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DYNAMICS OF A DISCRETE-TIME CHAOTIC LÜ SYSTEM

SARKER MD. SOHEL RANA∗ AND MD. JASIM UDDIN

ABSTRACT. A discrete-time chaotic Lü system is investigated. Firstly, we give the conditions of local stability
of this system around feasible fixed points. Then, we show analytically that discretized Lü system undergoes a
flip-Neimark Sacker(NS) bifurcation when one of the system parameter varies near its critical value. We confirm
the existence of flip-NS bifurcation via explicit Flip-NS bifurcation criterion and determine the direction of both
bifurcations with the help of center manifold theory and bifurcation theory. We carry out numerical simulations
to affirm our analytical findings. Furthermore, we present Maximum Lyapunov exponents (MLEs) and Fractal
dimension (FD) numerically in order to justify whether chaos exists in the system or not. At the end, we apply
hybrid control strategy to eliminate chaotic trajectories of the system.

1. INTRODUCTION

The system changes over time is referred to as dynamical system. Currently, a mathematical model
linked to dynamical system is used in ecology, weather forecasting, heartbeat regulation, collapse preven-
tion of power systems, and biomedical applications to human psychiatry, and among other things. The
dynamical system can be divided into two parts continuous dynamical system and discrete dynamical
system. Numerous academics focused on and conducted in-depth research on systems bifurcation in
continuous dynamical systems, but a little works have been studied in systems bifurcations in dis-
crete dynamical system. In continuous dynamical system, three dimensional chaotic systems have
been extensively investigated by renowned researchers [17, 18, 23, 24] and the references therein. Lü et
al. [18] and Chen et al. [24] constructed new critical chaotic system by anti-control technique in Lorenz
system [17, 23]. These systems are known as Lü system and Chen’s system respectively. Qualitative
analyses of these empirical works found many dynamical properties including local bifurcations, chaotic,
periodic, quasi-periodic orbits and route to chaos. They also obtained super-critical and sub-critical
bifurcations conditions around positive equilibrium point. However, a lot of exploratory works have
been suggested that discrete-time models are more suitable compared to differential equation model as
discrete-time model reveal rich chaotic dynamics and give effective computational models for numerical
simulations [4, 6, 7, 10, 12, 15, 16, 20–22, 25, 30, 31]. These studies investigated unexpected characteristics,
such as the occurrence of (flip-NS) bifurcations and chaotic phenomena, using either numerical methods or
center manifold theory applications. These researches focused solely on two-dimensional discrete systems.
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Recently, a very short number of contributions dedicated to study the dynamics of three dimensional
discrete systems [1, 5, 8, 9, 11, 13, 19, 27]. For example, discrete-time epidemic models SIR, SEIR and hyper-
tensive or diabetic exposed to COVID-19 discussed in [1,9,13] respectively, in [27] the authors investigated
discrete financial system and in [19], the authors studied discrete chaotic system. In these works, the re-
searchers concentrated their endeavor to determine the direction and stability of Flip and NS bifurcation by
using explicit Flip-NS bifurcation criterion, center manifold theory and bifurcation theory. Neimark-Sacker
bifurcation for discrete-time food chain model studied in [8]. The studies in [5, 11] investigated discrete
population models.These studies used only explicit (Flip-NS bifurcaton) criterion and numerical simula-
tions for existence of flip and NS bifurcations. Chaos is strongly hooked into the initial conditions for the
answer trajectories, or the exponential aberration in solution trajectories for little differences within the
initial conditions in discrete system.
In this paper, we consider the following three dimensional chaotic Lü system [18]:

ẋ = a(y − x),

ẏ = −xz + cy,

ż = xy − bz,

(1.1)

In system (1.1) x, y, z ∈ R are the state variables denoting the rate of convective overtuning, horizontal
temperature difference and vertical temperature difference respectively. The parameters a, b, c ∈ R+ in the
system represent the Prandal number, the Rayleigh number, and some physical proportions of the region
under study and for more description of these parameters we refer [23] .

Forward Euler scheme is applied in order to get the discrete chaotic Lü system with integral step-size %
as follows  x

y

z

 −→
 x+ %(a(y − x))

y + %(xz + cy)

z + %(xy − bz)

 =

 e1(x, y, z)

e2(x, y, z)

e3(x, y, z)

 (1.2)

The Flip and NS bifurcations play an significant role for generation of critical chaotic dynamics in
discrete system and trigger a route to chaos. The objective of this work is to analyze systematically the
conditions for occurence of flip and NS bifurcations by using an explicit Flip-NS bifurcation criterion and
to determine the stability and direction of both bifurcations by the applications of bifurcation theory.

The remaining part of this paper is organised as follows: Sect.2, explores the local stability conditions of
feasible fixed points. In Sect.3, we analyze theoritically that under a certain parametric condition, the system
(1.2) undergoes a Flip or NS bifurcations. In Sect.4, we present system dynamics numerically including
diagrams of bifurcations, phase portraits, MLEs and FD to validate our analytical findings. In Sect.5, we
implement a hybrid control strategy to stabilize chaos of the uncontrolled system. In Sect.6, we give a short
discussion.

