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TIME-FREQUENCY CONCENTRATION ASSOCIATED WITH THE MULTIDIMENSIONAL
HANKEL-WAVELET TRANSFORM

AHMED CHANA AND ABDELLATIF AKHLIDJ

ABSTRACT. The main goal of this paper is to define a new integral transform called the multidimensional Hankel-
wavelet transform and to give some new results related to this transform as generalized Parseval’s, Plancherel’s,
inversion and Calderon’s reproducing formulas. Next, we analyse the concentration of this transform on set of
finite measure and we give uncertainty principle for orthonormal sequences. Last, we introduce a new class of
pseudo-differential operator Lu,v(σ) called localization operator which depend on a symbol σ and two functions
u and v, we give a criteria in terms of the symbol σ for its boundedness and compactness, we also show that this
operator belongs to the Schatten-Von Neumann classes Sp for all p ∈ [1;+∞] and we give a trace formula.

1. INTRODUCTION

Time-frequency analysis [13] and uncertainty principles [10, 14, 15] play a fundamental role in field of
mathematics and physics, these principes appear in harmonic analysis and signal theory in a various dif-
ferent forms involving not only the signal f and its Fourier transform f̂ , but also every representation of a
signal in the time-frequency space.

The uncertainty principles are mathematical results that gives limitations on the simultaneous concen-
tration of a signal and its Fourier transform and they have implications in signal analysis and quantum
physics. In signal analysis they tell us that if we observe a signal only for a finite period of time, we will
lose information about the frequencies of signal consists of.

Timelimited and bound limited functions are basic tools in signal analysis and imaging processing. In
quantum physics they tell us that a particule’s speed and position cannot both of them be measured with
infinite presicion, the mathematical formulation of this principle is given by the Heisenberg-Pauli-Weyl
sharp inequality see [20]. Other uncertainty relations have been investigated among them, we refer to the
papers of Benedick’s [1], Donoho-Stark’s [10], Jaming’s [14].

The multidimensional Bessel operator is an elliptic partial differential operator denoted by ∆α,d defined
for x = (x1, . . . , xd) ∈ Rd+, α = (α1, . . . , αd) ∈ Rd, αk > − 1

2 ; k = 1, . . . , d, by

(1.1) ∆α,d =

d∑
k=1

∂2

∂x2
k

+
2αk + 1

xk

∂

∂xk
.
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The eigenfunctions of the operator (1.1) are related to the Bessel functions and they satisfies a product for-
mula which permits to develop a new harmonic analysis associated to this operator for more information
we refer the reader to [2, 7, 8].
The wavelet transform has been successfully used to analyse signals in numerous applications such as
seismic recording, ground vibrations, geophysics, medical imaging, hydrology, gravitational waves, power
system analysis and many other areas see [9, 12, 13].
For its importance, the mathematical theory of this transform is under development in different directions
and many extensions of this transform have been proposed in recent years, for example in the Riemann-
Liouville setting [3], the Laguerre-Bessel setting [4]. As harmonic analysis associated with the multidimen-
sional Bessel operator (1.1), has known remarkable development, it is natural to ask whether there exist the
equivalent of the time-frequency analysis for wavelet transform in the multidimensional Bessel setting.
The remainder of this paper is arranged as follows, in section 2 we recall the main results concerning the
harmonic analysis associated with the multidimensional Bessel operator (1.1), in section 3 we define the
wavelet transform associated with the multidimensional Bessel operator (1.1) and we give new results
related to this transform, in section 4 we give some uncertainty principles associated with the multidimen-
sional Hankel-wavelet transform, the last section is devoted to introduce a new class of pseudo-differential
operator Lu,v(σ) called localization operator which depend on a symbol σ and two functions u and v,
we give a criteria in terms of the symbol σ for its boundedness and compactness, we also show that this
operator belongs to the Schatten-Von Neumann classes Sp for all p ∈ [1; +∞] and we give a trace formula.

2. HARMONIC ANALYSIS ASSOCIATED WITH THE MULTIDIMENSIONAL HANKEL TRANSFORM

In this section we set some notations and we recall some results in harmonic analysis related to the mul-
tidimensional Hankel transform, for more details, we refer the reader to [2, 7, 8].
In the following we denote by
• Rd+ =

{
x = (x1, . . . , xd) ∈ Rd, x1 > 0, x2 > 0, . . . , xn > 0

}
, equipped with the weighted Lebesgue mea-

sure µα given by

(2.1) dµα(x) =

d∏
k=1

x2αk+1
k

2|α|Γ(αk + 1)
dxk, αk > −1/2.

• Lpα
(
Rd+
)
, 1 ≤ p ≤ ∞, the space of measurable functions f on Rd+ such that

‖f‖p,µα =

(∫
Rd+
|f(x)|p dµα(x)

)1/p

<∞, p ∈ [1,∞),

‖f‖∞,µα = ess sup
x∈Rd+

|f(x)| <∞

2.1. The Eigenfunctions of the multidimensional Bessel operator. The main purpose of this subsection is
to define the eigenfunctions of the multidimensional Bessel operator ∆α,d which will be used to define the
multidimensional Hankel transform.

