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A STUDY ON SOME CLASSES OF HYBRID LANGEVIN PANTOGRAPH ψ-CAPUTO
FRACTIONAL COUPLED SYSTEMS

HOUARI BOUZID1, ABDELKADER BENALI1, ABDELKRIM SALIM2,3,∗, AND LOUIZA TABHARIT4

ABSTRACT. This paper focuses on the study of a class of coupled systems of hybrid Langevin fractional pan-
tograph differential equations involving the ψ-Caputo fractional derivative within Banach spaces. By applying
Banach’s fixed-point theorem, we demonstrate the uniqueness of solutions to our coupled system. The existence
of the solution is then shown using Dhage’s fixed-point theorem. Additionally, we analyze the stability in the
sense of Ulam-Hyers and Ulam-Hyers-Rassias. Finally, we present an example to illustrate our results.

1. INTRODUCTION

Fractional calculus is a very important tool for dealing with the complex structures that appear in
various fields, including biology, chemistry, physics, control theory, wave propagation, signal and image
processing, etc. This calculus is characterized by an extensive theory and numerous applications, as it
involves extending differentiation and integration operations from integer orders to non-integer orders,
see [2, 10, 11, 35, 38]. Recently, researchers have developed numerous operators. In a recent publication by
Ricardo Almeida [6] in 2017, a novel definition of the fractional operator was introduced, leading to the
development of numerous operators by researchers. This definition, known as the ψ-Caputo fractional
operator, thereby expands the range of existing operators such as the Caputo, the Caputo-Hadamard, the
Caputo-Erdélyi-Kober, and the Caputo-Katugampola, see [23].

Nonlinear coupled systems involving fractional derivatives are an important topic of modern study
by researchers, as they arise in various problems in applied mathematics. Consequently, numerous
research papers and books have been published in which researchers have discussed the existence,
stability, and uniqueness of solutions for different systems involving fractional differential equations and
inclusions, using various fractional derivatives and different types of conditions. For further details,
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see [5, 8, 12, 30, 31, 34]. Many researchers have studied dynamic systems as special cases of fractional differ-
ential equations. Hybrid fractional differential equations are among the contemporary topics in scientific
research and have been studied by numerous researchers. This class of equations involves the partial
differentiation of an unknown hybrid function with a nonlinear dependence on that function. Some recent
results related to hybrid differential equations can be found in a series of research papers, see [3,13,17,26,27].

In [25], the authors Matar et al. investigated the following nonlinear fractional differential hybrid system
subject to periodic boundary conditions of the form

CDα1,ψ
0+ (x(τ)g1(τ)) = f1(τ, x(τ), y(τ)), τ ∈ [a, b],

CDα2,ψ
0+ (y(τ)g2(τ)) = f2(τ, x(τ), y(τ)), τ ∈ [a, b],

x(a) = x(b), x′(a) = x′(b),

y(a) = y(b), y′(a) = y′(b),

where CDα1,ψ
0+ and CDα2,ψ

0+ are the ψ-Caputo fractional derivatives of order α1, α2 ∈ (1, 2),
(gi)i=1,2 : [a, b]→ R \ {0} and (fi)i=1,2 : [a, b]× R2 → R are continuous functions.

In 1908, Paul Langevin presented in the classic form of the Langevin equation to describe the evolution
of physical phenomena in fluctuating environments [24]. subsequently, various generalizations of the
Langevin equation were examined by many researchers, we mention here some works, see [18, 19].

In [28], Salem et al. study the existence and uniqueness of solutions to dual systems of nonlinear frac-
tional Langevin differential equations of the Caputo type with boundary value conditions given as follows:

CDα1

0+

(
CDβ1

0+ + λ1

)
x(τ) = f1(τ, x(τ), y(τ)), τ ∈ [0, 1], 0 < β1 ≤ 1, 1 < α1 ≤ 2,

CDα2

0+

(
CDβ2

0+ + λ2

)
y(τ) = f2(τ, x(τ), y(τ)), τ ∈ [0, 1], 0 < β2 ≤ 1, 1 < α2 ≤ 2,

x(0) = 0, CDβ1

0+x(0) = Γ(β1 + 1) γ1I
ν1
0+x(ε1),∑m1

i=1 ρi1x(εi1) = µ1
ABIν20+x(ε2),

y(0) = 0, CDβ2

0+y(0) = Γ(β2 + 1) γ2I
ν3
0+y(ε3),∑m2

i=1 ρi2y(εi2) = µ2
ABIν40+y(ε4),

where CD0+ is the Caputo fractional derivative of order αj and βj for j = 1, 2. ABI0+ and γI0+ are
Atangana-Baleanu, and Katugampola fractional integrals, respectively. γi > 0 and Λi, µi ∈ R for = 1, 2,
νn ∈ R for n = 1, 2, 3, 4. ρij ∈ R for i = 1, ...,mi and j = 1, 2. 0 < εn < ε1 < ε2 < ε3 < · · · < εmi for i = 1, 2

and n = 1, 2, 3, 4. f1, f1 : [0, 1]× R2 → R are continuous functions.

The pantograph equation is an effective differential equation used in various fields, including electro-
dynamics, astrophysics, and cell growth. This has led to numerous recent works on the fractional-order
pantograph equation by several researchers, see [15, 22, 39].

Additionaly [4], I. Ahmad et al. demonstrated the existence of solutions for a nonlinear coupled system
of pantograph fractional differential equations with Caputo fractional derivatives of the form

CDα1

0+x(τ) = f1(τ, x(τ), x(ϑτ), y(τ)), τ ∈ [0, 1],
CDα2

0+y(τ) = f2(τ, x(τ), y(τ), y(ϑτ)), τ ∈ [0, 1],

a1x(0)− b1x(ϑ1)− c1x(1) = g1(x),

a2x(0)− b2x(ϑ2)− c2y(1) = g2(y),
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where CDαi
0+ represent the Caputo derivatives of order αi ∈ (0, 1), 0 < ϑi < 1, a1 6= bi + ci which

ai bi, ci ∈ R, fi : [0, T ]× R3 → R and gi : C([0, 1],R)→ R, i = 1, 2.

In recent times, substantial attention has been directed towards investigating the Ulam stability of so-
lutions for coupled systems of fractional differential equations. In [32], A. Salim and al. investigate the
existence, uniqueness and Ulam stability of differential coupled system involving the Riesz-Caputo deriv-
ative with Boundary Conditions of the from


RC
0 Dα1

T x(τ) = f1(τ, x(τ), y(τ),RC0 Dα1

T x(τ),RC0 Dα2

T y(τ)), τ ∈ [0, T ],
RC
0 Dα2

T y(τ) = f2(τ, x(τ), y(τ),RC0 Dα1

T x(τ),RC0 Dα2

T y(τ)), τ ∈ [0, T ],

β1x(0) + β2x(T ) = β3,

γ1y(0) + γ2y(T ) = γ3,

where RC
0 Dαi

T represent the Riesz-Caputo derivatives of order αi ∈ (0, 1) for i = 1, 2, γj , βj ∈ R for
j = 1, 2, 3, γ1 + γ2 6= 0 and β1 + β2 6= 0. Also f1, f2 : [0, T ]× R4 → R are given continuous functions.

The study of Ulam stability in fractional differential equations introduces a novel approach for re-
searchers, paving the way for exploring various topics in nonlinear analysis. Moreover, the stability
analysis of fractional-order differential equations is more complex than that of classical differential
equations, due to the nonlocal nature and weakly singular kernels of fractional derivatives. Consequently,
Ulam-type stability issues have attracted considerable interest from numerous researchers, as evidenced
in [14, 20, 21, 29, 34, 37].

Taking motivation from previous mentioned works, this paper introduces nonlinear hybrid Langevin
fractional pantograph equations. This study investigates the existence, uniqueness and Ulam-Hyers stabil-
ity of solutions for ψ-Caputo type to the following problem:



CDα1,ψ

a+1

(
CDβ1,ψ

a+1

(
x(τ)

g1(τ, x(τ))

)
+ λx(τ)

)
= f1(τ, x(τ), y(ξτ)), τ ∈ J = [0, a],

CDα2,ψ
0+

(
CDβ2,ψ

0+

(
y(τ)

g2(τ, y(τ))

)
+ νy(τ)

)
= f2(τ, y(τ), x(ρτ)), τ ∈ J = [0, a],

x(τ) |τ=0= 0, x′(τ) |τ=0= 0, x(τ) |τ=ε1= 0, 0 < ε1 < a,

y(τ) |τ=0= 0, y′(τ) |τ=0= 0, y(τ) |τ=ε2= 0, 0 < ε2 < a,

(1.1)

where CDαi,ψ
0+ and CDβi,ψ

0+ are the ψ-Caputo fractional derivatives of order α1, α2 ∈ (0, 1], β1, β2 ∈ (1, 2],
λ, ν ∈ R \ {0} and 0 < ξ, ρ < 1. The given functions (fi)i=1,2 : J × R2 → R and (gi)i=1,2 : J × R→ R \ {0}
are continuous.

