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PURE FRACTIONAL OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS:
NONLINEAR, DELAY AND TWO-DIMENSIONAL PDES

IMAN MALMIR

ABSTRACT. Novel methods for solving the optimal control problems of different and new types of the fractional
partial differential equations (PDEs) as: nonlinear PDEs, delay PDEs, and two-dimensional PDEs, are introduced
in this paper. These problems are formulated with the constant Riemann–Liouville performance indices together
with tracking, constant Riemann–Liouville performance indices in which there are additional terms for the track-
ing optimal control of PDEs. These pure fractional optimal control problems are transformed into quadratic
programing ones and there is no need to derive any optimality conditions. Some challenging optimal control
problems of PDEs that have applications in real-world systems are investigated. As an unprecedented constraint,
we introduce Riemann–Liouville, two-dimensional isoperimetric constraint in the PDE optimal control problem.

1. INTRODUCTION

A partial differential equation (PDE) is an equation involving one or more partial derivatives of an un-
known function that depends on two or more variables, often time t and one or several variables in space [1].
PDEs like ordinary differential equations are classified as linear or nonlinear [2]. PDEs serve as models for
real-world systems and there many applications of PDEs in mechanics and science, for example, see [1–6].
In this work, by providing new theoretical results, we are going to develop the idea and results of the pre-
vious works [7,8] for the pure fractional PDE optimal control problems of three different types as nonlinear,
delayed or stretched and two-dimensional PDEs. In [7], we proposed a QP method for the optimal control
of PDEs defined with fractional linear PDEs and the integer performance indices in the ordinary fractional
sense, not in pure fractional sense. The concepts ‘pure fractional’ and ‘Riemann–Liouville isoperimetric
constraints’ were introduced in [8]. The QP is an invaluable tool that simplifies the solutions of the op-
timal control problems. We can see in the work that the QP method has the ability to solve the optimal
control problems with complicated constraints, which cannot be solved by many of the existing methods,
even problems with fractional constraints, for instance, see Example 5 in [8]. In real-world optimal control
problems, we often deal with constraints, for example, see [9]. In most of control system engineering the
traditional methods are not applicable and the complexity of optimization problems increases exponen-
tially [10].

We will study nonlinear PDEs, delay PDEs and two-dimensional PDEs with a new fractional perfor-
mance index. Thus, compared with previous work, there are Riemann–Liouville integral orders in the per-
formance index of the problems called the constant Riemann–Liouville quadratic performance index. We
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derive the continuous models of the original problems by using parameterizing methods. A system may
be either delayed from its descriptions or from an induction within the control loop. The delayed systems
are more complex than non-delay systems [11, 12]. We use the wavelets for the delayed PDEs. One can see
that the wavelets theory has many application in practical problems. For example, the wavelet algorithm
can improve the accuracy of multi-scale modeling in power electronic system and reduce the simulation
time [13]. Research in tracking optimal control of PDEs is of vital importance. Hence, we formulate the
problems with tracking criteria for possible tracking purposes.

The new PDE optimization problems are defined as follows.

Problem 1: three-dimensional optimal control of fractional two-dimensional PDEs. In this work, we are
going to investigate the three-dimensional optimal control of PDEs with the constant Riemann–Liouville
quadratic performance index or cost function given by
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Γ(ᾱy)

1

Γ(ᾱt)
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(1.1)

where a0 ≥ 0, Γ(·) is the gamma function, ᾱt,y,z are the orders of the Riemann–Liouville performance
index, a1, a2, and a3 are known continuous functions, a4 is the weighting parameter, which is used in the
tracking systems to adjust the error and a4 ≥ 0, y, z, and t are three independent variables as the spatial
and temporal variables, yf , zf , and tf are fixed, x(z, y, t) and u(z, y, t) are the state and the control of the
systems and xd(z, y) is a separable, continuous function of y and z. The performance index J consists of the
terminal cost term, the total energy of the system and the squared terminal error of the system. In the third
term of J , we are interested in minimizing the error between the desired state xd(z, y) and the actual state
x(z, y, tf ) at the final (terminal) time tf as the target state, that it, we want the system tracks the desired
two-dimensional reference at tf . The state equation of the fractional partial differential equations based on
the Caputo sense is given in a general form as