2. LOCAL STABILITY ANALYSIS OF FIXED POINTS

The fixed points of the system (1.2) are the solutions of the following system of non-linear equations:

x = e1(x, y, z)

y = e2(x, y, z)

z = e3(x, y, z)

(2.1)
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For all permisible parameter values, system (1.2) has three fixed points, the trivial fixed point is E0(0, 0, 0)

and the other two non-zero fixed points are E± = (±
√
bc,±

√
bc, c).

At any arbitrary fixed point E(x, y, z), the Jacobian matrix of system (1.2) is given by

J(E) =

 1− a% a% 0

−z% 1 + c% −x%
y% x% 1− b%

 = (jkl), k, l = 1, 2, 3 (2.2)

and the eigenvalues of matrix J(E) are the roots of the following characteristic equation

P (µ) := µ3 + ϑ2µ
2 + ϑ1µ+ ϑ0 = 0 (2.3)

where,

ϑ2 = −tr(J),

ϑ1 =

∣∣∣∣∣ j11 j12

j21 j22

∣∣∣∣∣+

∣∣∣∣∣ j22 j23

j32 j33

∣∣∣∣∣+

∣∣∣∣∣ j11 j13

j31 j33

∣∣∣∣∣ ,
ϑ0 = − |J | .

We first introduce the following lemma concerning the necessary and sufficient requirements for
stability around a systems fixed point in order to explore the nature of the system (1.2) around E(x, y, z).

Lemma 2.1. [2] Suppose that ϑ2, ϑ1, ϑ0 ∈ R.Then, the necessary and sufficient conditions for all roots µ of the
equation

µ3 + ϑ2µ
2 + ϑ1µ+ ϑ0 = 0

to satisfy |µ| < 1 are
|ϑ2 + ϑ0| < 1 + ϑ1, |ϑ2 − 3ϑ0| < 3− ϑ1, and ϑ0

2 + ϑ1 − ϑ0ϑ2 < 1.

Now, the local dynamics of system (1.2) around fixed points E0 and E+ are as follows.
At E0, the Jacobian matrix is

J(E0) =

 1− a% a% 0

0 1 + c% 0

0 0 1− b%

 .

So, the eigenvalues of J(E0) are µ1 = 1−a%, µ2 = 1+c% and µ3 = 1−b%. We obtain the following Lemma.

Lemma 2.2. For any parameter values, the fixed point E0 is a
− saddle if % < min

{
2
b ,

2
a

}
,

− source if % > max
{

2
b ,

2
a

}
.

The Jacobian matrix at E+,

J(E+) =

 1− a% a% 0

−c% 1 + c% −
√
bc%√

bc%
√
bc% 1− b%

 ,
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and the eigenvalues of J(E+) satisfy the equation

P (µ) := µ3 + κ2µ
2 + κ1µ+ κ0 = 0. (2.4)

where,

κ2 = −3 + %(a+ b− c),

κ1 = 3− 2%(b− c) + a%(−2 + b%),

κ0 = 1 + %(b− c) + a%(1 + b%(−1 + 2c%))

(2.5)

We give the following Lemma for stability condition of the fixed point E+.

Lemma 2.3. The fixed pointE+ of system (1.2) is locally asymptotically stable if and only if the coefficients κ2, κ1, κ0

of (2.4) satisfy
|κ2 + κ0| < 1 + κ1, |κ2 − 3κ0| < 3− κ1, and κ0

2 + κ1 − κ0κ2 < 1.

3. ANALYSIS OF BIFURCATIONS

In this section, we will discuss the existence, direction and stability analysis of flip and NS bifurcations
near the fixed point E+ by using an explicit Flip-NS bifurcation criterion without computing the eigenval-
ues of the respective system and bifurcation theory [14,26,28] . We consider % as the bifurcation parameter,
otherwise stated.

3.1. Flip Bifurcation: Existence, Direction and Stability.

3.1.1. Existence of Flip Bifurcation. To investigate the existence of flip bifurcation, we will use the follow-
ing Lemma.

Lemma 3.1. [28] Consider an n-dimensional discrete system as follows:

Yk+1 = Hυ(Yk),

where υ ∈ R is being taken as a bifurcation parameter. Furthemore, we write the equation of the jacobian matrix
J(Y ∗) = (θij)n×n at fixed point Y ∗ ∈ Rn for Hυ as follows

Dυ(µ) := µn + ι1µ
n−1 + ...+ ιn−1µ+ ιn = 0 (3.1)

where ιi = ιi(υ, u), i = 1, 2, ..., n and u is being taken as the control parameter unless stated which is to be de-
termined. Later, we define a sequence of determinants (N±

i (υ, u))ni=0 with N±
0 (υ, u)) = 1 which is to be defined

as:

N±
i = det(R1 ±R2) (3.2)
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where,

R1 =


1 ι1 ι2 ... ιi−1

0 1 ι1 ... ιi−2

0 0 1 ... ιi−3

... ... ... ... ...

0 0 0 ... 1

 ,

R2 =


ιn−i+1 ιn−i+2 ... ιn−1 ιn

ιn−i+2 ιn−i+3 ... ιn 0

... ... ... ... ...