This research stands out for its novelty, as it integrates and generalizes various types of fractional deriva-
tives for multiple values of the function ψ as follows:

1. ψ(τ) = τ , then the coupled system (1.1) reduce to the Caputo-type system.
2. ψ(τ) = ln τ , then the coupled system (1.1) reduce to the Caputo-Hadamard-type system.
3. ψ(τ) = τσ , then the coupled system (1.1) reduce to the Caputo-Erdélyi-Kober-type system.
4. ψ(τ) = τσ

σ , σ > 0 coupled system (1.1) reduce to the Caputo-Katugampola-type system.
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Thus, we can consider our results about systems with generalized fractional operator as the natural
continuation of previous results in the literature.

The structure of our paper is as follows: in section 2, we introduce some important notions and defini-
tions. Section 3 establishes the uniqueness result using Banach’s fixed-point theorem, and proves the ex-
istence results by applying Dhage’s fixed-point theorem for the ψ-Caputo fractional coupled system (1.1).
Section 4 covers stability in the sense of Ulam-Hyers and Ulam-Hyers-Rassias, along with its generaliza-
tions. Finally, in the concluding part, we provide an example to illustrate the main findings of our study.

2. PRELIMINARIES

In this section, we recall some definitions and basic results about fractional calculus.

We denote By C(J,R) the Banach space of all continuous functions from J into R with the norm ‖η‖∞ =

sup
τ∈J
|η(τ)| and let Cn(J,R) represent the space of functions that are n-times continuously differentiable on

J .
Now, we consider the following Banach space

Ξ := {(x, y) : x, y ∈ C(J,R)},

endowed with the norm
‖(x, y)‖Ξ = max{‖x‖∞, ‖y‖∞}.

Let ψ ∈ C1(J,R) be an increasing differentiable function such that ψ(τ) 6=0, for all τ ∈ J .

Definition 2.1 ( [7]). For α > 0, the ψ-Riemann-Liouville fractional integral of order α for an integrable
function η : J 7→ R is given by :

(2.1) Iα,ψ0+ η(τ) =

∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))α−1

Γ(α)
η(s)ds,

where Γ is the classical Euler Gamma function.

Definition 2.2 ( [7]). Let n−1 < α < n , η : J 7→ R be an integrable function and ψ is defined as in Definition
2.1. The ψ-Riemann Liouville fractional derivative of order α of a function η is defined by

Dα,ψ
0+ η(τ) =

[
1

ψ′(τ)

d

dτ

]n
In−α,ψ0+ η(τ)

=

[
1

ψ′(τ)

d

dτ

]n ∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))n−α−1

Γ(n− α)
η(s)ds,(2.2)

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Definition 2.3 ( [7]). Assume that η ∈ Cn(J,R) and ψ be defined as in Definition 2.1. ψ-Caputo fractional
derivative of a function η of order α ∈ (n− 1, n), is determined as

CDα,ψ
0+ η(τ) = In−α,ψ0+ η

[n]
ψ (τ),

where η[n]
ψ (τ) =

[
1

ψ′(τ)
d
dτ

]n
η(τ) and n = [α] + 1 for α /∈ N, n = α for α ∈ N. By the definition, we have

CDα,ψ
0+ η(τ) =


∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))n−α−1

Γ(n− α)
η

[n]
ψ (s)ds, n /∈ N,

η
[n]
ψ (τ), n ∈ N,

where N denotes the set of positive integers.
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Lemma 2.4 ( [7]). For α > 0, we obtain

I) CDα,ψ
0+ Iα,ψ0+ η(τ) = η(τ) for all functions η ∈ C(J,R).

II) If η ∈ Cn(J,R), then Iα,ψ0+
CDα,ψ

0+ η(τ) = η(τ)−
∑n−1
k=0

η
[k]
ψ (0)

k! [ψ(τ)− ψ(0)]k.

Lemma 2.5 ( [28]). Consider the functions η, ψ ∈ C(J,R) and α > 0, we have

I) Iα,ψ0+ (.) is linear and bounded form C(J,R) to C(J,R).
II) Iα,ψ0+ η (0) = lim

τ→0+
Iα,ψ0+ η(τ) = 0.

Lemma 2.6 ( [12, 36]). For α, β > 0 and η ∈ C(J,R). Then for each τ ∈ J , we have

(C1) Iα,ψ0+ [ψ(τ)− ψ(0)]β−1 =
Γ(β)

Γ(α+ β)
[ψ(τ)− ψ(0)]α+β−1,

(C2) if β > n ∈ N, then CDα,ψ
0+ [ψ(τ)− ψ(0)]β−1 =

Γ(β)

Γ(β − α)
[ψ(τ)− ψ(0)]β−α−1,

(C3) ∀k ∈ {0, 1, · · · , n− 1}, n is a positive integer, then CDα,ψ
0+ [ψ(τ)− ψ(0)]k = 0,

(C4) Iα,ψ0+ Iβ,ψ0+ η(τ) = Iα+β,ψ
0+ η(τ),

(C5) for any constant ρ, we always have CDα,ψ
0+ ρ = 0.

Theorem 2.7 (Banach’s fixed point theorem [33]). Let E be a Banach space and D : E → E a contraction, i.e.
there exists Λ ∈ [0, 1) such that

‖D(x1)−D(x2)‖ ≤ Λ‖x1 − x2‖,

for all x1, x2 ∈ R. Then D has a unique fixed point.

Theorem 2.8 (Dhage fixed point theorem [16]). Suppose that Σ is a non-empty subset of C(J,R), which closed
convex and bounded, V : C(J,R) → C(J,R), and U : Σ → C(J,R) are two operators satisfying the following
conditions:

D1) V is Lipschitizian with a constant C∗,
D2) U is completely continuous,
D3) η = VηUµ⇒ η ∈ Σ,∀µ ∈ Σ, and
D4) AVBU < 1,where BU = ‖BU(Σ)‖ = sup {‖U(η)‖ : η ∈ Σ} .

Then the operator equation η = VηUη has a solution.

3. MAIN RESULTS

3.1. Uniqueness and Existence of solutions.

Definition 3.1. A solution to the fractional boundary value problem (3.1), is defined as a function η ∈
C(J,R) that fulfills the equation (3.1) on J along with the specified boundary conditions.

Lemma 3.2. Let α ∈ (0, 1] , β ∈ (1, 2] and (K; H) ∈ C(J,R)×C(J,R \ {0}). Then, the fractional boundary value
problem 

CDα,ψ
0+

[
CDβ,ψ

0+

[
η(τ)

H(τ)

]
+ λη(τ)

]
= K(τ), τ ∈ J = [0, a],

η(τ) |τ=0= 0, η′(τ) |τ=0= 0,

η(τ) |τ=ε= 0, 0 < ε < a,

(3.1)

has a unique solution defined by

η(τ) := H(τ)

[∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))α+β−1

Γ(α+ β)
K(s)ds
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− λ
∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))β−1

Γ(β)
η(s)ds

+
λ(ψ(τ)− ψ(0))β

(ψ(ε)− ψ(0))β

∫ ε

0

ψ′(s)(ψ(ε)− ψ(s))β−1

Γ(β)
η(s)ds

− (ψ(τ)− ψ(0))β

(ψ(ε)− ψ(0))β

∫ ε

0

ψ′(s)(ψ(ε)− ψ(s))α+βk−1

Γ(α+ β)
K(s)ds

]
.(3.2)

Proof. Let η ∈ C(J,R) be a solution of the problem (3.1), then by using Lemma 2.4, we have

(3.3) η(τ) := H(τ)

[
Iα+β,ψ
0+ K(τ) + c0

[ψ(τ)− ψ(0)]β

Γ(β + 1)
− λIβ,ψ0+ η(τ) + c1 + c2[ψ(τ)− ψ(0)]

]
,

where cj ∈ R, with j = 0, 1, 2. By the condition η(τ) |τ=0= 0 and η′(τ) |τ=0= 0, we obtain c1 := 0 and
c2 := 0.

On the other hand by η(τ) |τ=ε= 0, we have

c0 :=
Γ(β + 1)

(ψ(ε)− ψ(0))β

(
λIβ,ψ0+ η(ε)− Iα+β,ψ

0+ K(ε)
)
.(3.4)

Finally, replacing these constants into (3.3), we get (3.2).
Conversely, let us now demonstrate that if (3.2) satisfies Eq (3.1), then the aforementioned equation can

be expressed as

η(τ)

H(τ)
:= Iα+β,ψ

0+ K(τ) +
[ψ(τ)− ψ(0)]β

(ψ(ε)− ψ(0))β

(
λIβ,ψ0+ η(ε)− Iα+β,ψ

0+ K(ε)
)
− λIβ,ψ0+ η(τ).

