (2.1) implies

max
i
|αi| <

√
2

n(n− 1)
<

1

2
≤ 1

2 cos
(

π
n+1

) .
Thus, Proposition 2.3 is more stringent. �

Henceforth, we focus primarily on Proposition 2.2, which offers a tractable and sharp condition. The
following example compares both conditions.

Example 2.5. Consider the two 4× 4 matrices:

C1 =


1 0.1 0 0

0.1 1 0.2 0

0 0.2 1 0.3

0 0 0.3 1

 and C2 =


1 0.2 0 0

0.2 1 0.4 0

0 0.4 1 0.6

0 0 0.6 1

 .
Matrix C1 satisfies both Propositions 2.2 and 2.3, since maxi |αi| = 0.3 < 0.6180 and

∑
α2
i = 0.14 < 1

6 .
Matrix C2 satisfies Proposition 2.2 but violates Proposition 2.3, as

∑
α2
i = 0.56 > 1

6 .

Recall that a real matrix A = (aij) is diagonally dominant if

|aii| ≥
∑
j 6=i

|aij |, for i = 1, . . . , n.

It is well known that any symmetric diagonally dominant matrix with nonnegative diagonal entries is
positive semidefinite (see Theorem 6.1.10 in [5]). For tridiagonal correlation matrices, this gives:

Proposition 2.6. Let An be a symmetric tridiagonal matrix with unit diagonal elements of the form (1.1). If

|αi|+ |αi+1| ≤ 1, for i = 1, . . . , n− 2,

then An is positive definite.

Although Propositions 2.2 and 2.6 both provide sufficient conditions for positive definiteness, neither
implies the other, as illustrated below.

Example 2.7. Consider the following two 4× 4 matrices:

C1 =


1 0.1 0 0

0.1 1 0.5 0

0 0.5 1 0.6

0 0 0.6 1

 and C2 =


1 0.1 0 0

0.1 1 0.1 0

0 0.1 1 0.8

0 0 0.8 1

 .
Matrix C1 satisfies Proposition 2.2 but not Proposition 2.6, while C2 satisfies Proposition 2.6 but violates
Proposition 2.2.
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3. SUFFICIENT AND NECESSARY CONDITIONS FOR n ≤ 4

In this section, we examine tridiagonal correlation matrices of small dimensions (n ≤ 4) and derive
necessary and sufficient conditions for positive semidefiniteness. For n = 2, the matrix

A2 =

[
1 α1

α1 1

]

is positive semidefinite if and only if |α1| ≤ 1, which follows directly from the requirement that all principal
minors must be nonnegative. For n = 3, consider the matrix

A3 =

 1 α1 0

α1 1 α2

0 α2 1

 .
The seven principal submatrices yield the following nontrivial determinants: 1 − α2

1, 1 − α2
2, 1 − α2

1 − α2
2

and 1’s. Therefore, A3 is positive semidefinite if and only if

(3.1) α2
1 + α2

2 ≤ 1.

It is noteworthy that neither Proposition 2.2 nor Proposition 2.6 is necessary for n = 3. Figure 2 illustrates
the feasible region defined by (3.1) and compares it with the regions defined by the sufficient conditions in
Propositions 2.2 and 2.6. Although Propositions 2.2 and 2.6 cover different regions, each captures approxi-
mately 63.7% of the area defined by (3.1).

−1 0 1

−1

0

1

α1

α2

Condition in (3.1)
Proposition 2.2
Proposition 2.6

FIGURE 2. Feasible region for A3 (blue), with sufficient conditions from Propositions 2.2
(purple) and 2.6 (green).