2.1.1. One dimensional case. For α > −1/2, the one dimensional Bessel operator is defined by

(2.2) Bα =
∂2

∂x2
+

2α+ 1

x

∂

∂x

We recall that the normalized Bessel function of the first kind and order α is defined on C as follows

(2.3) jα(z) = Γ(α+ 1)

+∞∑
k=0

(−1)k(z)2k

22kk!Γ(α+ k + 1)
,
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we will use this function to define the eigenfunctions of the multidimensional Bessel operator.

2.1.2. The multidimensional case. For x, λ, we put

(2.4) ψα,d(λx) =

d∏
k=1

jαk (λkxk) ,

where jαk is the Bessel function given by (2.3), from [2, 7] we have the following results

Proposition 2.1. the function ψα(λ.) is the unique solution of the following Cauchy problem
∆α,du = −‖λ‖2u,
u (0Rd) = 1,

∂
∂xi

u(x)
∣∣∣
xi=0

= 0; i = 1 . . . d,

furthermore it is infinitely differentiable on Rd+, even with respect to each variable and satisfies the following important
result, for all x, λ ∈ Rd+ we have

(2.5) |ψα,d(λx)| ≤ 1.

We will use this function to define the multidimensional Hankel transform.

2.2. The multidimensional Hankel transform.

Definition 2.1. The multidimensional Hankel transform Hα is defined on L1
α

(
Rd+
)

by

(2.6) Hα(f)(λ) =

∫
Rd+
f(x)ψα,d(λx)dµα(x), λ ∈ Rd+,

where µα is the measure on Rd+ given by the relation (2.1). Some basic properties of this transform are as follows, for
the proofs, we refer the reader to [2, 7].

Proposition 2.2. (1) For all f ∈ L1
α

(
Rd+
)
, we have

(2.7) ‖Hα(f)‖∞,µα ≤ ‖f‖1,µα .

(2) (Parseval’s formula) For all f, g ∈ L2
α

(
Rd+
)
, we have

(2.8)
∫
Rd+
f(x)g(x)dµα(x) =

∫
Rd+

Hα(f)(λ)Hα(g)(λ)dµα(λ)

(3) (Plancherel’s theorem) The multidimensional Hankel transform Hα extends uniquely to an isometric isomor-
phism on L2

α

(
Rd+
)

and we have

(2.9) ‖Hα(f)‖2,µα = ‖f‖2,µα ,

for all L2
α

(
Rd+
)
.

(4) (Inversion formula) Let f ∈ L1
α(Rd+) such that Hα(f) ∈ L1

α(Rd+), then we have

(2.10) f(x) =

∫
Rd+

Hα(f)(λ)ψα,d(λx)dµα(λ), a.e. λ ∈ Rd+.

2.3. Generalized Translation Operator Associated With the Multidimensional Hankel Transform.

Definition 2.2. The translation operator τxα , x ∈ Rd+ associated with the multidimensional Bessel operator ∆α,d, is
defined for a suitable function f by

τxαf(y) = c′α

∫
[0,π]d

f (X1, . . . , Xn)

d∏
i=1

(sin θi)
2αi dθ1 . . . dθd,
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with c′α =
∏d
i=1

Γ(αi+1)
πd/2Γ(αi+1/2)

and Xi =
√
x2
i + y2

i − 2yixi cos θi, for i = 1, . . . , d. The following proposition
summarizes some properties of the generalized translation operator see [2, 7].

Proposition 2.3. . (1) For all x, y ∈ Rd+1
+ , we have

(1)

(2.11) τxαf(y) = τyαf(x)

(2)

(2.12)
∫
Rd+
τxα(f)(y)dµα(y) =

∫
Rd+
f(y)dµα(y).

(3) for f ∈ Lpα
(
Rd+
)

with p ∈ [1; +∞] τxα(f) ∈ Lpα
(
Rd+
)

and we have

(2.13) ‖τxα(f)‖p,µα ≤ ‖f‖p,µα
(4)

(2.14) Hα(τxα(f))(λ) = ψα,d(λx)Hα(f)(λ)

By using the generalized translation, we define the generalized convolution product of f, g by

(f ∗α g) (x) =

∫
Rd+
τxα(f)(y)g(y)dµα(y).

This convolution is commutative, associative and its satisfies the following properties.

Proposition 2.4. For f, g ∈ L2
α

(
Rd+
)

the function f ∗α g belongs to L2
α

(
Rd+
)

if and only if the function
Hα(f)Hα(g) belongs to L2

α

(
Rd+
)

and in this case we have

(2.15) Hα (f ∗α g) = Hα(f)Hα(g)

and we have

(2.16)
∫
Rd+
|f ∗α g(x)|2 dµα(x) =

∫
Rd+
|Hα(f)(λ)|2 |Hα(g)(λ)|2 dµα(λ),

where both integrals are simultaneously finite or infinite.