Applying the ψ-Caputo derivative, CDβ,ψ
0+ on both sides and utilizing Lemma 2.4, we obtain

CDβ,ψ
0+

(
η(τ)

H(τ)

)
:= Iα,ψ0+ K(τ) +

Γ(β + 1)

(ψ(ε)− ψ(0))β

(
λIβ,ψ0+ η(ε)− Iα+β,ψ

0+ K(ε)
)
− λη(τ).

Reapplying, CDα,ψ
0+ to the above equation, we obtain

CDα,ψ
0+

[
CDβ,ψ

0+

[
η(τ)

H(τ)

]
+ λη(τ)

]
= K(τ).

Lastly, it is clear that the function in (3.2) meets the associated boundary conditions. This completes the
proof. �

Now, we define the operator T : Ξ −→ Ξ for τ ∈ J , as follows

T(x, y)(τ) := (T1(x, y)(τ),T2(x, y)(τ)),

such as

T1(x, y)(τ) := g1(τ, x(τ))

[
Φ(x, y)(τ)− (ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β1
Φ(x, y)(ε1)

]
,

and

T2(x, y)(τ) := g2(τ, y(τ))

[
Ψ(x, y)(τ)− (ψ(τ)− ψ(0))β2

(ψ(ε2)− ψ(0))β2
Ψ(x, y)(ε2)

]
,

where

Φ(x, y)(τ) :=

∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))α1+β1−1

Γ(α1 + β1)
f1(s, x(s), y(ξs))ds

−λ
∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))β1−1

Γ(β1)
x(s)ds,
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and

Ψ(x, y)(τ) :=

∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))α2+β2−1

Γ(α2 + β2)
f2(s, y(s), x(ρs))ds

−ν
∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))β2−1

Γ(β2)
y(s)ds.

The first result is achieved by a theorem derived from Dhages fixed-point theorem [16]. The following
hypotheses will be used in the sequel.

Theorem 3.3. Assume that the following hypotheses hold .

(cx1) The functions (fk)k=1,2 : J × R2 −→ R are continuous on J .
(cx2) The functions (gk)k=1,2 : J × R −→ R \ {0} are continuous and there exist functions Gk ∈ C(J, [0,∞))

that

|gk(τ, x1)− gk(τ, y1)| ≤ Gk(τ)|x1 − y1|,

for any x1, y1 ∈ R and τ ∈ J , with k = 1, 2.
(cx3) There exist functions P1

k,P
2
k,P

3
k ∈ C(J,R+) such that

|fk(τ, x1, x2)| < P1
k(τ) + P2

k(τ)|x1|+ P3
k(τ)|x2|,

for all τ ∈ J and (x1, x2) ∈ R2, with k = 1, 2.

(cx4) There exists κ > 0 such that

max{g0
1Πκ

1 , g
0
2Πκ

2}
1−max{‖G1‖∞Πκ

1 , ‖G2‖∞Πκ
2}
≤ κ,

and

(3.5) max{‖G1‖∞Πκ
1 , ‖G2‖∞Πκ

2} < 1,

where

Πκ
1 =

(
2(ψ(a)− ψ(0))α1+β1

Γ(α1 + β1 + 1)

)
‖P1

1‖∞

+

[(
2(ψ(a)− ψ(0))α1+β1

Γ(α1 + β1 + 1)

)
(‖P2

1‖∞ + ‖P3
1‖∞)

+
2|λ|(ψ(a)− ψ(0))β1

Γ(β1 + 1)

]
κ,

Πκ
2 =

(
2(ψ(a)− ψ(0))α2+β2

Γ(α2 + β2 + 1)

)
‖P1

2‖∞

+

[(
2(ψ(a)− ψ(0))α2+β2

Γ(α2 + β2 + 1)

)
(‖P2

2‖∞ + ‖P3
2‖∞)

+
2|ν|(ψ(a)− ψ(0))β2

Γ(β2 + 1)

]
κ,


‖G1‖∞ = sup

τ∈J
G1(τ), g0

1 = sup
τ∈J
|g1(τ, 0)|, ‖Pi1‖∞ = sup

τ∈J
Pi1(τ), i = 1, 2, 3.

‖G2‖∞ = sup
τ∈J

G2(τ), g0
2 = sup

τ∈J
|g2(τ, 0)|, ‖Pi2‖∞ = sup

τ∈J
Pi2(τ), i = 1, 2, 3.

Then the coupled system (1.1) has at least one solution on J .



Pan-Amer. J. Math. 4 (2025), 14 8

Proof. Define the set

Σ = {(x, y) ∈ Ξ : ‖(x, y)‖Ξ ≤ κ} .

Next, to convert the coupled system (1.1) into the framework of a system of operator equations as

(x, y)(τ) = (V1(x, y)(τ)U1(x, y)(τ),V2(x, y)(τ)U2(x, y)(τ)),

we defined the operators V = (V1,V2) : [C(J,R)]2 → C(J,R) and U = (U1,U2) : Σ→ C(J,R) as follows

V1(x, y)(τ) = g(τ, x(τ)),

V2(x, y)(τ) = g(τ, y(τ)),

and

U1(x, y)(τ) = Φ(x, y)(τ)− (ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β11
Φ(x, y)(ε1),

U2(x, y)(τ) = Ψ(x, y)(τ)− (ψ(τ)− ψ(0))β2

(ψ(ε2)− ψ(0))β2
Ψ(x, y)(ε2),

for τ ∈ J .

In the following steps, we show that the operators V and U satisfy all the conditions of Theorem 2.8.

Step 1: Firstly, we show that V = (V1,V2) is Lipschitzian on [C(J,R)]2. Let (x, y), (x̄, ȳ) ∈ [C(J,R)]2. Then
by (C2) we have

|V1(x, y)(τ)−V1(x̄, ȳ)(τ)| = |g1(τ, x(τ))− g1(τ, x̄(τ)|

≤ ‖G1‖∞‖x− x̄‖∞,

then,

(3.6) ‖V1(x, y)−V1(x̄, ȳ)‖∞ ≤ ‖G1‖∞‖x− x̄‖∞.

As before, we have

(3.7) ‖V2(x, y)−V2(x̄, ȳ)‖∞ ≤ ‖G2‖∞‖y − ȳ‖∞,

for all (x, y), (x̄, ȳ) ∈ C(J,R)× C(J,R). Consequently, by the definition of operator V we obtain

‖V(x, y)−V(x̄, ȳ)‖Ξ = ‖(V1(x, y),V2(x, y))− (V1(x̄, ȳ),V2(x̄, ȳ))‖Ξ
= ‖(V1(x, y)−V1(x̄, ȳ)), (V2(x, y)−V2(x̄, ȳ))‖Ξ
≤ max{‖G1‖∞, ‖G2‖∞}‖x− x̄, y − ȳ‖Ξ,

Hence, V = (V1,V2) is Lipschitzian on C(J,R) × C(J,R) with a Lipschitz constant G∗ =

max{‖G1‖∞, ‖G2‖∞}.
Step 2: We demonstrate that the operator U = (U1,U2) is completely continuous on Σ. To achieve this,

we first establish that the operator U = (U1,U2) is continuous on C(J,R). Let {xn, yn}n∈N be a
sequence in Σ that converges to a point (x, y) ∈ ∆. Applying the Lebesgue dominated convergence
theorem, we obtain

lim
n→+∞

U1(xn, yn)(τ)

= lim
n→+∞

{
Φ(xn, yn)(τ)− (ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β1
Φ(xn, yn)(ε1)

}
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= lim
n→+∞

{∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))α1+β1−1

Γ(α1 + β1)
f1(s, xn(s), yn(ξs))ds

−λ
∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))β1−1

Γ(β1)
xn(s)ds

− (ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β1

(∫ ε1

0

ψ′(s)(ψ(ε1)− ψ(s))α1+β1−1

Γ(α1 + β1)
f1(s, xn(s), yn(ξs))ds

−λ
∫ ε1

0

ψ′(s)(ψ(ε1)− ψ(s))β1−1

Γ(β1)
xn(s)ds

)}
= U1(x, y)(τ).(3.8)

Hence,

‖U1(xn, yn)−U1(x, y)‖∞ −→ 0,

for all τ ∈ J . Similarly, we also have

lim
n→+∞

U2(xn, yn)(τ)

= lim
n→+∞

{
Ψ(xn, yn)(τ)− (ψ(τ)− ψ(0))β2

(ψ(ε2)− ψ(0))β2
Ψ(xn, yn)(ε2)

}
= lim
n→+∞

{∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))α2+β2−1

Γ(α2 + β2)
f2(s, yn(s), xn(ρs))ds

−ν
∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))β2−1

Γ(β2)
yn(s)ds

− (ψ(τ)− ψ(0))β2

(ψ(ε2)− ψ(0))β2

(∫ ε2

0

ψ′(s)(ψ(ε2)− ψ(s))α2+β2−1

Γ(α2 + β2)
f1(s, yn(s), xn(ρs))ds

−ν
∫ ε2

0

ψ′(s)(ψ(ε2)− ψ(s))β2−1

Γ(β2)
yn(s)ds

)}
= U2(x, y)(τ).(3.9)

Hence,

‖U2(xn, yn)−U2(x, y)‖∞ −→ 0,

Using (3.8)-(3.9), we deduce that

‖U(xn, yn)−U(x, y)‖Ξ −→ 0, n→ 0.