For n = 4, consider the matrix

A4 =


1 α1 0 0

α1 1 α2 0

0 α2 1 α3

0 0 α3 1

 .
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From (1.2), the determinants of its 15 principal submatrices are 1−α2
1, 1−α2

2, 1−α2
3, 1−α2

1−α2
2, 1−α2

1−α2
3,

1− α2
2 − α2

3, 1− α2
1 − α2

2 − α2
3 + α2

1α
2
3 and 1’s. Thus, A4 is positive semidefinite if and only if

(3.2)

α2
1 + α2

3 ≤ 1;

α2
1 + α2

2 + α2
3 − α2

1α
2
3 ≤ 1.

Figure 3 visualizes the feasible region defined by (3.2) in three-dimensional space. We generated random
points in the cube [−1, 1]3 and checked whether each point satisfied the conditions in (3.2). Approximately
55.84% of the total volume met the criteria, suggesting that the valid parameter space is still substantial,
even though the constraints are more complex.

FIGURE 3. Feasible region for (α1, α2, α3) such that A4 is positive semidefinite.

Table 1 reports the proportion of the volume in [−1, 1]n−1 for n = 2, 3, and 4 such that the correspond-
ing matrix An is positive semidefinite. The feasible region shrinks noticeably as the dimension increases,
with the percentage decreasing approximately linearly. While it would be interesting to study the volume
behavior in higher dimensions, such analysis is beyond the scope of this paper.

TABLE 1. Proportion of volume in [−1, 1]n−1 such that An is positive semidefinite.

Dimension (n) 2 3 4
Percentage (%) 100 78.54 55.84

4. PARAMETRIC CLASSES

4.1. Stationary 1-dependent process. Stationary 1-dependent processes are widely used in practice. A
canonical example is the moving average process of order 1, or MA(1), which satisfies the 1-dependence
condition. In this case, all adjacent autocorrelations are equal, i.e., α := α1 = · · · = αn−1. The resulting
autocorrelation matrix, denoted A′n, is a symmetric tridiagonal Toeplitz matrix. Remarkably, for this class
of matrices, the sufficient condition in Proposition 2.2 is also necessary.
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Proposition 4.1. Let A′n denote the autocorrelation matrix of a stationary 1-dependent process with con-
stant correlation α. Then A′n is positive semidefinite if and only if

(4.1) |α| ≤ 1

2 cos
(

π
n+1

) .
Proof. The eigenvalues of A′n are given by

λk = 1 + 2|α| cos
(

kπ

n+ 1

)
, k = 1, . . . , n,

see, e.g., Problem 1.4.P16 in [5] or Section 4.8.6 in [6]. Since cos(·) is decreasing on (0, π), the smallest
eigenvalue occurs at k = n− 1. Hence, A′n is positive semidefinite if and only if

1− 2|α| cos
(

π

n+ 1

)
≥ 0.

The result follows immediately. �

4.2. Alternating Period-2 Correlation Structure. We now consider a generalization of the stationary set-
ting in which the correlation coefficients alternate between two fixed values, α and β. The resulting tridi-
agonal matrix takes the form

(4.2) Aα,β
n =



1 α 0 . . . 0

α 1 β . . . 0

0 β 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


n×n

.

Depending on whether n is even or odd, the last off-diagonal entry is either α or β. This is a special case
of a period-2 Jacobi matrix. The eigenvalues of such matrices are well-studied (see Theorems 2.1 and 3.1
in [8]) and can also be derived using discrete Bloch–Floquet theory (see [10]). Specifically, the eigenvalues
of Aα,β

n are given by:

• For odd n, the eigenvalues are

(4.3) λ±k = 1±

√
α2 + β2 + 2αβ cos

(
2kπ

n+ 1

)
, k = 1, . . . ,

n− 1

2
,

together with an eigenvalue λn = 1.
• For even n, the eigenvalues are given by

λ±k = 1±
√
α2 + β2 + 2αβ cos(θk), k = 1, . . . ,

n

2
,

where the θk ∈ (0, π) satisfy the transcendental equation

(4.4) sin

(
(n+ 2)θk

2

)
+
β

α
sin

(
nθk
2

)
= 0, k = 1, . . . ,

n

2
.