ιn−1 ιn ... 0 0

ιn 0 ... 0 0

 .

(3.3)

Moreover, the followings are satisfied:

(HT1) Eigenvalue condition: Dυ0(−1) = 0,N±
n−1(υ0, u) > 0, Dυ0(1) > 0,N±

i (υ0, u) > 0, i = n − 2, n −
4, ..., 1(or 2), when n is even (or odd respectively).

(HT2) Transversality Condition:
∑n

i=1(−1)n−iι
′
i∑n

i=1(−1)n−i(n−i+1)ιi−1
6= 0, where ι

′

i means derivative of ι(υ) at υ = υ0, then
the flip bifurcation occurs at critical point υ0.

If we choose n = 3, the subsequent lemma will give the necessary parametric conditions for which the
system (1.2) underlie a flip bifurcation.

Lemma 3.2. The flip bifurcation of system (1.2) takes place around fixed point E+ at % = %F if and only if
1− κ1 + κ0(κ2 − κ0) > 0,

1 + κ1 − κ0(κ2 + κ0) > 0,

1 + κ2 + κ1 + κ0 > 0,

1− κ2 + κ1 − κ0 = 0,

1 + κ0 > 0,

1− κ0 > 0,

and

∑n
i=1(−1)n−iι

′
i∑n

i=1(−1)n−i(n−i+1)ιi−1
=

κ
′
2−κ

′
1+κ

′
0

3−2κ2+κ1
6= 0,

where κ2, κ1, κ0 are given as in (2.5) and κ
′

i = dκi

d% |%=%F with

%F = 1
3c + a(b−6c)+6c(−b+c)

3cΓ + Γ
3abc ,

Γ = 3

√
(a3b2(b− 9c)− 9a2b2(b− 7c) + 3

√
3
√

Λ),

Λ = −a3b3c2(a3(b− 8c)− 8(b− c)3
c− 2a2(b2 − 5bc− 12c2) + a(b3 + 10b2c− 95bc2 − 24c3)).

Proof: We take n = 3 and consider % as a bifurcation parameter, then by using Lemma 3.1 and Lemma
2.3, we get:

N−
2 (%) = 1− κ1 + κ0 (κ2 − κ0) > 0,

N+
2 (%) = 1 + κ1 − κ0 (κ2 + κ0) > 0,
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D%(1) = 1 + κ2 + κ1 + κ0 > 0,

D%(−1) = 1− κ2 + κ1 − κ0 = 0,

N+
1 (%) = 1 + κ0 > 0,

N−
1 (%) = 1− κ0 > 0.

Define the set
FBE+ = {(a, b, c, %) : % = %F , a, b, c > 0}.

If system parameters value vary in a small neighbourhood of the set FBE+
, one of the eigenvalue of (2.4)

is µ3(%F ) = −1 and other two are |µ1,2(%F )| 6= ±1, and then the system (1.2) underlies a flip bifurcation
around the fixed point E+.

3.1.2. Direction and Stability of Flip Bifurcation. Here, the direction of flip bifurcation is to be deter-
mined by the applications of center manifold theory and bifurcation theory [14]. We consider the fixed
point E+(

√
bc,
√
bc, c) of system (1.2) with arbitrary parameter (a, b, c, %) ∈ FBE+ . Let, % = %F , then the

eigenvalues of J(E+) are:

|µi(%F )| 6= ±1, i = 1, 2 (3.4)

and µ3(%F ) = −1

Next, we use the transformation x̂ = x − x+, ŷ = y − y+, ẑ = z − z+, where x+ = y+ =
√
bc, z+ = c

and set A(%) = J(E+). Next, we transfer the fixed point E+ of system (1.2) to the origin. Applying Taylor
expansion, the system (1.2) becomes

X −→ A(%)X + F (3.5)

where, X = (x̂, ŷ, ẑ)T and

F (x̂, ŷ, ẑ, %) = (F1(x̂, ŷ, ẑ, %), F2(x̂, ŷ, ẑ, %), F3(x̂, ŷ, ẑ, %))T = (0,−xz%, xy%)T (3.6)

Then, we write the system (3.5) as

Xn+1 = AXn + 1
2B (Xn, Xn) + 1

6C (Xn, Xn, Xn) +O
(
X4
n

)
where,

B(x, y) =

 B1(x, y)

B2(x, y)

B3(x, y)

 and C(x, y, u) =

 C1(x, y, u)

C2(x, y, u)

C3(x, y, u)

 (3.7)

are the symmetric multi-linear functions of x, y, z, u ∈ R3 and these functions can be defined by:

Bi(x, y) =
∑3
j,k=1

∂2Fi(υ,%)
∂υj∂υk

∣∣∣
υ=0

xjyk,

Ci(x, y, u) =
∑3
j,k,l=1

∂3Fi(υ,%)
∂υj∂υk∂υl

∣∣∣
υ=0

xjykul.