Therefore, this shows that U(Σ) is a continuous operator .
Next, we prove that the set U(Σ) = (U1,U2)(Σ) is a uniformly bounded in Σ. For any (x, y) ∈ Σ

and τ ∈ J , we have

|Φ(x, y)(τ)| ≤
(ψ(τ)− ψ(0))α1+β1

(
‖P1

1‖∞ + (‖P2
1‖∞ + ‖P3

1‖∞)κ
)

Γ(α1 + β1 + 1)

+
|λ|(ψ(τ)− ψ(0))β1κ

Γ(β1 + 1)
,

and

|Ψ(x, y)(τ)| ≤
(ψ(τ)− ψ(0))α2+β2

(
‖P1

2‖∞ + (‖P2
2‖∞ + ‖P3

2‖∞)κ
)

Γ(α2 + β2 + 1)

+
|ν|(ψ(τ)− ψ(0))β2κ

Γ(β2 + 1)
,
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which implies

|U1(x, y)(τ) ≤ |Φ(x, y)(τ)|+ (ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β1
|Φ(x, y)(ε1)|

≤
(ψ(τ)− ψ(0))α1+β1

(
‖P1

1‖∞ + (‖P2
1‖∞ + ‖P3

1‖∞)κ
)

Γ(α1 + β1 + 1)

+
2|λ|(ψ(τ)− ψ(0))β1κ

Γ(β1 + 1)

+
(ψ(τ)− ψ(0))β1(ψ(ε1)− ψ(0))α1

(
‖P1

1‖∞ + (‖P2
1‖∞ + ‖P3

1‖∞)κ
)

Γ(α1 + β1 + 1)

≤
(

2(ψ(a)− ψ(0))α1+β1

Γ(α1 + β1 + 1)

)
‖P1

1‖∞

+

[(
2(ψ(a)− ψ(0))α1+β1

Γ(α1 + β1 + 1)

)
(‖P2

1‖∞ + ‖P3
1‖∞)

+
2|λ|(ψ(a)− ψ(0))β1

Γ(β1 + 1)

]
κ,(3.10)

and

|U2(x, y)(τ)| ≤ |Ψ(x, y)(τ)|+ (ψ(τ)− ψ(0))β2

(ψ(ε2)− ψ(0))β2
|Ψ(x, y)(ε2)|

≤
(

2(ψ(a)− ψ(0))α2+β2

Γ(α2 + β2 + 1)

)
‖P1

2‖∞

+

[(
2(ψ(a)− ψ(0))α2+β2

Γ(α2 + β2 + 1)

)
(‖P2

2‖∞ + ‖P3
2‖∞)

+
2|ν|(ψ(a)− ψ(0))β2

Γ(β2 + 1)

]
κ.(3.11)

It follows from (3.10)-(3.11) that

‖U(x, y)‖Ξ ≤ max{Πκ
1 ,Π

κ
2}.

Thus,

‖U(x, y)‖Ξ <∞,

for all (x, y) ∈ Σ. This shows that U(Σ) is uniformly bounded on Σ.
On the other hand, we demonstrate that U(Σ) is an equicontinuous set in Σ. Let τ1, τ2 ∈ [0, a]

with τ1 < τ2 and (x, y) ∈ Σ. Then we have

|U1(x, y)(τ2)−U1(x, y)(τ1)|

≤
∫ τ1

0

ψ′(s)[(ψ(τ2)− ψ(s))α1+β1−1 − (ψ(τ1)− ψ(s))α1+β1−1]

Γ(α1 + β1)
|f1(s, x(s), y(ξs))|ds

+

∫ τ2

τ1

ψ′(s)(ψ(τ2)− ψ(s))α1+β1−1

Γ(α1 + β1)
|f1(s, x(s), y(ξs))|ds

+

∫ τ1

0

|λ|ψ′(s)[(ψ(τ2)− ψ(s))β1−1 − (ψ(τ1)− ψ(s))β1−1]

Γ(β1)
|x(s)|ds

+

∫ τ2

τ1

|λ|ψ′(s)(ψ(τ2)− ψ(s))β1−1

Γ(β1)
|x(s)|ds

+
[(ψ(τ2)− ψ(0))β1 − (ψ(τ1)− ψ(0))β1 ]

(ψ(ε1)− ψ(0))β1
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×
(∫ ε1

0

ψ′(s)(ψ(ε1)− ψ(s))α1+β1−1

Γ(α1 + β1)
|f1(s, x(s), y(ξs))|ds

+|λ|
∫ ε1

0

ψ′(s)(ψ(ε1)− ψ(s))β1−1

Γ(β1)
|x(s)|ds

)
.

Therefore,

|U1(x, y)(τ2)−U1(x, y)(τ1)|

≤ |Φ(x, y)(τ2)− Φ(x, y)(τ1)|+ [(ψ(τ2)− ψ(0))β1 − (ψ(τ1)− ψ(0))β1 ]

(ψ(ε1)− ψ(0))β1
|Φ(x, y)(ε1)|

≤ [(ψ(τ1)− ψ(0))α1+β1 − (ψ(τ2)− ψ(0))α1+β1 ]

Γ(α1 + β1 + 1)
[‖P1

1‖∞ + (‖P2
1‖∞ + ‖P3

1‖∞)κ]

+

(
(ψ(τ2)− ψ(τ1))β1 − (ψ(τ2)− ψ(0))β1 + (ψ(τ1)− ψ(0))β1

Γ(β1 + 1)

)
|λ|κ

+
[(ψ(τ2)− ψ(0))β1 − (ψ(τ1)− ψ(0))β1 ]

2
Πκ

1 .(3.12)

We also have

|U2(x, y)(τ2)−U2(x, y)(τ1)|

≤
∫ τ1

0

ψ′(s)[(ψ(τ2)− ψ(s))α2+β2−1 − (ψ(τ1)− ψ(s))α2+β2−1]

Γ(α2 + β2)
|f2(s, y(s), x(ρs))|ds

+

∫ τ2

τ1

ψ′(s)(ψ(τ2)− ψ(s))α2+β2−1

Γ(α2 + β2)
|f2(s, y(s), x(ρs))|ds

+

∫ τ1

0

|ν|ψ′(s)[(ψ(τ2)− ψ(s))β2−1 − (ψ(τ1)− ψ(s))β2−1]

Γ(β2)
|y(s)|ds

+

∫ τ2

τ1

|ν|ψ′(s)(ψ(τ2)− ψ(s))β2−1

Γ(β2)
|y(s)|ds

+
[(ψ(τ2)− ψ(0))β2 − (ψ(τ1)− ψ(0))β2 ]

(ψ(ε2)− ψ(0))β2

×
(∫ ε2

0

ψ′(s)(ψ(ε2)− ψ(s))α1+β2−1

Γ(α1 + β2)
|f2(s, y(s), x(ρs))|ds

+|ν|
∫ ε2

0

ψ′(s)(ψ(ε2)− ψ(s))β2−1

Γ(β2)
|y(s)|ds

)
.

Hence,

|U2(x, y)(τ2)−U2(x, y)(τ1)|

≤ [(ψ(τ1)− ψ(0))α2+β2 − (ψ(τ2)− ψ(0))α2+β2 ]

Γ(α2 + β2 + 1)
[‖P1

2‖∞ + (‖P2
2‖∞ + ‖P3

2‖∞)κ]

+

(
(ψ(τ2)− ψ(τ1))β2 − (ψ(τ2)− ψ(0))β2 + (ψ(τ1)− ψ(0))β2

Γ(β2 + 1)

)
|λ2|κ

+
[(ψ(τ2)− ψ(0))β2 − (ψ(τ1)− ψ(0))β2 ]

2
Πκ

2 .(3.13)

Using (3.12)-(3.13), we deduce that

‖U(x, y)(τ2)−U(x, y)(τ1)‖Ξ −→τ1→τ2 0, uniformly for all (x, y) ∈ ∆.

Thus U(Σ) has the equicontinuity specification on the Banach space C(J,R). As a consequence, U is
relatively compact, and thus the Arzelà-Ascoli theorem yields that U is completely continuous and
finally U is compact on Σ.
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Step 3: We now show that the hypothesis (D3) of Theorem 2.8 is satisfied. For (x, y), (x̄, ȳ) ∈ Σ such that

(x, y) = (V1(x, y)U1(x̄, ȳ),V2(x, y)U2(x̄, ȳ)) .