3. WAVELET TRANSFORM ASSOCIATED WITH THE MULTIDIMENSIONAL HANKEL TRANSFORM

The main purpose of this section is to define the wavelet transform associated with the multidimensional Bessel
operator ∆α,d given by the relation (1.1).
Notation : we denote by
•Lpα(R+ × Rd+),1 ≤ p ≤ +∞ the space of measurable functions on R+ × Rd+ satisfying

‖f‖p,θα :=


(∫

R+×Rd+
|f(a, x)|pdθα(a, x)

) 1
p

<∞, if p ∈ [1,+∞[,

ess sup |f(a, x)
(a,x)∈R+×Rd+

| <∞, if p = +∞.

where θα is the measure defined on R+ × Rd+ by

dθα(a, x) :=
da⊗ dµα(x)

a
.

Definition 3.1. Let u, v be two functions in L2
α(Rd+) we say that the pair (u, v) is a multidimensional Hankel two-

wavelet on Rd+ if the following integral

(3.1) Cu,v :=

∫ +∞

0

Hα(u)(aλ)Hα(v)(aλ)
da

a
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is finite for almost all λ ∈ Rd+ and we call the number Cu,v the multidimensional Hankel two-wavelet constant
associated to the functions u, v.

Remark 3.1. It is clear that if u = v, we have

(3.2) 0 < Cu,u = Cu :=

∫ +∞

0

|Hα(u)(aλ)|2 da

a
<∞.

In this case, we say that u is a multidimensional Hankel-wavelet in L2
α(Rd+).

Let a > 0, we define the dilatation operator Da of a measurable function u on Rd+ by

(3.3) Da(u)(x) :=
1

a2|α|+2d
u
(x
a

)
.

The dilatation operator Da satisfies the following properties
• For all u ∈ L2

α(Rd+) we have Da(u) ∈ L2
α(Rd+) and

(3.4) ‖Da(u)‖2,µα =
1

a|α|+d
‖u‖2,µα .

• For all u ∈ L2(Rd+) we have

(3.5) Hα(Da(u))(λ) = Hα(u)(aλ).

Let u be a multidimensional Hankel-wavelet on Rd+ in Lpα(Rd+) with 1 ≤ p ≤ ∞, for all
a > 0, x ∈ R we define the function

(3.6) ua,x(y) = τxα(Da(u))(y).

Definition 3.2. ( [18]) Let u be a multidimensional Hankel-wavelet on Rd+ in L2
α(Rd+) the continuous wavelet

transform associated with the multidimensional Bessel operator (1.1) is defined for a function f ∈ L2
α(Rd+) and

(a, x) ∈ R+ × Rd+ by

(3.7) W α
u (f)(a, x) :=

∫
Rd+
f(y)ua,x(y)dµα(y).

Remark 3.2. The multidimensional Hankel-wavelet transform can be written as

(3.8) W α
u (f)(a, x) = (Da(u) ∗α f)(x).

We have the following Parseval’s formula for W α
u which generalize the Parseval’s formula proved in [18].

Theorem 3.1. Let u, v be two multidimensional Hankel-wavelet functions and f, g ∈ L2
α(Rd+) we have

(3.9)
∫
R+×Rd+

W α
u (f)(a, x)W α

v (g)(a, x)dθα(a, x) = Cu,v

∫
Rd+
f(y)g(y)dµα(y),

where Cu,v is given by the relation (3.1).

Proof. Using the relations (3.5),(3.8) and Fubini’s theorem we get∫
R+×Rd+

W α
u (f)(a, x)W α

v (g)(a, x)dθα(a, x) =

∫ +∞

0

Hα(u)(aλ)Hα(v)(aλ)[

∫
Rd+

Hα(f)(λ)Hα(g)(λ)dµα(λ)]
da

a
,

by using Parseval’s formula for the multidimensional Hankel transform (2.8) we find the disered result. �

corollary 3.1. For all f ∈ L2
α(Rd+) and u a multidimensional Hankel-wavelet on Rd+ we have the following

Plancherel’s formula for W α
u

(3.10) ‖W α
u (f)‖2,θα =

√
Cu‖f‖2,µα .

Where Cu is given by the relation (3.2).
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In the following we establish an inversion formula for the multidimensional Hankel-wavelet transform W α
u which

more general than that proved in [18].

Theorem 3.2. Let (u, v) be a multidimensional Hankel two-wavelet such that Cu,v 6= 0 for all f ∈ L1
α(Rd+) such

that Hα(f) ∈ L1
α(Rd+) ∩ L∞α (Rd+) we have

f(·) =
1

Cu,v

∫ ∞
0

(∫
Rd+

W α
u (f)(a, x)va,x(·)dµα(x)

)
da

a
.

Proof. Let f, g ∈ L2
α(Rd+), by using the relation (3.9)and Fubini’s theorem we find that∫

Rd+
f(y)g(y)dµα(y) =

1

Cu,v

∫
R+×Rd+

W α
u (f)(a, x)[

∫
Rd+
g(y)va,x(y)dµα(y)]dθα(a, x)

=
1

Cu,v

∫
Rd+

[

∫
R+×Rd+

W α
u (f)(a, x)va,x(y)dθα(a, x)]g(y)dµα(y),

which gives the result. �

The reproducing kernels for Hilbert space play an important role in harmonic analysis [16,17]. In this context, we
have the following result.