In particular,

B(x, y) =

 0

−x3y1%− x1y3%

x2y1%+ x1y2%

 and C(x, y, u) =

 0

0

0

 (3.8)
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Consider two eigenvectors m1,m2 ∈ R3 of A for eigenvalue µ3(%F ) = −1 such that

A(%F )m1 = −m1 and AT (%F )m2 = −m2,

where m1 and m2 must satisfy the inner product property 〈m1,m2〉 = 1. Therefore, the direction of flip
bifurcation can be determined from the sign of l1(%F ) which is calculated by

l1 (%F ) =
1

6
〈m2, C(m1,m1,m1)〉 − 1

2

〈
m2, B

(
m1, (A− I)−1B(m1,m1)

)〉
(3.9)

The above discussion can be given concisely in the following theorem.

Theorem 3.3. Suppose (3.4) holds well and l1(%F ) 6= 0. If % changes its value around the bifurcation point,
then flip bifurcation will occur for the system (1.2) at fixed point E+(x+, y+, z+). Furthermore, if l1(%F ) <

0 (resp. l1(%F ) > 0), then there exists unstable (resp. stable) period-2 points that bifurcate fromE+(x+, y+, z+).

3.2. NS Bifurcation: Existence, Direction and Stability.

3.2.1. Existence of NS Bifurcation: We will introduce the following Lemma for the existence of NS
bifurcation with the help of explicit Flip-NS bifurcation criterion.

Lemma 3.4. [26, 28] Let us consider an n-dimensional discrete system as follows: Yk+1 = Hυ(Yk), with identic
conditions (3.1), (3.2) and (3.3) stated in Lemma 3.1 . Next, we assume that the following conditions hold well:

(CT1) Eigenvalue condition: N−
n−1(υ0, u) = 0,N+

n−1(υ0, u) > 0, Dυ0(1) > 0, (−1)
n
Dυ0(−1) > 0,N±

i (υ0, u) >

0 for i = n− 3, n− 5, ..., 2(or1) when n is odd (or even respectively)
(CT2) Transversality Condition:

(
d
dυ

(
N−
n−1(υ, u)

))
υ=υ0

6= 0.
(CT3) Non-resonance condition: cos

(
2π
l

)
6= ϕ ,where l = 3, 4, 5, ... and ϕ = 1 −

0.5Dυ0(1)N−
n−3 (υ0, u) /N+

n−2 (υ0, u), then the NS bifurcation will occur at the critical value υ0.

Furthermore, if we choose n = 3 , the subsequent lemma will give the necessary and sufficient parametric
conditions for which system (1.2) underlies NS bifurcation if bifurcation parameter % passes its critical value.

Lemma 3.5. The NS bifurcation of system (1.2) occurs around the fixed point E+ at % = %NS if and only if
1− κ1 + κ0(κ2 − κ0) = 0,

1 + κ1 − κ0(κ2 + κ0) > 0,

1 + κ2 + κ1 + κ0 > 0,

1− κ2 + κ1 − κ0 > 0,
d
d% (1− κ1 + κ0 (κ2 − κ0))%=%NS

6= 0,

and

cos
(

2π
l

)
6= 1− 1+κ2+κ1+κ0

2(1+κ0) , l = 3, 4, 5, . . .

where κ2, κ1, κ0 are given as in (2.5) with

%NS = 1
48c2 +

(
16c− 8c2(a(b−6c)−6c(−b+c))

Ψ − 8Ψ
ab

)
,

Ψ =
√

3(a3b2(b− 9c)c3 − 9a2b2(b− 7c)c4 + 3
√

3
√

Φ),

Φ = −a3b3c8(a3(b− 8c)− 8(b− c)3
c− 2a2(b2 − 5bc− 12c2) + a(b3 + 10b2c− 95bc2 − 24c3)).
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Proof: We take n = 3 and consider % as a bifurcation parameter, by using Lemma 3.4 and Lemma 2.3, we
get:

N−
2 (%) = 1− κ1 + κ0 (κ2 − κ0) = 0,

N+
2 (%) = 1 + κ1 − κ0 (κ2 + κ0) > 0,

D%(1) = 1 + κ2 + κ1 + κ0 > 0,

(−1)3D%(−1) = 1− κ2 + κ1 − κ0 > 0,(
d
d%

(
N−

2 (%)
))
%=%NS

= d
d% (1− κ1 + κ0 (κ2 − κ0))%=%NS

6= 0

and

1− 0.5D%(1)N−
0 (h)/N+

1 (%) = 1− 1+κ2+κ1+κ0

2(1+κ0) 6= cos
(

2π
l

)
, l = 3, 4, 5 . . .

Set

NSBE+
= {(a, b, c, %) : % = %NS , a, b, c > 0},

and for parameter perturbation in a small neighbourhood of NSBE+
, two roots (eigenvalues) of (2.4) are

complex conjuagte having modulus one and the magnitude of other root is not equal to one, then the system
(1.2) experiences NS bifurcation around E+.

3.2.2. Direction and Stability of NS Bifurcation. This section will present the direction of NS bifurcation
with the help of center manifold theory and bifurcation theory.