Then

|x(τ)| = |V1(x, y)U1(x̄, ȳ)|

≤ [|g1(τ, x(τ)) + g1(τ, 0)|+ |g1(τ, 0)|]Πκ
1

≤ [‖G1‖∞‖x‖∞ + g0
1]Πκ

1 ,

and

|y(τ)| = |V2(x, y)U2(x̄, ȳ)|

≤ [|g2(τ, y(τ)) + g2(τ, 0)|+ |g2(τ, 0)|]Πκ
2

≤ [‖G2‖∞‖y‖∞ + g0
2]Πκ

2 ,

which implies that

‖(x, y)‖Ξ ≤
max{g0

1Πκ
1 , g

0
2Πκ

2}
1−max{‖G1‖∞Πκ

1 , ‖G2‖∞Πκ
2}

= κ,

under the condition that (3.5) is fulfilled. This shows that condition (D3) of Theorem 2.8 is satisfied.
step 4: Finally, we have

BU = ‖BU(Σ)‖Ξ = sup {‖U(x, y)‖Ξ : (x, y) ∈ Σ} ≤ Πκ

≤ max{Πκ
1 ,Π

κ
2},

and

AV ≤ max{‖G1‖∞, ‖G2‖∞}.

Fromabove estimate, we obtain

AVBU ≤ max{‖G1‖∞Πκ
1 , ‖G2‖∞Πκ

2} < 1,

hence, all the conditions of Theorem 2.8 are satisfied, and therefore, the operator equation (x, y) =

V(x, y)U(x, y) has a solution in Σ. Consequently, coupled system (1.1) has a solution on J . �

The following result is based on Banach’s fixed-point theorem. Moreover, to establish uniqueness, given
the nature of our problem, we need to assume the following stronger conditions:

(C1) The functions (fk)k=1,2 : J × R2 → R and (gk)k=1,2 : J × R→ R \ {0} are continuous.
(C2) There exist positive functions Pk,Gk ∈ C(J,R+) such that

|fk(τ, x1, x2)− fk(τ, y1, y2)| ≤ Pk,1(τ)|x1 − y1|+ Pk,2(τ)|x2 − y2|,

and

|gk(τ, x1)− gk(τ, y1)| ≤ Gk(τ)|x1 − y1|,

for all τ ∈ J and xk, yk ∈ R, k = 1, 2, where ‖Pk,1‖∞ = sup
τ∈J

Pk,1(τ), ‖Pk,2‖∞ = sup
τ∈J

Pk,2(τ) and

‖Gk‖∞ = sup
τ∈J

Gk(τ), with k = 1, 2.

(C3) There exist positive constants Lk andMk, such that

|fk(τ, x1, x2)| < Lk and |gk(τ, x1, x2)| <Mk,

for all τ ∈ J and xk ∈ R, k = 1, 2.
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For the sake of clarity, we denote

∆1 =
[(ψ(a)− ψ(0))α1+β1 + (ψ(a)− ψ(0))β1(ψ(ε1)− ψ(0))α1 ]

Γ(α1 + β1 + 1)
,

∆2 =
2|λ|(ψ(a)− ψ(0))β1

Γ(β1 + 1)
,

∆3 =
(ψ(a)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
,

∇1 =
[(ψ(a)− ψ(0))α2+β2 + (ψ(a)− ψ(0))β2(ψ(ε2)− ψ(0))α2 ]

Γ(α2 + β2 + 1)
,

∇2 = 2|ν|(ψ(a)−ψ(0))β2

Γ(β2+1) ,

∇3 =
(ψ(a)− ψ(0))α2+β2

Γ(α2 + β2 + 1)
,

Λ1 = (Pf1M1 + ‖G1‖∞L1)∆3 + (M1 + ‖G1‖∞δ)∆2

2 ,

Λ2 = (Pf2M2 + ‖G2‖∞L2)∇3 + (M2 + ‖G2‖∞δ)∇2

2 ,

Ω1 = (Pf1M1 + ‖G1‖∞L1)∆1 + (M1 + ‖G1‖∞δ)∆2,

Ω2 = (Pf2M2 + ‖G2‖∞L2)∇1 + (M2 + ‖G2‖∞δ)∇2.

Theorem 3.4. Suppose that (C1)− (C3) holds. If

max{Ω1,Ω2} < 1,(3.14)

then the coupled system (1.1) have a unique solution on J = [0, a].

Proof. Setting δ ≥ max

(
M1L1∆1

1−M1∆2
,
M2L2∇1

1−M2∇2

)
, with 0 ≤ M1∆2,M2∇2 < 1. we show that TBδ ⊂ Bδ ,

where
Bδ = {(x, y) ∈ Ξ : ‖x, y‖Ξ ≤ δ} .

For x, y ∈ Bδ and for each t ∈ J , from the definition of T and hypothesis (C1)- (C3), we get

|Φ(x, y)(τ)| ≤ L1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)
δ,(3.15)

and

|Ψ(x, y)(τ)| ≤ L2(ψ(τ)− ψ(0))α2+β2

Γ(α2 + β2 + 1)
+
|ν|(ψ(τ)− ψ(0))β2

Γ(β2 + 1)
δ.(3.16)

On the other hand, we obtain

|T1(x, y)(τ)|

≤
∣∣∣∣g1(τ, x(τ))

[
Φ(x, y)(τ)− (ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β1
Φ(x, y)(ε1)

]∣∣∣∣
≤ |g1(τ, x(τ))|

[
(ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β1

×
(
L1(ψ(ε1)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(ε1)− ψ(0))β1

Γ(β1 + 1)
δ

)
+
L1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)
δ

]
≤M1 [L1∆1 + ∆2δ]

≤ δ.

and

|T2(x, y)(τ)|
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≤
∣∣∣∣g2(τ, x(τ))

[
Ψ(x, y)(τ)− (ψ(τ)− ψ(0))β2

(ψ(ε2)− ψ(0))β2
Ψ(x, y)(ε2)

]∣∣∣∣
≤ |g2(τ, x(τ))|

[
(ψ(τ)− ψ(0))β2

(ψ(ε2)− ψ(0))β2

×
(
L2(ψ(ε2)− ψ(0))α2+β2

Γ(α2 + β2 + 1)
+
|λ|(ψ(ε2)− ψ(0))β2

Γ(β2 + 1)
δ

)
+
L2(ψ(τ)− ψ(0))α2+β2

Γ(α2 + β2 + 1)
+
|ν|(ψ(τ)− ψ(0))β2

Γ(β2 + 1)
δ

]
≤M2 [L2∇1 +∇2δ]

≤ δ.

Hence,

‖T(x, y)‖Ξ ≤ δ,

which implies that TBδ ⊂ Bδ .
We shall now prove that T is contractive. Let for (x, y), (x̄, ȳ) ∈ Bδ ⊂ Ξ and for any τ ∈ J , by condition

(C2), we get

|Φ(x, y)(τ)− Φ(x̄, ȳ)(τ)|

≤
∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))α1+β1−1

Γ(α1 + β1)
|f1(s, x(s), y(ξs))− f1(s, x̄(s), ȳ(ξs))|ds

+|λ|
∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))β1−1

Γ(β1)
|x(s)− x̄(s)|ds(3.17)

≤
(

Pf1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)

)
‖x− x̄, y − ȳ‖Ξ,

and

|Ψ(x, y)(τ)−Ψ(x̄, ȳ)(τ)|

≤
∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))α2+β2−1

Γ(α2 + β2)
|f2(s, x(s), y(ρs))− f2(s, ȳ(s), x̄(ρs))|ds

+|ν|
∫ τ

0

ψ′(s)(ψ(τ)− ψ(s))β2−1

Γ(β2)
|y(s)− ȳ(s)|ds(3.18)

≤
(

Pf2(ψ(τ)− ψ(0))α2+β1

Γ(α2 + β2 + 1)
+
|ν|(ψ(τ)− ψ(0))β2

Γ(β2 + 1)

)
‖x− x̄, y − ȳ‖Ξ,

where Pf1 = ‖P1,1‖∞ + ‖P1,2‖∞ and Pf2 = ‖P2,1‖∞ + ‖P2,2‖∞. By applying the triangle inequality (3.17)-
(3.15), we obtain

|T1(x, y)(τ)− T1(x̄, ȳ)(τ)|

≤ |g1(τ, x(τ))Φ(x, y)(τ)− g1(τ, x̄(τ))Φ(x̄, ȳ)(τ)|

+
(ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β1
|g1(τ, x(τ))Φ(x, y)(ε1)− g1(τ, x̄(τ))Φ(x̄, ȳ)(ε1)|,(3.19)

and, by (3.18)-(3.16) we find that

|T2(x, y)(τ)− T2(x̄, ȳ)(τ)|

≤ |g2(τ, y(τ))Ψ(x, y)(τ)− g2(τ, ȳ(τ))Ψ(x̄, ȳ)(τ)|

+
(ψ(τ)− ψ(0))β2

(ψ(ε2)− ψ(0))β2
|g2(τ, y(τ))Ψ(x, y)(ε2)− g1(τ, ȳ(τ))Ψ(x̄, ȳ)(ε2)|,(3.20)
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we conclude that

|T1(x, y)(τ)− T1(x̄, ȳ)(τ)|

≤M1

(
Pf1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)

)
‖x− x̄, y − ȳ‖Ξ

+‖G1‖∞
(
L1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)
δ

)
‖x− x̄, y − ȳ‖Ξ

+M1(ψ(τ)− ψ(0))β1

(
Pf1(ψ(ε1)− ψ(0))α1

Γ(α+ β + 1)
+

|λ|
Γ(β1 + 1)

)
‖x− x̄, y − ȳ‖Ξ

+‖G1‖∞(ψ(τ)− ψ(0))β1

(
L1(ψ(ε1)− ψ(0))α1

Γ(α1 + β1 + 1)
+

|λ|
Γ(β1 + 1)

δ

)
‖x− x̄, y − ȳ‖Ξ.