(1.2)
∂αtx(z, y, t)

∂tαt
= b(z)

∂αzx(z, y, t)

∂zαz
+ c(y)

∂αyx(z, y, t)

∂yαy
+ d(z)e(y)ft(t)u(z, y, t) + gz(z)gy(y)gt(t),

where αt,y,z are the Caputo derivative orders, 0 < αt,y,z ≤ 4, b, c, d, e, ft, gz, gy , and gt are known continuous
functions of the given independent variables and the state variables are separable. In (1.1), we define

ᾱ· = 1 + α· − dα·e.

Obviously, for ᾱt,y,z = 1, we have the convectional performance index as
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(1.3)

thus, the quadratic performance index (1.3) is a special case of the Riemann–Liouville quadratic perfor-
mance index (1.1). We may have a combination of the initial and terminal conditions in the problem, for
example,

(1.4) x(0, y, t) = hy(y)ht(t), x(z, 0, t) = iz(z)it(t), x(z, y, 0) = jz(z)jy(y),
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(1.5) x(zf , y, t) = hy(y)ht(t), x(z, yf , t) = iz(z)it(t), x(z, y, tf ) = jz(z)jy(y),
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(1.6)

where hy, ht, iz, it, jz and jy are known real-valued continuous functions and γ is a fractional or an integer
order derivative. The problem is finding the optimal control u∗(z, y, t) and optimal state x∗(z, y, t), which
when applied to the two-dimensional PDE plant described by (1.2) with the indicated conditions like those
in (1.4)–(1.6), give an optimal performance index J∗ described by (1.1).

Problem 2: optimal control of fractional nonlinear PDEs. Also, we consider the optimal control of frac-
tional nonlinear partial differential equations with a constant Riemann–Liouville quadratic performance
index as
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where the previous statements hold, and with the state equation of the fractional nonlinear partial differ-
ential equation given in a general form as (based on the Caputo sense)

(1.8)
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∂tαt
= =

(∂αyx(y, t)
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)
,

where = is continuous and satisfies local Lipschitz conditions and the state variables are separable.
We have a combination of the following initial and terminal conditions as

(1.9) x(0, t) = h(t), x(y, 0) = i(y),

(1.10) x(yf , t) = h(t), x(y, tf ) = i(y),

or a combination of
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∂yγ
|(0,t) = h(t),
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(1.11)

where γ if a fractional derivative or an integer order derivative, and h and i are known real-valued contin-
uous functions. The problem is finding the optimal control u∗(y, t) and optimal state x∗(y, t), which when
applied to the nonlinear plant described by (1.8) with the indicated conditions, give an optimal performance
index J∗ described by (1.7).
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Problem 3: optimal control of fractional delay PDEs. Consider a fractional delay partial differential equa-
tion based on the Caputo sense as

∂αtx(y, t)

∂tαt
=b1(y)b2(t)

∂αyx(y, t)

∂yαy
+ c(t)x(y, t− τ) + d(t)x(y, t− τ(t)) + e(t)x(y,

1

λ
t))

+ f1(y)f2(t)u(y, t) + g1(y)g2(t),

(1.12)

where 0 < αt,y ≤ 4, b1, b2, c, d, e, f1, f2, g1, and g2 are known continuous functions of the given independent
variable, τ is a constant delay, τ(t) is a time-varying or a piecewise delay, and 1/λ is a stretch. In addition,
there exists the initial function or the history function in the delay PDE as

(1.13) x(y, t) = ζ(y)θ(t), t < 0, 0 < y < yf ,

where ζ(y) and θ(t) are known, continuous functions. The history function is defined for a delayed system
and it has obvious effects on the solutions. We may have a combination of the initial and terminal conditions
given in (1.9)–(1.11) in the problem. The problem is finding the optimal control u∗(y, t) and optimal state
x∗(y, t), which when applied to the delayed plant described by (1.12) with the indicated conditions, give an
optimal performance index J∗ described by (1.7).