Next, we choose the fixed point E+(x+, y+, z+) of system (1.2) with arbitrary parameter (a, b, c, %) ∈
NSBE+

. Let, % = %NS , then the matrix J(E+) has the eigenvalues satisfying

|µi(%NS)| = 1, i = 1, 2 (3.10)

and µ3(%NS) 6= 1.

For eigenvalues µ(%NS) and µ̄(%NS), let m1,m2 ∈ C3 be two eigenvectors of A(%NS) and AT (%NS) re-
spectively such that the following conditions hold:

A (%NS)m1 = µ (%NS)m1, A (%NS) m̄1 = µ̄ (%NS) m̄1,

AT (%NS)m2 = µ̄ (%NS)m2, A
T (%NS) m̄2 = µ (%NS) m̄2,

(3.11)

and the eigenvector m1,m2 must satisfy the inner product property 〈m1,m2〉 = 1 where 〈m1,m2〉 =

m11m21 + m12m22 + m13m23 =
∑3
i=1m1im2i. We decompose X ∈ R3 as X = zm1 + z̄m̄1 by consid-

ering % vary near to %NS and for z ∈ C. The explicit formula of z is z = 〈m2, X〉. So, the system (3.5)
transformed to the following system for |%| close to %NS :

z 7−→ µ(%)z + ĝ(z, z̄, %) (3.12)

where µ(%) = (1+ϕ̂(%))eiθ(%) with ϕ̂ (%NS) = 0 and ĝ(z, z̄, %) is a smooth complex-valued function. Applying
Taylor expansion to the function ĝ, we obtain
ĝ(z, z̄, %) =

∑
k+l≥2

1
k!l! ĝkl(%)zk−l with ĝkl ∈ C, k, l = 0, 1, . . . .

By using symmetric multi-linear vector functions, the Taylor coefficients can be defined

ĝ20 (%NS) = 〈m2, B(m1,m1)〉, ĝ11 (%NS) = 〈m2, B(m1, m̄1)〉,

ĝ02 (%NS) = 〈m2, B(m̄1, m̄1)〉, ĝ21 (%NS) = 〈m2, C(m1,m1, m̄1)〉.
(3.13)
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The sign of first Lyapunov coefficient l2(%NS) determines the direction of NS bifurcation and is defined by

l2 (%NS) = Re

(
µ̄ĝ21

2

)
− Re

(
(1− 2µ) µ̄2

2 (1− µ)
ĝ20ĝ11

)
− 1

2
|ĝ11|2 −

1

4
|ĝ02|2 (3.14)

where µ, µ̄ are pair of complex conjugate eigenvalues.
According to above discussion, the direction and stability of NS bifurcation can be presented in the

following theorem.

Theorem 3.6. Suppose (3.10) holds and l2(%NS) 6= 0, then NS bifurcation at fixed point E+(x+, y+, z+) for system
(1.2) if the % changes its value in small neighbourhood ofNSBE+

. Moreover, if l2(%NS) < 0 (resp. l2(%NS) > 0),
then there exists attracting (resp. repelling) smooth closed invariant curve bifurcate from E+ and the bifurcation is
sub-critical (resp. super-critical).

4. NUMERICAL SIMULATIONS

In this section, we will validate our theoritical results of system (1.2) by using numerical simulations
with the help of diagrams of bifurcation, phase portraits, MLEs and FD. For the investigations of bifurca-
tions, we take parameter values provided in table (1).

TABLE 1. Parameter values

Cases Varying parameter in range Fixed parameters System Dynamics
(i) 0.65 ≤ % ≤ 0.948 a = 0.74, b = 2.5, c = 0.35 Flip Bifurcation
(ii) 0.3 ≤ % ≤ 0.66 a = 2, b = 1.5, c = 0.65 NS Bifurcation
(iii) 2.6 ≤ a ≤ 7.5 b = 3, c = 1.3, % = 0.228122 NS Bifurcation
(iv) 2.6 ≤ a ≤ 7.5, 3 ≤ b ≤ 6 c = 1.3, % = 0.228122. NS Bifurcation

Example 1: We take the values of the parameters as in case (i). We find a fixed point E+ =

(0.935414, 0.935414, 0.35) and bifurcation point for the system (1.2) is evaluated at %F = 0.856434.
Now, at % = %F , the Jacobian matrix of system (1.2) takes the form

A(%F ) =

 0.366238 0.633762 0

−0.299752 1.29975 −0.801122

0.801122 0.801122 −1.14109

 .

and the eigenvalues of A(%F ) are µ1,2 = 0.762452± 0.591875i and µ3 = −1 with |µ1,2| = 0.96522. Moreover,

1− κ1 + κ0 (κ2 − κ0) = 0.856435 > 0,
1 + κ1 − κ0 (κ2 + κ0) = 0.0278016 > 0,
1 + κ2 + κ1 + κ0 = 0.813491 > 0,
1− κ2 + κ1 − κ0 = 0,
1 + κ0 = 1.93165 > 0,

1− κ0 = 0.0683513 > 0,
and
κ′2−κ

′
1+κ′0

3−2κ2+κ1
= 2.33526 6= 0.