Proposition 4.2. Let Aα,β
n be a tridiagonal matrix defined in (4.2). Then it is positive semidefinite if and

only if:

• For n odd,

α2 + β2 + 2αβ cos

(
2π

n+ 1

)
≤ 1.
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• For n even, α2 + β2 + 2αβ cos (θ1) ≤ 1, if αβ ≥ 0;

α2 + β2 + 2αβ cos (θ2) ≤ 1, if αβ < 0,

where θ1, θ2 ∈ (0, π) are the minimum and maximum solution of (4.4), respectively.

Proof. For odd n, the smallest eigenvalue is

1−

√
α2 + β2 + 2αβ cos

(
2kπ

n+ 1

)
≥ 0, k = 1, . . . ,m.

which is minimized at either k = 1 (when αβ ≥ 0) or k = m (when αβ < 0). The matrix is positive
semidefinite if and only if this minimum is nonnegative.

For even n, the eigenvalues depend on the solutions θk of (4.4), which must be computed numerically.
The cosine function is decreasing on [0, π], so the minimum eigenvalue corresponds to either θ1 or θ2 de-
pending on the sign of αβ. The result follows. �

Note that for n = 3, the period-2 Jacobi matrix includes all possible tridiagonal correlation matrices of
that size. In this case, Proposition 4.2 reduces to the condition α2 + β2 ≤ 1, consistent with the n = 3 result
in Section 3. This serves as an independent confirmation of that characterization. As previously discussed,
Propositions 2.2 and 2.6 are not necessary even in this period-2 case, highlighting the importance of direct
spectral analysis for such structured matrices.

Additionally, when α = β, the condition for odd n in Proposition 4.2 reduces directly to the stationary
case condition in (4.1). For even n, the transcendental equation (4.4) becomes

2 sin

(
(n+ 1)θk

2

)
cos

(
θk
2

)
= 0, k = 1, . . . ,

n

2
.

Since θk ∈ (0, π), we have cos
(
θk
2

)
> 0, and the equation implies

sin

(
(n+ 1)θk

2

)
= 0,

which yields

θk =
2kπ

n+ 1
, k = 1, . . . ,

n

2
.

Thus, the result is again consistent with the stationary condition given in (4.1).
For odd n, it is clear that the checking time is very fast. However, for n even, we need to solve the

equation (4.4). By using a fine grid (we used 1,000) to find sign-change intervals automatically, then we use
the fzero function in MATLAB® to find all solutions.

To assess performance, we randomly generated 100 instances for each matrix dimension n = 50, 100, 150,
. . ., 1000. The average computation times are displayed in Figure 4. As expected, the runtime of the tradi-
tional eigenvalue decomposition method increases quadratically with n, consistent with the known compu-
tational complexity for tridiagonal matrices. In contrast, Proposition 4.2 yields a nearly constant runtime,
with all average values remaining below 10−4 seconds. These results confirm that the proposition is not
only theoretically sound but also practically efficient.

5. CONCLUSION AND FUTURE WORK

We have presented a comprehensive analysis of the conditions under which symmetric tridiagonal matri-
ces represent valid correlation matrices. The results establish explicit bounds on the correlation parameters
that ensure positive semidefiniteness. For stationary structures, we show that the condition |α| ≤ 1

2 cos( π
n+1 )
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FIGURE 4. Average computation time over 100 trials for each matrix dimension

is both necessary and sufficient, yielding a sharp characterization. Our study of alternating period-2 cor-
relation structures further extends the literature by providing closed-form, eigenvalue-based criteria for
positive semidefiniteness. Additionally, numerical investigations for small dimensions offer both analyti-
cal insights and geometric interpretations of the feasible parameter space.

Future work may explore the asymptotic behavior of the feasible volume as matrix size grows, or extend
these results to broader classes of banded or block tridiagonal correlation structures. Developing efficient
algorithms for testing positive semidefiniteness in higher-dimensional structured matrices also remains an
important direction.
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