Theorem 3.3. Let u be a multidimensional Hankel wavelet, then the space W α
u

(
L2
α

(
Rd+
))

is a reproducing kernel
Hilbert space in L2

α

(
R2d

+

)
with kernel function Ku defined by

(3.11) Ku ((a′, x′) ; (a, x)) =
1

Cu
(Da′(u) ∗α ua,x) (x′),

where Cu is given by the relation (3.2).
Furthermore, the kernel is pointwise bounded and we have

(3.12) |Ku ((a′, x′) ; (a, x))| ≤ ‖u‖22,µα , ∀(a, x); (a′, x′) ∈ R2d
+ .

Proof. By using the relations (3.7) and (3.9) we find that

W α
u (a, x) =

1

Cu

∫
R+

∫
Rd+

W α
u (f) (a′, x′) W α

u (ua,x) (a′, x′)dθα(a′, x′)

= 〈W α
u (f) | Ku((.); (a, x))〉θα ,

where
Ku ((a′, x′) ; (a, x)) =

1

Cu
(Da′(u) ∗α ua,x) (x′),

Finally by using the Cauchy-Schwarz inequality, we get

|Ku ((a′, x′) ; (a, x))| ≤ ‖u‖22,µα , ∀(a, x); (a′, x′) ∈ R2d
+ .

�

The rest of this subsection is devoted to give a generalized version of Calderón’s reproducing formula for the multi-
dimensional Hankel two-wavelet (u, v) under the following condition

(3.13) Cu,v 6= 0 and Hα(u),Hα(v) ∈ L∞α (Rd+).

We begin by the following result

Proposition 3.1. For 0 < ε < δ <∞, we put

Gε,δ(x) :=
1

Cu,v

∫ δ

ε

(
Da(u) ∗α Da(v)

)
(x)

da

a

and
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Kε,δ(λ) :=
1

Cu,v

∫ δ

ε

Hα(u)(aλ)Hα(v)(aλ)
da

a
.

Under the condition (3.13) we have

Gε,δ ∈ L2
α(Rd+),Kε,δ ∈ L1

α(Rd+) ∩ L2
α(Rd+)

and

(3.14) Hα(Gε,δ)(λ) = Kε,δ(λ)

Proof. by using Hölder’s inequality for the measure da
a we find that

‖Gε,δ‖22,µα ≤
log(δ/ε)

C2
u,v

‖Hα(u)‖2∞,µα‖v‖
2
2,µα

∫ δ

ε

da

a2α+2
<∞.

Which prove that Gε,δ ∈ L2
α(Rd+), the result Kε,δ ∈ L1

α(Rd+) ∩ L∞α (Rd+) can be easily checked, on the other
hand we have (

Da(u) ∗α Da(v)
)

(x) =

∫
Rd+

Hα(v)(aλ)Hα(u)(aλ)Bα(λx)dµα(λ),

hence applying Fubini’s theorem we get

Gε,δ(x) =

∫
Rd+
ψα,d(λx)Kε,δ(λ)dµα(λ),

inversion formula (2.10) gives the relation (3.14). �

We can now state the main result of this section

Theorem 3.4. ( Calderón’s reproducing formula) Let (u, v) be a multidimensional Hankel two-wavelet satisfying the
condition (3.11) and let 0 < ε < δ <∞, then for all f ∈ L2

α(Rd+), the function fε,δ given by

fε,δ(x) =
1

Cu,v

∫ δ

ε

(∫
Rd+

W α
u (f)(a, y)va,x(y)dµα(y)

)
da

a
, x ∈ Rd+,

belongs to L2
α(R) and satisfies

(3.15) lim
ε→0,δ→∞

‖fε,δ − f‖2,µα = 0.

Proof. It is easy to see that
fε,δ = f ∗α Gε,δ

then by using the relations (2.9) and (3.12) we find that

‖fε,δ − f‖22,µα =

∫
Rd+
|Hα(f)(λ)|2(1−Kε,δ(λ))2dµα(λ),

by using the relation (3.1), the relation (3.15) follows from the dominated convergence theorem. �

4. UNCERTAINTY PRINCIPLES ASSOCIATED WITH THE MULTIDIMENSIONAL HANKEL-WAVELET

TRANSFORM

In this section, we estimate the concentration of W α
u (f) on subset of Rd+ × Rd+ of finite measure, similar results

have been checked in [1, 6–8, 10, 20] and we establish the uncertainty principle for orthonormal sequences associated
with the multidimensional Hankel-wavelet transform, first we consider the following orthogonal projections

(1) Let Pu be the orthogonal projection from L2
α

(
R2d

+

)
onto W α

u

(
L2
α

(
Rd+
))

and ImPu denotes the range of Pu.
(2) Let PE be the orthogonal projection on L2

α

(
R2d

+

)
defined by
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(4.1) PEF = χEF, F ∈ L2
α

(
R2d

+

)
,

where E ⊂ Rd+ × Rd+ and ImPE is the range of PE . Also, we define

‖PEPu‖ = sup
{
‖PEPu(F )‖2,µα⊗µα : F ∈ L2

α

(
R2d

+

)
, ‖F‖2,µα⊗µα = 1

}
.