This shows that all requirements of Lemma 3.2 are validated with (a, b, c, %) ∈ FBE+ . So, the criterion
for the existence of flip bifurcation is verified and therefore, system (1.2) experience a flip bifurcation
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around E+ at % = %F .

Next, let the two eigenvectors of A(%F ) corresponding to µ3(%F ) = −1, be m1,m2 ∈ R3 respectively.
Then, we obtain

m1 ∼ (−0.143274, 0.308864, 0.940253)T and m2 ∼ (−0.524191,−0.147704, 0.830694)T .

To set 〈m1,m2〉 = 1, we can choose normalized vector as m2 = γm2 where, γ = 1.22239. Therefore,

m1 ∼ (−0.143274, 0.308864, 0.940253)T and m2 ∼ (−0.640768,−0.180553, 1.02521)T .

Then from (3.9), the Lyapunov coefficient l1(%F ) = 0.0596487 is obtained. This guarentees the appropri-
ateness of Theorem 3.3.

The diagrams of bifurcation shown in Figure 1 (a,b,c) express the stability of fixed point E+ when
% < %F , loses its stability at % = %F and when % > %F , a period-doubling phenomena leads to chaotic
dynamics. The MLEs associated with Figure 1 (a) is shown in Figure 1 (d).

Example 2: We select the parameters as in case (ii) . By calculation, we find a fixed point
E+ = (0.987421, 0.987421, 0.65) of system (1.2) and the bifurcation point is obtained as %NS =

0.33142374934833646.
The Jacobian matrix is evaluated at E+ is

A(%NS) =

 0.337153 0.662847 0

−0.215425 1.21543 −0.327255

0.327255 0.327255 0.502864

 ,

and the eigenvalues of A(%NS) are µ1,2 = 0.906226± 0.422795i and µ3 = 0.242991 with |µ1,2| = 1.
Furthermore,
1− κ1 + κ0 (κ2 − κ0) = 0,
1 + κ1 − κ0 (κ2 + κ0) = 1.88191 > 0,
1 + κ2 + κ1 + κ0 = 0.141976 > 0,
1− κ2 + κ1 − κ0 = 4.73884 > 0,
d
d% (1− κ1 + κ0 (κ2 − κ0)) = −0.350079 6= 0

and
1− 1+κ2+κ1+κ0

2(1+κ0) = 0.906226.

From the resonance condition cos
(

2π
l

)
= 0.906226, we get l = ±14.3936.

So, the criterion for the existence of NS bifurcation are fulfilled with (a, b, c, %) ∈ NSBE+
. This confirms

the correctness of Lemma 3.5. Therefore, a NS bifurcation occurs around fixed point E+ if % crosses its
critical value %NS .

Let m1,m2 ∈ C3 be two complex eigenvectors of A(%NS) and AT (%NS) corresponding to µ1,2, respec-
tively. Therefore,
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m1 ∼ (0.484688 + 0.251296i, 0.255831 + 0.524901i, 0.600797)T and m2 ∼ (−0.219176 −
0.348147i, 0.795239,−0.307428− 0.32224i)T .

For 〈m1,m2〉 = 1, we can take normalized vector as m2 = γm2 where, γ = −0.314824 + 1.30389i. Then

m1 ∼ (0.484688+0.251296i, 0.255831+0.524901i, 0.600797)T andm2 ∼ (0.522948−0.176177i,−0.250361+

1.03691i, 0.516951− 0.299404i)T .

Also by (3.13) the Taylor coefficients are , ĝ20 = −0.121403 + 0.332837i, ĝ11 = 0.136013 +

0.250931i, ĝ02 = 0.212633 + 0.0643138i, ĝ21 = 0.

From (3.14), we obtain the Lyapunov coefficient l2(%NS) = −0.110501 < 0. Therefore, the NS bifurcation
is super-critical and the requirements of Theorem 3.6 are established.

The NS bifurcation diagrams are displayed in Figure 2 (a,b,c) which reveal that the condition of stability
for the positive fixed point E+ occurs when % < %NS , loses its stability at % = %NS and there appears an
attracting closed invariant curve when % > %NS . The MLEs and FD related to Figure 2 (a) are shown in
Figure 2 (d,e). The non stability of system dynamics are justified with the sign of MLEs.

The phase portraits of system (1.2) corresponding to diagram of bifurcation shown in Figure 2 (a) are
plotted in Figure 3. This figure explicitly illustrate the mechanism of how an invariant smooth closed curve
bifurcates from stable fixed pointE+ when % changes near its critical value. We noticed that NS bifurcations
occurs at % = %NS (see in Figure 3(b)). When % > %NS , there appears an invariant closed curve and further
increasing of %, NS bifurcation instigate a route to chaos.
Example 3: We choose the value of parameters as given in case (iii) and consider a as bifurcation parameter.
We obtain a fixed point E+ = (1.97484, 1.97484, 1.3) of system (1.2) and the bifurcation point is calculated
as aNS = 6.50002. Moreover,

1− κ1 + κ0 (κ2 − κ0) = 0,
1 + κ1 − κ0 (κ2 + κ0) = 1.581 > 0,
1 + κ2 + κ1 + κ0 = 0.601881 > 0,
1− κ2 + κ1 − κ0 = 1.94525 > 0,
d
da (1− κ1 + κ0 (κ2 − κ0)) = 0.0679625 6= 0

and

1− 1+κ2+κ1+κ0

2(1+κ0) = 0.793552.