After taking the supremum over J and simplifying, we get:

‖T1(x, y)− T1(x̄, ȳ)‖∞ ≤ Ω1‖x− x̄, y − ȳ‖Ξ.(3.21)

With the same arguments as before, we can show that

‖T2(x, y)− T2(x̄, ȳ)‖∞ ≤ Ω2‖x− x̄, y − ȳ‖Ξ.(3.22)

Thanks to (3.21)-(3.22), we get

‖T(x, y)(τ)− T(x̄, ȳ)‖Ξ ≤ max{Ω1,Ω2}‖x− x̄, y − ȳ‖Ξ.(3.23)

Consequently, by (3.14), T is a contraction, and by utilizing Banach’s fixed point theorem, the coupled
system (1.1) has a unique solution. �

4. STABILITY RESULTS

This section discusses the Ulam stability of the coupled system (1.1). Let (x, y) ∈ Ξ, %1, %2 > 0, and
J1, J2 : [0, a] −→ R+ be continuous functions. We consider the following inequalities:

|CDα1,ψ
0+

(
CDβ1,ψ

0+

(
x(τ)

g1(τ, x(τ))

)
+ λx(τ)

)
− f1(τ, x(τ), y(ξτ))| < %1, τ ∈ J,

|CDα2,ψ
0+

(
CDβ2,ψ

0+

(
y(τ)

g2(τ, y(τ))

)
+ νy(τ)

)
− f2(τ, y(τ), x(ρτ))| < %2, τ ∈ J,

(4.1)


|CDα1,ψ

0+

(
CDβ1,ψ

0+

(
x(τ)

g1(τ, x(τ))

)
+ λx(τ)

)
− f1(τ, x(τ), y(ξτ))| < %1J1(τ), τ ∈ J,

|CDα2,ψ
0+

(
CDβ2,ψ

0+

(
y(τ)

g2(τ, y(τ))

)
+ νy(τ)

)
− f2(τ, y(τ), x(ρτ))| < %2J2(τ), τ ∈ J,

(4.2)

and 
|CDα1,ψ

0+

(
CDβ1,ψ

0+

(
x(τ)

g1(τ, x(τ))

)
+ λx(τ)

)
− f1(τ, x(τ), y(ξτ))| < J1(τ), τ ∈ J,

|CDα2,ψ
0+

(
CDβ2,ψ

0+

(
y(τ)

g2(τ, y(τ))

)
+ νy(τ)

)
− f2(τ, y(τ), x(ρτ))| < J2(τ), τ ∈ J.

(4.3)

Definition 4.1 ( [32, 34]). The coupled system (1.1) is Ulam-Hyers stable if there exists a real number ϕ∗ =

max{ϕ1, ϕ2} > 0 such that for each %∗ = max{%1, %2} > 0 and for each solution (x, y) ∈ Ξ to the previous
inequality (4.1), there exists a solution (x̄, ȳ) ∈ Ξ of the system (1.1) with

‖(x, y)(τ)− (x̄, ȳ)(τ)‖Ξ ≤ %∗ϕ∗.
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Definition 4.2 ( [32, 34]). The coupled system (1.1) is generalized Ulam-Hyers stable if there exists Z ∈
C(,R+,R+), such that Z(0) = 0 for any %∗ > 0, and for each solution (x, y) ∈ Ξ to the inequality (4.1), there
exists a solution (x̄, ȳ) ∈ Ξ of the system (1.1) with

‖(x, y)(τ)− (x̄, ȳ)(τ)‖Ξ ≤ Z(%∗).

Definition 4.3 ( [32, 34]). System (1.1) is Ulam-Hyers-Rassias stable with respect to J = max{J1, J2} ∈
C(J,R+), if there exists a positive real number θ = max{θJ1 , θJ2} > 0 such that for each %∗ = max{%1, %2} >
0 and for each solution (x, y) ∈ Ξ to the inequality (4.2), there exists a solution (x̄, ȳ) ∈ Ξ of the system (1.1)

with
‖(x, y)(τ)− (x̄, ȳ)(τ)‖Ξ ≤ %∗θJ(τ).

Definition 4.4 ( [32, 34]). System (1.1) is generalized Ulam-Hyers-Rassias stable with respect to J =

max{J1, J2} ∈ C(J,R+), if there exists a positive real number θ = max{θJ1 , θJ2} > 0 such that for each
solution (x, y) ∈ Ξ to the inequality (4.3), there exists a solution (x̄, ȳ) ∈ Ξ of the system (1.1) with

‖(x, y)(τ)− (x̄, ȳ)(τ)‖Ξ ≤ θJ(τ).

Remark 4.5. It is clear that:

1. Definition 4.1⇒ Definition 4.2.
2. Definition 4.3⇒ Definition 4.4.
3. Definition 4.3⇒ Definition 4.1, (for taking J(.) = 1).

A function (x, y) ∈ Ξ is a solution of the inequality (4.1) if and only if there exist a function Wk ∈ C(J,R)

such that for all k = 1, 2 :

I) |W1(τ)| ≤ %1 and |W2(τ)| ≤ %2 , for all τ ∈ J .

II) CDα1,ψ
0+

(
CDβ1,ψ

0+

(
x(τ)

g1(τ, x(τ))

)
+ λx(τ)

)
− f1(τ, x(τ), y(ξτ)) = W1(τ), for all τ ∈ J ,

III) CDα2,ψ
0+

(
CDβ2,ψ

0+

(
y(τ)

g2(τ, y(τ))

)
+ νy(τ)

)
− f2(τ, y(τ), x(ρτ)) = W2(τ), for all τ ∈ J .

We now present the Ulam stability of the solution to coupled system (1.1).

Theorem 4.6. Assume that (C1), (C2) and (C3) are satisfied. then the problem (1.1) is Ulam-Hyers stable and
hence generalizes Ulam-Hyers stability under the condition (3.14).

Proof. Assume %∗ > 0 and (x, y) ∈ Bδ ⊂ Ξ is a function that fulfills the inequality (4.1), and let (x̄, ȳ) ∈ Bδ
is the sole solution of the coupled system (1.1). Since (x, y) ∈ Bδ is a function satisfes the inequality (4.1). It
follows from Remark 4.5 that

CDα1,ψ
0+

(
CDβ1,ψ

0+

(
x(τ)

g1(τ, x(τ))

)
+ λx(τ)

)
− f1(τ, x(τ), y(ξτ)) = W1(τ), τ ∈ J,

CDα2,ψ
0+

(
CDβ2,ψ

0+

(
y(τ)

g2(τ, y(τ))

)
+ νy(τ)

)
− f2(τ, y(τ), x(ρτ)) = W2(τ), τ ∈ J,

x(τ) |τ=0= 0, x′(τ) |τ=0= 0, x(τ) |τ=ε1= 0, 0 < ε1 < a2 ,

y(τ) |τ=0= 0, y′(τ) |τ=0= 0, y(τ) |τ=ε2= 0, 0 < ε2 < a2 .