We first need the following result.

Theorem 4.1. Let u be a multidimensional Hankel-wavelet in L2
α(Rd+). Then for anyE ⊂ Rd+×Rd+ of finite measure

µα ⊗ µα(E) <∞, the operator PEPu is a Hilbert-Schmidt operator. Moreover, we have the following estimation

‖PEPu‖ ≤ ‖u‖22,α
√
µα ⊗ µα(E).

Proof. since Pu is a projection onto a reproducing karnel Hilbert space, for any function F ∈ L2
α(R2), the

orthogonal projection Pu can be expressed as

Pu(F )(x, ξ) =

∫∫
R2d

+

F (x′, ξ′)Ku ((x′, ξ′) ; (x, ξ)) dµα(x′)⊗ dµα(ξ′),

where Ku ((x′, ξ′) ; (x, ξ)) is given by the relation (3.11), using the relation (4.1), we find that

PEPu(F )(x, ξ) =

∫∫
R2d

+

χE(x, ξ)F (x′, ξ′)Ku ((x′, ξ′) ; (x, ξ)) dµα(x′)⊗ dµα(ξ′).

This shows that the operator PEPu is an integral operator with kernel K ((x′, ξ′) ; (x, ξ)) =

χE(x, ξ)Kψ ((x′, ξ′) ; (x, ξ)). Using the relation (3.6) and Fubini’s theorem, we find that

‖PΣPu‖2HS =

∫∫
R2d

+

∫∫
R2d

+

|χΣ(x, ξ)|2 |Ku ((x′, ξ′) ; (x, ξ))|2 dµα(x′)⊗ dµα(ξ′)dµα(x)⊗ dµα(ξ)

(4.2) ≤ ‖u‖22,α
√
µα ⊗ µα(E) <∞.

Thus, the operator PEPu is a Hilbert-Schmidt operator. Now, the proof follows from the fact that ‖PEPu‖ ≤
‖PEPu‖HS . �

In the following, we obtain the uncertainty principle for orthonormal sequences associated with the multidimen-
sional Hankel-wavelet transform.

Theorem 4.2. Let u be a multidimensional Hankel-wavelet in L2
α(Rd+) and {φn}n∈N be an orthonormal sequence in

L2
α(Rd+). Then for any subset E ⊂ Rd+ × Rd+ of finite measure µα ⊗ µα(E) <∞, we have

N∑
n=1

(
1− ‖χEcW α

u (φn)‖2,µα⊗µα
)
≤ ‖u‖22,α

√
µα ⊗ µα(E),

for every N ∈ N.

Proof. Let {φn}n∈N be an orthonormal basis for L2
α

(
R2d

+

)
. Since PEPu is a Hilbert-Schmidt operator, and

satisfied the relation (4.2) and we have∑
n∈N
〈PψPEPuφn, φn〉µα⊗µα = ‖PEPu‖2HS ≤ ‖u‖

2
2,α

√
µα ⊗ µα(E) <∞..

According to the paper [11], the positive operator PuPEPu is a trace class operator and we have

tr (PuPEPu) = ‖PEPu‖2HS ≤ ‖u‖
2
2,α

√
µα ⊗ µα(E) <∞.
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where tr (PuPEPu) denotes the trace of the operator PuPEPu. Since {φn}n∈N be an orthonormal sequence
in L2

α(Rd+), from the orthogonality relation (3.10), we obtain that {W α
u (φn)}n∈N is also an orthonormal

sequence in L2
α

(
R2d

+

)
thus

N∑
n=1

〈PEW α
u (φn) ,W α

u (φn)〉µα⊗µα =

N∑
n=1

〈PuPΣPuW
α
u (φn) ,W α

u (φn)〉µα⊗µα ≤ tr (PuPEPu)

Moreover, for any n with 1 ≤ n ≤ N , using the Cauchy-Schwarz inequality, we get
N∑
n=1

(
1− ‖χEcW α

u (φn)‖2,µα⊗µα
)
≤

N∑
n=1

〈PEW α
u (φn) ,W α

u (φn)〉µα⊗µα ≤ ‖u‖
2
2,α

√
µα ⊗ µα(E) <∞.

This completes the proof of the theorem. �

5. LOCALIZATION OPERATORS ASSOCIATED WITH THE MULTIDIMENSIONAL HANKEL-WAVELET

TRANSFORM

tionIntroduction The main purpose of this section is to introduce and to give sufficient conditions for boundedness,
compactness, and Schatten class properties of localization operators Lu,v(σ) associated with the multidimensional
Hankel-wavelet transform.
In the sequel of this section u, v belongs to L2

α

(
Rd+
)

such that ‖u‖2,α = ‖v‖2,α = 1, we note that this hypothesis is
not essential and the result still hold true up to some contant depending on ‖u‖2,α and ‖v‖2,α.
Notation: we denote by
• B

(
Lpα
(
Rd+
))
, 1 ≤ p ≤ ∞, the space of bounded operators from Rd+ into itself.