In some cases of all given problems, we may face with constraints such as those presented in [7]. Here, we
introduce a new type of isoperimetric constraints, which has applications in the optimal control theory [14].

Two-dimensional Riemann–Liouville isoperimetric constraint. Like the Riemann–Liouville isoperimetric
constraint introduced in [8], as a new constraint, we define a two-dimensional fractional isoperimetric
constraint for PDE optimization as

(1.14) RL
0I
ᾱi,t
tf

RL
0I
ᾱi,y
yf

[a5(y)a6(t)x(y, t)− a7(y)a8(t)u(y, t)] ≤ ci,

where ᾱi,t, ᾱi,y are chosen similarly to ᾱt and ᾱy , a5, a6, a7, and a8 are known continuous functions and ci

is a constant; we name the new constraint as two-dimensional Riemann–Liouville isoperimetric constraint.
One knows the fact that such problems do not have exact solutions or there is no method to find the exact

solutions. PDE control problems are complex enough for domains of one dimension, but many physical
PDE problems exist which evolve in two and three dimensions [15]. The behavior of many dynamical sys-
tems depends upon their past histories and they can be induced by the presence of time delays [16] in their
state equations. In traditional methods for finding the optimal control of PDE, we must derive the optimal-
ity condition for the optimization problem [17]. In [18], the PDE optimal control problem was discretized
by the method of lines and transformed into a nonlinear programming problem, where the resulting system
of ordinary differential algebraic equations was solved by a standard integrative routine. To get an optimal
solution in an iterative way, a sequential quadratic programming method was used. It is shown in [19] that
that the finite difference method applied to PDEs enables us to obtain Roesser discrete state-space mod-
els. In [20], the turnpike phenomenon for optimal control problems of ODEs and PDEs was discussed.
In [21], the optimal control and the parameter identification of systems governed by PDEs with random in-
put data were presented. The solution methods for partial differential equations with time delay have been
investigated in some work, for example, [22–24]. In [25], a general formulation and numerical scheme for
the fractional optimal control problem of distributed systems in spherical and cylindrical coordinates was
presented. [26] presented a numerical scheme for optimal control problem governed by time fractional dif-
fusion equation based on a Legendre pseudo-spectral method for space discretization and finite difference
method for time discretization. In [27], optimal control of a stochastic delay partial differential equation
by means of the associated backward stochastic differential equations. A new technique for computing the
optimal control of delay-differential-algebraic dynamic systems was introduced in [28]. An iterative proper
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orthogonal decomposition method by using the finite element and the backward Euler methods for a par-
abolic optimal control problem is investigated in [29]. Some of the engineering models are described with
two-dimensional PDEs [30]. Ref. [31] studied the approximation of optimally controlled PDEs for inverse
problems in optimal design. In this reference, solutions to various applications in optimal material design
were presented. Some interested optimal control problems of PDEs were presented in [32]. Using the tra-
ditional method, one must derive the optimality conditions, for example, see [17, 33]. In [18], an approach
was presented to compute optimal control functions in dynamic models based on one-dimensional par-
tial differential algebraic equations. Ref. [34] discussed the regional tracking problem of the bilinear wave
equation with bounded controls acting on the velocity term of the system. Ref. [35] by defining continuous
2D models of discrete systems, presented the optimality conditions and feedback representation.

2. PRELIMINARIES

First, the definitions of the fractional operators are given. Then, the concepts of the wavelets are pre-
sented.

Definition 2.1. The Riemann–Liouville integral of order α for a function f(t) “ RL
0I
α
t f(t)” is defined by

(2.1) RL
0I
α
t f(t) =

1

Γ(α)

∫ t

0

(t− ρ)α−1f(ρ) dρ,

where, as usual, Γ(α) is the gamma function [36].