From the resonance condition cos
(

2π
l

)
= 0.793552, we get l = ±9.6048.

So, the the existence of NS bifurcation criterion are fulfilled. This shows that the correctness of Lemma
3.5. At a = aNS the eigenvalues values are µ1,2 = 0.793552 ± 0.608502i and µ3 = −0.45771 with |µ1,2| = 1

and the Lyapunov coefficient l2(aNS) = −0.0644966 < 0 is obtained. Hence, the NS bifurcation is
super-critical and it justifies the conditions of Theorem 3.6 . The bifurcation diagrams of system (1.2) with
respect to bifurcation parameter a are plotted in Figure 4 (a,b,c). We noticed that the system enters into a
chaotic window when a < aNS and the fixed point E+ is unstable. NS bifurcation takes place at a = aNS

and when a > aNS , the system dynamics jump to a non-chaotic window. The MLEs and FD related to
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Figure 4 (a,b,c) are shown in Figure 4 (d,e). Then the sign of MLEs confirms the occurence of chaotic
dynamics in system (1.2).
The phase portraits of system (1.2) associated with Figure 4 (a) are displayed in Figure 5. We noticed that
as the values of a increasing the system dynamics jump from a chaotic state to stable state through NS
bifurcations.

Example 4: We consider the parameter values in case (iv). Varying two parameters, we observe that the
system (1.2) can exhibit complex dynamical behavior. In two-dimensional parameter space, the diagrams
of bifurcation are presented in Figure 6(a). Figure 6(b) shows the 2-D projected MLEs onto (a, b) plane.
From Figure 6(a), one can notice that the growth of parameter b advances the NS bifurcation with respect to
bifurcation parameter a, that is, the system dynamics enter into stable state earlier. The 2-D parameter (a, b)

space helps to select parameter values to observe how do system dynamics switch from stable window
to unstable window or vice-versa. For example, we observe chaotic trajectories exist in the system for
parameters a = 3, b = 3 whereas stable trajectories exist for a = 6.75, b = 3 (see Figure 4), which are
conformable from the sign of MLEs presented in Figure 6 (b). The critical value curves (∆2 = 0 and Ω2 =

0) of NS bifurcation of system (1.2) in (a, b) plane and (%, a) plane are plotted in Figures 7 (a, b) respectively,
where

∆2 = a2(0.00483026− 0.00044834b)b+ a(−0.037145 + 0.00483026b)b,

and

Ω2 = a(−0.675− 1.6575%)%3 + a2%3(1.5− 4.2%+ 5.85%2 − 3.8025%3).

Figure 7 (a) illustrates that on the left region of the curve, the fixed point E+ is stable (consistent with
Figures 6 (a,b)) whereas on the right region of the curve the fixed point is stable and Figure 7 (b) illustrates
that on the region below curve, the fixed point E+ is unstable whereas on the region above the curve the
fixed point is stable. Specially, with the growth of parameter a, bifurcation delays for system (1.2) with
respect to bifurcation parameter %.

4.1. Fractal Dimension. The chaotic attractors of a system is characterised by the measure of the fractal
dimensions (FD) and is defined by [3]

D̂L = k +

∑k
j=1 tj

|tk+1|
(4.1)

where k is the largest integer such that
∑k
j=1 tj ≥ 0 and

∑k+1
j=1 tj < 0 and tj ’s are Lyapunov exponenets.

Now, for the system (1.2) the fractal dimensions takes the form:

D̂L = 2 +
t1 + t2
|t3|

(4.2)

The chaotic dynamics of the system (1.2) ( see Figure 3) are quantified with the sign of FD ( see Figure
2 (e)) which guarantees that increasing the values of the parameter % causes unstable system dynamics for
discrete-time Lü system.

5. CHAOS CONTROL

Hybrid control strategy [29] is applied to system (1.2) controlling chaos. We rewrite our uncontrolled
system (1.2) as

Xn+1 = G(Xn, %) (5.1)
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where Xn ∈ R3, G(.) is non-linear vector function and % ∈ R is bifurcation parameter. Applying hybrid
control strategy, the controlled system of (5.1) becomes

Xn+1 = ρG(Xn, %) + (1− ρ)Xn (5.2)

where 0 < ρ < 1 is the control parameter. Now, if we implement the above mentioned control strategy
to system (1.2), then we get the following controlled system

xn+1 = ρ (xn + % (a(yn − xn))) + (1− ρ)xn,

yn+1 = ρ (yn + % (−xnzn + cyn)) + (1− ρ) yn,

zn+1 = ρ (zn + % (xnyn − bzn)) + (1− ρ) zn

(5.3)

For the controlled system (5.3), the Jacobian matrix at fixed point E+(x+, y+, z+) (which is a fixed point
of system (1.2)) takes the form