In particular for p = 2, we define
S∞ := B

(
L2
α

(
Rd+
))
,

equipped with the norm

(5.1) ‖A‖S∞ := sup
v∈L2

α(Rd+):‖v‖
L2
α(Rd

+)
≤1

‖Av‖2,µα .

Definition 5.1. The trace of an operator A in S1 is defined by

(5.2) tr(A) =

∞∑
k=1

〈Aϕk, ϕk〉α ,

where (ϕk)k is any orthonormal basis of L2
α

(
Rd+
)
.

Remark 5.1. A compact operator A on the Hilbert space L2
α

(
Rd+
)

is Hilbert-Schmidt, if the positive operator A∗A
is in the space of trace class in this case we have

(5.3) ‖A‖2HS := tr (A∗A) =

∞∑
k=1

‖Aϕk‖22,µα ,

for any orthonormal basis (ϕk)k of L2
α

(
Rd+
)
. For more information about the Schatten classes one can see [21].

5.1. Boundedness and compactness of localization in S∞. In this subsection, we will define and study the
boundedness and compactness of localization operator in L2

α

(
Rd+
)

we begin by the following result.

Proposition 5.1. For every p ∈ [1,+∞] and all f, g ∈ L2
α

(
Rd+
)
, the function W α

u (f)W α
v (g) belongs to Lpα

(
R2d

+

)
and

(5.4) ‖W α
u (f)W α

v (g)‖p,µα⊗µα ≤ ‖f‖2,µα‖g‖2,µα
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Proof. From the relation (3.6), the function W α
u (f)W α

v (g) belongs to L∞α
(
R2d

+

)
and we have

(5.5) ‖W α
u (f)W α

v (g)‖∞,µα⊗µα ≤ ‖f‖2,µα‖g‖2,µα .

From the Cauchy-Schwarz inequality and the relation (3.7), we find that the function W α
u (f)W α

v (g) belongs
to L1

α

(
R2d

+

)
and

(5.6) ‖W α
u (f)W α

v (h)‖1,µα⊗µα ≤ ‖f‖2,α‖h‖2,α

Let now p ∈]1,+∞[, we have

‖W α
u (f)W α

v (g)‖p,µα⊗µα ≤ ‖W
α
u (f)W α

v (g)‖p−1
∞,µα⊗µα ‖W

α
u (f)W α

v (h)‖1,µα⊗µα
the relations (5.5) and (5.6) gives the desired result. �

Proposition 5.2. Let σ ∈ Lpα
(
R2d

+

)
, p ∈ [1,+∞]. For every f ∈ L2

α

(
Rd+
)
, there exists a unique function in

L2
α

(
Rd+
)
, denoted by Lu,v(σ)(f) such that for every g ∈ L2

α

(
Rd+
)

we have

(5.7) 〈Lu,v(σ)(f) | g〉α =

∫
Rd+

∫
Rd+
σ(x, y)W α

u (f)(x, y)W α
v (g)(x, y)dµα(x)⊗ dµα(y).

Proof. σ ∈ Lpα
(
R2d

+

)
, p ∈ [1,+∞] and let p′ be the conjugate exposant of p by proposition 5.1 we have the

function W α
u (f)W α

v (g) belongs to Lp
′

α

(
R2d

+

)
, by using Hölder’s inequality we find that

(5.8)

∣∣∣∣∣
∫
Rd+

∫
Rd+
σ(x, y)W α

u (f)(x, y)W α
v (g)(x, y)dµα(x)dµα(y)

∣∣∣∣∣ ≤ ‖σ‖p,µα⊗µα‖f‖2,µα‖g‖2,µα .
The relation (5.8) shows that the mapping

g 7−→
∫
Rd+

∫
Rd+
σ(x, y)W α

u (f)(x, y)W α
v (g)(x, y)dµα(x)⊗ dµα(y),

is an antilinear continous form on the Hilbert space Lpα
(
Rd+
)

by the Riesz representation theorem, there
exist a unique function Lu,v(σ)(f) satisfying the equality (5.7). �

Definition 5.2. For every σ ∈ Lpα
(
R2d

+

)
, p ∈ [1,+∞], the localization operators associated with the window

functions u, v and the symbol σ,Lu,v(σ) is defined for all f, g ∈ L2
α

(
Rd+
)

by

〈Lu,v(σ)(f) | g〉α =

∫
Rd+

∫
Rd+
σ(x, y)W α

u (f)(x, y)W α
v (g)(x, y)dµα(x)⊗ dµα(y).

We have the following result

Theorem 5.1. For every σ ∈ Lpα
(
R2d

+

)
, p ∈ [1,+∞], the localization operator

Lu,v(σ) : L2
α

(
Rd+
)
−→ L2

α

(
Rd+
)

belongs to S∞ and we have

(5.9) ‖Lu,v(σ)‖S∞
≤ ‖σ‖p,µα⊗µα .