Using Lemma 3.2 once more, we have

x(τ) := g(τ, x(τ))

[
ℵ(x, y)(τ)− (ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β1
ℵ(x, y)(ε1)

]
,

and

y(τ) := g(τ, y(τ))

[
Q(x, y)(τ)− (ψ(τ)− ψ(0))β2

(ψ(ε2)− ψ(0))β2
Q(x, y)(ε2)

]
,
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where

ℵ(x, y)(τ) := Iα1+β1,ψ
0+ [f1(τ, x(τ), y(ξτ)) + W1(τ)]− λIα1,ψ

0+ x(τ),

and

Q(x, y)(τ) := Iα2+β2,ψ
0+ [f2(τ, y(τ), x(ρτ)) + W2(τ)]− νIα2,ψ

0+ y(τ),

Moreover, using part (I) of Remark 4.5 and (C2), we can obtain the following formula for each τ ∈ J .

|ℵ(x, y)(τ)− Φ(x̄, ȳ)(τ)|

≤ Iα1+β1,ψ
0+ |f1(τ, x(τ), y(ξτ))− f1(τ, x̄(τ), ȳ(ξτ))|+ λIα1,ψ

0+ |x(τ)− x̄(τ)|

+Iα1+β1,ψ
0+ |W1(τ)|

≤
(

Pf1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)

)
‖(x, y)− (x̄, ȳ)‖Ξ

+
%1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
,(4.4)

and

|Q(x, y)(τ)−Ψ(x̄, ȳ)(τ)|

≤ Iα2+β2,ψ
0+ |f2(τ, y(τ), x(ρτ))− f2(τ, ȳ(τ), x̄(ρτ))|+ νIα2,ψ

0+ |y(τ)− ȳ(τ)|

+Iα2+β2,ψ
0+ |W2(τ)|

≤
(

Pf2(ψ(τ)− ψ(0))α2+β2

Γ(α2 + β2 + 1)
+
|ν|(ψ(τ)− ψ(0))β2

Γ(β2 + 1)

)
‖(x, y)− (x̄, ȳ)‖Ξ

+
%2(ψ(τ)− ψ(0))α2+β2

Γ(α1 + β2 + 1)
,(4.5)

in addition to, {
|ℵ(x, y)(τ)| ≤ (L1+%1)(ψ(τ)−ψ(0))α1+β1

Γ(α1+β1+1) + |λ|(ψ(τ)−ψ(0))β1

Γ(β1+1) δ,

|Φ(x, y)(τ)| ≤ L1(ψ(τ)−ψ(0))α1+β1

Γ(α1+β1+1) + |λ|(ψ(τ)−ψ(0))β1

Γ(β1+1) δ,
(4.6)

{
|Q(x, y)(τ)| ≤ (L2+%2)(ψ(τ)−ψ(0))α2+β2

Γ(α2+β2+1) + |ν|(ψ(τ)−ψ(0))β2

Γ(β2+1) δ,

|Ψ(x, y)(τ)| ≤ L2(ψ(τ)−ψ(0))α2+β2

Γ(α2+β2+1) + |ν|(ψ(τ)−ψ(0))β2

Γ(β2+1) δ.
(4.7)

Applying the triangle inequality,(4.4)-(4.6), we have

|x(τ)− x̄(τ)|

≤ |g1(τ, x(τ))ℵ(x, y)(τ)− g1(τ, x̄(τ))Φ(x̄, ȳ)(τ)|

+
(ψ(τ)− ψ(0))β1

(ψ(ε1)− ψ(0))β1
|g1(τ, x(τ))ℵ(x, y)(ε1)− g1(τ, x̄(τ))Φ(x̄, ȳ)(ε1)|

≤ M1

(
Pf1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)

)
‖(x, y)− (x̄, ȳ)‖Ξ

+‖G1‖∞
(
L1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)
δ

)
‖(x, y)− (x̄, ȳ)‖Ξ

+M1(ψ(τ)− ψ(0))β1

(
Pf1(ψ(ε1)− ψ(0))α1

Γ(α1 + β1 + 1)
+

|λ|
Γ(β1 + 1)

)
‖(x, y)− (x̄, ȳ)‖Ξ

+‖G1‖∞(ψ(τ)− ψ(0))β1

(
L1(ψ(ε1)− ψ(0))α1

Γ(α1 + β1 + 1)
+

|λ|
Γ(β1 + 1)

δ

)
‖(x, y)− (x̄, ȳ)‖Ξ
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+
M1[(ψ(τ)− ψ(0))α1+β1 + ((ψ(τ)− ψ(0))β1((ψ(ε1)− ψ(0))α1 ]

Γ(α1 + β1 + 1)
%1.

we obtain

‖x− x̄‖∞ ≤ Ω1‖(x, y)− (x̄, ȳ)‖Ξ +$1%1.(4.8)

On the other hand, we have

‖y − ȳ‖∞ ≤ Ω2‖(x, y)− (x̄, ȳ)‖Ξ +$2%2,(4.9)

where $1 :=M1∆1, and $2 :=M2∇1.

Combining the two last inequalities (4.8) and (4.10), we get

‖(x, y)− (x̄, ȳ)‖Ξ ≤ [1−max{Ω1,Ω2}]−1
max{$1, $2}%∗.(4.10)

Let is put %∗ = max{%1, %2}; ϕ∗ = [1−max{Ω1,Ω2}]−1
max{$1, $2}. Taking into account max{Ω1,Ω2} < 1,

we notice that ϕ∗ > 0. Thus, we have

‖(x, y)(τ)− (x̄, ȳ)(τ)‖Ξ ≤ %∗ϕ∗.

Consequently, the coupled system (1.1) is stable in the sense of Ulam-Hyers. This completes the proof
using Ulam-Hyers definition. �

Theorem 4.7. Suppose the conditions of Theorem 4.6 hold. If there exists Z ∈ C(R+,R+), such that Z(0) = 0 with
%∗ > 0. Therefore, the coupled system (1.1) is generalized Ulam-Hyers stable.

Proof. For Z(%∗) = ϕ∗%∗; Z(0) = 0. We prove that the solution to the system (1.1) is also generalized Ulam-
Hyers stable. �

We are now interested in the Ulam-Hyers-Rassias stability of our system.

Theorem 4.8. Consider the hypotheses (C1)− (C3) and let (3.14) hold. Assume

(C4) There exist nondecreasing functions J1, J2 ∈ C(J,R+) and QJ1
, QJ2

> 0, such that for any τ ∈ J ,

(4.11) Iα1+β1,ψ
0+ J1(τ) ≤ QJ1J1(τ),

and

(4.12) Iα2+β2,ψ
0+ J1(τ) ≤ QJ2

J2(τ).

Then, the coupled system (1.1) is Ulam-Hyers-Rassias stabile concerning J.

Proof. Let (x, y) ∈ Bδ is a solution of the inequality (4.2), we have∣∣∣∣CDα1,ψ
0+

[
CDβ1,ψ

0+

[
x(τ)

g1(τ, x(τ))

]
+ λ1x(τ)

]
− f1(τ, x(τ), y(ξτ))

∣∣∣∣ ≤ %1J1(τ),

and ∣∣∣∣CDα2,ψ
0+

[
CDβ2,ψ

0+

[
y(τ)

g2(τ, y(τ))

]
+ λ2y(τ)

]
− f2(τ, x(τ), y(ξτ))

∣∣∣∣ ≤ %2J2(τ).
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Let (x̄, ȳ) ∈ Bδ be the unique solution of the system

CDα1,ψ
0+

(
CDβ1,ψ

0+

(
x̄(τ)

g1(τ, x̄(τ))

)
+ λx̄(τ)

)
− f1(τ, x̄(τ), ȳ(ξτ)) = W1(τ), τ ∈ J,

CDα2,ψ
0+

(
CDβ2,ψ

0+

(
ȳ(τ)

g2(τ, ȳ(τ))

)
+ νȳ(τ)

)
− f2(τ, ȳ(τ), x̄(ρτ)) = W2(τ), τ ∈ J,

x̄(τ) |τ=0= x(τ) |τ=0= 0, x̄′(τ) |τ=0= x′(τ) |τ=0= 0,

x̄(τ) |τ=ε1= x(τ) |τ=ε1= 0, 0 < ε1 < a2 ,

ȳ(τ) |τ=0= y(τ) |τ=0= 0, ȳ′(τ) |τ=0= y′(τ) |τ=0= 0,

ȳ(τ) |τ=ε2= y(τ) |τ=ε2= 0, 0 < ε2 < a2.

So by Lemma 3.2, we have x̄(τ) := g1(τ, x̄(τ))
[
ℵ(x̄, ȳ)(τ)− (ψ(τ)−ψ(0))β1

(ψ(ε1)−ψ(0))β1
ℵ(x̄, ȳ)(ε1)

]
,

ȳ(τ) := g2(τ, ȳ(τ))
[
Q(x̄, ȳ)(τ)− (ψ(τ)−ψ(0))β2

(ψ(ε1)−ψ(0))β2
Q(x̄, ȳ)(ε2)

]
,

where {
ℵ(x̄, ȳ)(τ) := Iα1+β1,ψ

0+ [f1(τ, x̄(τ), ȳ(ξτ))]− λIα,ψ0+ x(τ),

Q(x̄, ȳ)(τ) := Iα2+β2,ψ
0+ [f2(τ, ȳ(τ), x̄(ρτ))]− νIα2,ψ

0+ y(τ),

From (3.14) and (4.11) we can write

‖x− x̄‖∞ ≤ ‖G1‖
(
L1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)
δ

)
‖(x, y)− (x̄, ȳ)‖Ξ

+M1

(
Pf1(ψ(τ)− ψ(0))α1+β1

Γ(α1 + β1 + 1)
+
|λ|(ψ(τ)− ψ(0))β1

Γ(β1 + 1)

)
‖(x, y)− (x̄, ȳ)‖Ξ

+M1%1Q1J1(τ).(4.13)

Therefor,

‖x− x̄‖∞ ≤ Λ1‖(x, y)− (x̄, ȳ)‖Ξ +M1%1Q1J1(τ).