J(E+) =

 1− a%ρ a%ρ 0

−z+%ρ 1 + c%ρ −x+%ρ

y+%ρ x+%ρ 1− b%ρ

 ,

Then,the zeroes of |µI − J(E+)| (eigenvalues of J ) satisfy the equation

µ3 + ε2µ
2 + ε1µ+ ε0 = 0. (5.4)

where,
ε2 = −3 + %ρ(a+ b− c),
ε1 = 3 + 2c%ρ+ x+2

%2ρ2 − b%ρ(2 + c%ρ) + a%ρ(−2 + %ρ(b− c+ z+)),

ε0 = −1− c%ρ− x+2
%2ρ2 + b%ρ(1 + c%ρ)+

a%ρ(1 + %ρ(c− z+) + %2ρ2(x+2
+ x+y+)− b%ρ(1 + %ρ(c− z+)))

(5.5)

Lemma 5.1. If the fixed point E+(x+, y+, z+) of the uncontrolled system (1.2) is unstable, then it is a sink (stable)
for the controlled system (5.3) if the roots of (5.4) lie inside open disk satisfying conditions in Lemma 2.1.

Example 5: To see the effectiveness of hybrid control strategy to control chaotic (unstable) system
dynamics, we fix a = 2, b = 1.5, c = 0.65 with % = 0.6 > %NS . Then, it shows that the fixed point
E+(0.987421, 0.987421, 0.65) of system (1.2) is unstable (see Fig 2), but this fixed point is stable for the
controlled system (5.3) iff 0 < ρ < 0.5523729155805587. Taking ρ = 0.45, the unstable system dynamics
around E+ are eliminated showing that E+ is a sink for the controlled system (5.3) which have been
displayed in Figure 8.

6. CONCLUSION

We investigate qualitative analysis of discrte-time chaotic Lü system which is obtained with implemen-
tation of Forward Euler scheme. We use explicit Flip-NS bifurcation criterion for the existence of Flip and
NS bifurcations of system (1.2) at fixed point E+. Also, we determine direction of both bifurcations by the
applications of center manifold theory and bifurcation theory. Specifically, we observe that system (1.2)
emerges a Flip or NS bifurcation around E+ when % varies in a small vicinity of either the set FBE+

or
NSBE+

. Figures (1 and 2) illustrate that for small values of integral step size, % system dynamics are sta-
ble, but for larger integral step size system dynamics are unstable producing complex dynamical behavior
through NS or Flip bifurcation. For the NS bifurcation diagram, we find closed invariant curve when %

passes its critical value and attracting chaotic set for growth of %. Moreover in Figure 4, we notice that for
small value of parameter a the system enters chaotic window and as the increase of parameter a the system
(1.2) goes to stable window via NS bifurcation. For the mechanism of both bifurcations, system dynamics
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switch from stable state to unstable state and trigger a route to chaos and vice-versa. We present the 3D
bifurcation diagrams to see how the NS bifurcation advance or delay when parameter varies in two dimen-
sional parameter space. In addition, the chaotic dynamics of system (1.2) is justified with sign of MLEs and
FD. Finally, we apply a hybrid control strategy to eliminate unstable system trajectories. For this discrete
system, the other properties like complexity, control and synchronization and co-dimension-2 bifurcation
need further study.

(a) (b)

(c) (d)

FIGURE 1. Flip Bifurcation Diagram in (a) (%, x) plane, (b) (%, y) plane, (c) (%, z) plane(d) MLEs
related to (a). (x0, y0, z0) = (0.93, 0.93, 0.33).
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(a) (b)

(c) (d)

(e)

FIGURE 2. NS Bifurcation diagram in (a) (%, x) plane, (b) (%, y) plane, (c) (%, z) plane, (d) MLEs (e)
FD, (x0, y0, z0) = (0.98, 0.98, 0.6).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 3. Phase portrait for different values of % corresponding to Figure 2 a,b,c. Red ∗ is the
fixed point E+.
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(a) (b)

(c) (d)

(e)

FIGURE 4. NS Bifurcation diagram in (a) (a, x) plane, (b) (a, y) plane, (c) (a, z) plane, (d) MLEs (d)
FD , (x0, y0, z0) = (1.95, 1.95, 1.2).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

FIGURE 5. Phase portrait for different values of a corresponding to Figure 4 a,b,c. Red ∗ is the
fixed point E+.

(a) (b)

FIGURE 6. System Dynamics for control parameters a and b (a)NS bifurcation in (a, b, x) space for
a ∈ [2.6, 7.5] and b = 3, 3.6, 4.2, 5.04, 6 ∈ [3, 6] (b) The projection of MLEs onto (a, b) plane.



Pan-Amer. J. Math. 1 (2022), 7 19

(a) (b)

FIGURE 7. Critical value curve of NS bifurcation. (a) Critical value curve in parameters (a, b) plane
with c = 1.3, % = 0.228122, (b) Critical value curve in parameters (%, a) plane with b = 1.5, c = 0.65.

(a) (b)

FIGURE 8. Controlling Chaos of system (5.3). (a) Time history of x, y, z (b) Phase diagram
of system (5.3).
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