Furthermore we have

(5.10) L ∗u,v(σ) = Lv,u(σ̄)

where L ∗u,v(σ) is the adjoint operator of Lu,v(σ).

Proof. For f ∈ L2
α

(
Rd+
)

by using the relation (5.8) we find that

‖Lu,v(σ)(f)‖2,µα ≤ ‖σ‖p,µα⊗µα‖f‖2,vα ,

this show that the localization operator Lu,v(σ) is bounded on L2
α

(
Rd+
)

and by using the relation (5.1) we
find that
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‖Lu,v(σ)‖S∞
= sup
‖f‖2,α≤1

‖Lu,v(σ)(f)‖2,α ≤ ‖σ‖p,µα⊗µα <∞,

since Lu,v(σ) ∈ S∞. Let us determine his adjoint, for all f, g ∈ L2
α

(
Rd+
)

we have

〈Lu,v(σ)(f) | g〉α =

∫
Rd+

∫
Rd+

W α
v (g)(x, y)σ(x, y)W α

u (f)(x, y)dµα(x)dµα(y)

= 〈Lv,u((σ̄))(f) | g〉α = 〈g | Lv,u((σ̄))(f)〉α ,

which gives the result. �

We have the following result

Theorem 5.2. For every σ ∈ Lpα
(
R2d

+

)
, p ∈ [1,+∞], the localization operator

Lu,v(σ) : L2
α

(
Rd+
)
−→ L2

α

(
Rd+
)

is compact.

Proof. Let σ ∈ L1
α

(
R2d

+

)
and let (ϕk)k be an orthonormal basis of L2

α

(
Rd+
)
, for every k ∈ N we have

||Lu,v(σ) (ϕk)| |22,µα =
∣∣〈Lu,v(σ) (ϕk) | Lu,v(σ) (ϕk)〉α

∣∣
≤ 1

2

∫
Rd+

∫
Rd+
|σ(x, y)|

[
|〈ϕk | ux,y〉α|

2
+
∣∣〈Lv,u((σ̄)) (vx,y) | ϕk〉α

∣∣2] dµα(x)⊗ dµα(y)

by using Bessel’s inequality, Fubini’s theorem and and the relations (2.13),(3.3), (5.3),(5.9) we find that

‖Lu,v(σ)‖2HS ≤
1

2
‖σ‖1,µα⊗µα

(
1 + ‖σ‖21,µα⊗µα

)
≤
(
1 + ‖σ‖21,µα⊗µα

)2
<∞

this show that Lu,v(σ) is an Hilbert-Schmidt operator in particular Lu,v(σ) is compact. Let σ ∈
Lpα
(
R2d

+

)
, p ∈ [1,+∞], Since L1

α

(
R2d

+

)
∩ Lpα

(
R2d

+

)
is dense in Lpα

(
R2d

+

)
, there exists (σk)k ⊂ L1

α

(
R2d

+

)
, such

that
lim

k→+∞
‖σk − σ‖p,µα⊗µα = 0.

From the relation (5.9), we have ‖Lu,v (σk)−Lu,v(σ)‖S∞
≤ ‖σk − σ‖p,µα⊗µα . Consequently,

limk→+∞Lu,v (σk) = Lu,v(σ), in B
(
L2
α

(
Rd+
))

. Since the set of compact operators is a closed ideal of
B
(
L2
α

(
Rd+
))

, we deduce that Lu,v(σ) is a compact operator. The proof is complete. �

5.2. Trace of the localization operators. In this subsection, we consider the separable Hilbert space L2
α

(
Rd+
)
, we

will prove that for every σ ∈ Lpα
(
R2d

+

)
, p ∈ [1,+∞], the localization operator Lu,v(σ) belongs to the Schatten-von

Neumann classes Sp in particular for σ ∈ L1
α

(
R2d

+

)
we have Lu,v(σ) belongs to the trace class and we give explicitly

its trace.

Theorem 5.3. Let σ in L1
α

(
R2d

+

)
. Then the localization operator

Lu,v(σ) : L2
α

(
Rd+
)
→ L2

α

(
Rd+
)

is in S1 and we have

(5.11) ‖σ̃‖1,µα⊗µα ≤ ‖Lu,v(σ)‖S1
≤ 4‖σ‖1,vα⊗vα .

where
σ̃(x, y) = 〈Lu,v(σ)(ux,y) | vx,y〉α

Proof. We begin first by proving the right hand of (5.11), we first assume that σ is non-negative. Let (ϕk)k
be an orthonormal basis for L2

α

(
Rd+
)
. Then, by using Fubini’s theorem and the Parseval’s identity, we find

that
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(5.12)
+∞∑
k=1

〈Lu,v(σ) (ϕk) | ϕk〉α ≤ ‖σ‖1,µα⊗µα ,

for all orthonormal basis (ϕk)k. Hence, by [21], the localization operator Lu,v(σ) is in S1.Now to prove the
right estimate in (5.11), let σ be a non-negative function in L1

α

(
R2d

+

)
then(

L ∗u,v(σ)Lu,v(σ)
)1/2

= Lu,v(σ).