On the other hand, by (3.14) and (4.12), we have

‖y − ȳ‖∞ ≤ Λ2‖(x, y)− (x̄, ȳ)‖Ξ +M2%2Q2J1(τ).

Then, we may obtain

‖(x, y)− (x̄, ȳ)‖Ξ ≤ max{Λ1,Λ2}‖(x, y)− (x̄, ȳ)‖Ξ +M%∗QJJ(τ),(4.14)

where

M = max{M1,M2}, QJ = max{QJ1 , QJ2},

Then

‖(x, y)− (x̄, ȳ)‖Ξ ≤ %∗
MQJ

1−max{Λ1,Λ2}
J(τ),(4.15)

= %∗θJ(τ).(4.16)

Hence, the system (1.1) is Ulam-Hyers-Rassias stable concerning J. Similarly, by following the same proce-
dure as before, substituting %∗ = 1, we can easily see that

‖(x, y)− (x̄, ȳ)‖Ξ ≤ θJ(τ),(4.17)

for each τ ∈ J . Hence, system (1.1) is generalized Ulam-Hyers-Rassias stable. �
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5. ILLUSTRATIVES EXAMPLES

Example 5.1. Let us consider the following system.

CD0.75,ψ
0+

(
CD1.45,ψ

0+

(
x(τ)

g1(τ, x(τ))

)
+ 33

100x(τ)

)
= f1(τ, x(τ), y(ξτ)),

CD0.45,ψ
0+

(
CD1.75,ψ

0+

(
y(τ)

g2(τ, y(τ))

)
+ 73

100y(τ)

)
= f2(τ, x(τ), y(ρτ)),

x(τ) |τ=1= 0, x′(τ) |τ=1= 0, x(τ) |τ= 3
2
= 0, 1 < ε1 = 3

2 < 2,

y(τ) |τ=1= 0, y′(τ) |τ=1= 0, y(τ) |τ= 5
4
= 0, 1 < ε2 = 5

4 < 2,

(5.1)

where

J = [0, 2], a = 2, α1 = 0.75, β1 = 1.45, λ = 0.33, ε1 = 3
2 ,

α2 = 0.45, β2 = 1.75, ν = 0.73, ε2 = 5
4 , ξ = ρ = 9

10 , ψ(τ) = τ2.

Also,

f1(τ, x(τ), y(ξτ)) =

sin(τ)

[
y(

9

10
τ) + cos(τ)x(τ)

]
+
√
τ + 0.001

e2+τ + 32π
,(5.2)

f2(τ, y(τ), x(ρτ)) =
τ2 + 1

32π2e

[
cos(y(

9

10
τ)) + cos(x(τ))

]
+ 0.002.(5.3)

For τ ∈ [0; 2] and (x, y); (x̄, ȳ) ∈ R2, we have

|f1(τ, x, y)− f1(τ, x̄, ȳ)| ≤ 1

e3
(|x− x̄|+ |y − ȳ|),

and

|f2(τ, x, y)− f2(τ, x̄, ȳ)| ≤ 5

32e
(|x− x̄|+ |y − ȳ|).

So, we can take

‖Pf1‖∞ ≈ 0.099574, L1 ≈ 0.01406744,

‖Pf2‖∞ ≈ 0.0574811, L2 ≈ 0.0574811.

We also have

g1(τ, x(τ)) =
cos(x(τ))

12eτ2+π
and g2(τ, y(τ)) =

sin(τ)y(τ)

eπ
,

For τ ∈ [0; 2] and (x, y); (x̄, ȳ) ∈ R2, we can write

|g1(τ, x)− g1(τ, x̄)| ≤ 1

12e1
|x− x̄|,

and

|g2(τ, y)− g2(τ, ȳ)| ≤ 1

eπ
|y − ȳ|.

Hence,

Gg
1 ≈ 0.0306566, M1 ≈ 0.0306566,

Gg
2 ≈ 0.0432139, M2 ≈ 0.0432139.

and

∆1 = 14.367, ∆2 = 11.625, ∆3 = 8.7096,

∇1 = 15.432, ∇2 = 14.069, ∇3 = 8.7096.

therefore,

δ ≥ max
(
9.6267× 10−3, 9.7782× 10−2

)
.
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So, let’s assume that

δ =
1

2
.

We also have
Ω1 = 0.58463, Ω2 ≈ 0.98863.

Thus,
max{Ω1,Ω2} < 1,

and by Theorem 4.6, we conclude that the coupled system (5.1) has a unique solution on [0, 2].

Let %1 =
1

5
> 0 and %2 =

3

7
> 0, as illustrated Theorem 4.6 and by (4.1). If x, y ∈ C([0, 2],R) complies

with

(5.4) |CD0.75,ψ
0+

(
CD1.45,ψ

0+

(
x(τ)

g1(τ, x(τ))

)
+

33

100
x(τ)

)
− f1(τ, x(τ), y(ξτ))| < 1

5
,

and

(5.5) |CD0.45,ψ
0+

(
CD1.75,ψ

0+

(
y(τ)

g2(τ, y(τ))

)
+

73

100
y(τ)

)
− f2(τ, x(τ), y(ξτ))| < 3

7
,

there exists a solution x̄, ȳ ∈ C([0, 2],R) of the coupled system (5.1) with

‖(ν1, ν2)− (x̄, ȳ)‖Ξ ≤
3

7
ϕ∗,

which

ϕ∗ = [1−max{Ω1,Ω2}]−1
max{$1, $2} ≈ 58.653 > 0.

where,

$1 ≈ 0.47309

$2 ≈ 0.66688

}
⇒ max{$1, $2} ≈ 0.66688.(5.6)

Consequently, the coupled system (5.1) is Ulam-Hyers stable on [0, 2]. Finally, we assume that %∗ = 0, we
obtain Z(0) = 0. Hence, the system (5.1) is generalized Ulam-Hyers stable.

Lastly, we consider J1(τ) = J2(τ) = eτ . To confirm the condition

Iαk+βk,ψ
0+ Jk(τ) ≤ QJkJk(τ),

for QJk > 0 and k = 1, 2.

Using fractional integration and simple calculations, we obtain

Iαk+βk,ψ
0+ Jk(τ) =

1

Γ(αk + βk)

∫ τ

0+

2s(τ2 − s2)αk+βkJk(s)ds(5.7)

≤ Jk(τ)

Γ(αk + βk)

∫ τ

0+

2s(τ2 − s2)αk+βkds ≤ 5Jk(τ),(5.8)

with QJ1
= QJ2

= 5 > 0 and k = 1, 2. Hence, hypothesis (C4) is satisfied and for every %1 =
1

5
and %2 =

3

7
.

If x, y ∈ C([0, 2],R) satisfied

(5.9) |CD0.75,ψ
0+

(
CD1.45,ψ

0+

(
x(τ)

g1(τ, x(τ))

)
+

33

100
x(τ)

)
− f1(τ, x(τ), y(ξτ))| < 1

5
eτ ,

and

(5.10) |CD0.45,ψ
0+

(
CD1.75,ψ

0+

(
y(τ)

g2(τ, y(τ))

)
+

73

100
y(τ)

)
− f2(τ, x(τ), y(ξτ))| < 3

7
eτ ,

for τ ∈ [0, 2], there exists a solution x̄, ȳ ∈ R2 of the system (5.1) such that

‖(x, y)− (x̄, ȳ)‖Ξ ≤
3

7
θeτ ,
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where

θ = [1−max{Λ1,Λ2}]−1
QJM = 0.43149 > 0.

This implies that system (5.1) is Ulam-Hyers-Rassias stable. Finally, we assume that %∗ = 1. We can easily
see that

‖(x, y)− (x̄, ȳ)‖Ξ ≤ θeτ ,

for each τ ∈ [0, 2]. Hence, coupled system (5.1) is generalized Ulam-Hyers-Rassias stable.

6. CONCLUSION

The current research focuses on exploring the existence, uniqueness and Ulam stability results for a
class of coupled systems for hybrid Langevin fractional pantograph differential equations involving the
ψ-Caputo fractional derivative subject to non-local and boundary conditions within a Banach space. Our
method for achieve a results the existence of solutions the coupled system relies on the application of Dhage
and Banach’s fixed-point theorems. On the other hand, we explore stability in the sense of Ulam-Hyers
then that of Ulam-Hyers-Rassias our probleme. To illustrate the practical application of the main findings,
we provide a practical example. As research in this area continues to progress, we recommend further
exploration using generalized fractional derivatives. Furthermore, we have the opportunity to extend our
work by incorporating several recently introduced fractional operators, including the ψ-Hilfer fractional
derivative, reduced fractional operators, and the compact Caputo derivative. We hope that this article
will serve as a starting point for deeper exploration in these fields. We believe that there are many potential
avenues for further research, including differential inclusion, delay problems, impulsive systems, and many
others.
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