Thus, if (ϕk)k is an orthonormal basis for L2
α

(
Rd+
)

consisting of eigenvalues of(
L ∗u,v(σ)Lu,v(σ)

)1/2
: L2

α

(
Rd+
)
→ L2

α

(
Rd+
)

by using the relation (5.12), we get

(5.13) ‖Lu,v(σ)‖S1
=

+∞∑
k=1

〈(
L ∗u,v(σ)Lu,v(σ)

)1/2
(ϕk) | ϕk

〉
α
≤ ‖σ‖1,µα⊗µα .

Now, for an arbitrary real-valued symbol σ in L1
α

(
R2d

+

)
we can write σ = σ+ − σ−, where

σ+ = max(σ, 0);σ− = −min(σ, 0).

Then, by using relation (5.13), we find that

(5.14) ‖Lu,v(σ)‖S1
≤ ‖Lu,v (σ+)‖S1

+ ‖Lu,v (σ−)‖S1
≤ ‖σ+‖1,µα⊗µα + ‖σ−‖1,µα⊗µα ≤ 2‖σ‖1,µα⊗vα .

Finally, let σ in L1
α

(
R2d

+

)
be a complex-valued function. Then, we can write

σ = σ1 + iσ2, where σ1 and σ2 are the real and imaginary parts of σ respectively.From inequality (5.14), we
get

‖Lu,v(σ)‖S1
= ‖Lu,v(σ) (σ1) + iLu,v(σ) (σ2)‖S1

≤ ‖Lu,v(σ) (σ1)‖S1
+ ‖Lu,v(σ) (σ2)‖S1

≤ 2
(
‖σ1‖1,vα⊗vα + ‖σ2‖1,vα⊗vα

)
≤ 4‖σ‖1,µα⊗µα .

Which proves the right hand of (5.11). For the left hand of (5.11), by using theorem 5.2 Lu,v(σ) is a compact
operator from [21], Lu,v(σ) can be diagonalized as follows

(5.15) Lu,v(σ)(f) =

+∞∑
k=1

sk 〈f | ϕk〉α ψk

where (sk)k are the positive singular values of Lu,v(σ), (ϕk)k is an orthonormal basis for the orthogonal
complement of the null space of Lu,v(σ) and (ψk)k is an orthonormal set in L2

α

(
Rd+
)
. Then

+∞∑
k=1

〈Lu,v(σ) (ϕk) | ψk〉µα =

+∞∑
k=1

sk

Now it is easy to see that σ̃ ∈ L1
α

(
R2d

+

)
and by using the canonical form of Lu,v(σ) (5.15) we find that∫

Rd+

∫
Rd+
|σ̃(x, y)|dµα(x)⊗ dµα(y) ≤

+∞∑
k=1

sk = ‖Lu,v(σ)‖S1
.

The proof is complete.
�

In the following we give a trace formula for the localization operators Lu,v(σ).
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Theorem 5.4. For all σ ∈ L1
α

(
R2d

+

)
we have the following trace formula

Tr (Lu,v(σ)) =

∫
Rd+

∫
Rd+
σ(x, y) 〈vx,y | ux,y〉α dµα(x)⊗ dµα(y).

Proof. let (ϕk)k an orthonormal basis in L2
α

(
Rd+
)

by using theorem 5.3 the localization operators Lu,v(σ)

belongs to S1 and by using Parseval’s identity and Fubini’s theorem we get

Tr (Lu,v(σ)) =

∞∑
k=1

∫
Rd+

∫
Rd+
σ(x, y) 〈ϕk | ux,y〉α 〈ϕk | vx,y〉µαdµα(x)⊗ dµα(y)

=

∫
Rd+

∫
Rd+
σ(x, y) 〈vx,y | ux,y〉α dµα(x)⊗ dµα(y).

�

We have the following result

Theorem 5.5. Let σ ∈ Lpα
(
R2d

+

)
, p ∈ [1,+∞] then the Gabor multipliers

Lu,v(σ) : L2
α

(
Rd+
)
→ L2

α

(
Rd+
)

is in Sp and we have
‖Lu,v(σ)‖Sp ≤ 4

1
p ‖σ‖p,µα⊗µα .

Proof. The result follows from the relations (5.9),(5.11) and by interpolation theorems [21]. �

6. CONCLUSION

The main purpose of this paper is to define a new time-frequency analysis called multidimensional
Hankel-wavelet transform and to give some new results associated with this new integral transform as Par-
seval’s, Plancherel’s and Calderón’s reproducing formulas. As application of these results we analyse the
concentration of this transform on sets of finite measure and we give uncertainty principle for orthonor-
mal sequences and Donoho-Stark’s type uncertainty principle, also we introduce a new class of pseudo-
differential operator Lu,v(σ) called localization operator which depend on a symbol σ and two functions
u and v, we give a criteria in terms of the symbol σ for its boundedness and compactness, we also show
that this operator belongs to the Schatten-Von Neumann classes Sp for all p ∈ [1; +∞] and we give a trace
formula.
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