Definition 2.2. The constant Riemann–Liouville integral of order α for a function f(t) “ RL
0I
α
tf
f(t)” is de-

fined by

(2.2) RL
0I
α
tf
f(t) =

1

Γ(α)

∫ tf

0

(tf − t)α−1f(t) dt,

where tf is a finite constant and tf > 0 [8]. We can see that the constant Riemann–Liouville α-integral for a
function f(t) is a constant value. We use this definition for defining the new fractional Riemann–Liouville
performance indices and isoperimetric constraints, for example, see [8, 37].

Definition 2.3. The Caputo fractional derivative of order α for a function f(t) “ C
0 D

α
t f(t)” is defined by

(2.3) C
0 D

α
t f(t) =

{
1

Γ(k−α)

∫ t
0
(t− ρ)k−α−1f (k)(ρ) dρ, k − 1 < α < k

dk

dtk
f(t), α = k,

where k ∈ N [36]. Here, the subscript “t” denotes the independent variable. For a three-dimensional
function as x(z, y, t), we have

∂αx(z, y, t)

∂tα
= C

0 D
α
t x(z, y, t).

We usually apply (2.1) to the state equations defined with (2.3) see [37–39], but we need (2.2) to define the
new, fractional, Riemann–Liouville performance index and Riemann–Liouville isoperimetric constraint.

Definition 2.4. Legendre and Chebyshev wavelets

Legendre wavelets φnm are defined on [0, 1] as [40, 42]

(2.4) φnm(t) =

{ √
NcmPm(2Nt− 2n+ 1), t ∈

[
n−1
N , nN

]
0, otherwise,

where Pm are the well-known Legendre polynomials, a finite value N ∈ N≥2 is an arbitrarily selected scal-
ing parameter and specifies the number of subintervals, n = 1, 2, . . . , N refers to the number of subinterval
and specifies the location of the subinterval, m = 0, 1, . . . is the degree of Pm, cm =

√
2m+ 1, and t ∈ [0, 1]
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is as an independent variable. In (2.4), φ̄nm(t) :=
√
NcmPm(2Nt − 2n + 1) is Legendre scaling function.

Legendre wavelets form an orthogonal basis with respect to the weight functions ςnlw(t) = 1.
Chebyshev wavelets ψnm are defined on [0, 1] as [41, 42]

(2.5) ψnm(t) =

{ √
2NcmTm(2Nt− 2n+ 1), t ∈

[
n−1
N , nN

]
0, otherwise,

where Tm are the well-known Chebyshev polynomials, N,n, and m are the same as before and c0 =

1/
√
π, cm6=0 =

√
2/
√
π. In (2.5), ψ̄nm(t) :=

√
2NcmTm(2Nt − 2n + 1) is Chebyshev scaling function.

Chebyshev wavelets form an orthogonal basis with respect to ςncw(t) = 1/
√

1− (2Nt− 2n+ 1)2.

Definition 2.5. Wavelet expansions

As we all know, we can expand a function f(t) in a series of Legendre or Chebyshev polynomials denoted
by {ϕm(t)} as f(t) =

∑∞
m=0 fmϕm(t). If we use the dilation and scaling properties of the wavelets, we can

expand a function f(t) in a series of Legendre or Chebyshev wavelets denoted by {wξnm(t)} as

f(t) =

N∑∑∑
n=1

∞∑
m=0

fnmwnm(t),

where N is a (large enough) finite value, N � ∞. By truncating the power series, say, the M th term in N
subintervals, we have

(2.6) f(t) ∼=
N∑∑∑
n=1

M−1∑
m=0

fnmwnm(t).

The constant coefficients of the scaling functions {w̄nm(t)} can be obtained from

(2.7) fnm =

∫ n
N

n−1
N

f(t)wnm(t)ςnw(t) dt.

In (2.6), the application of the first summation differs from that of the second one, the first summation
indicates the expansion is piecewise-defined function of N sub-functions. By

fw := [f10, . . . , f1M−1, f20, . . . , f2M−1, . . . , fN0, . . . , fNM−1],

w(t) := [w10(t), w11(t), . . . , w1M−1(t), . . . , wN0(t), . . . , wNM−1(t)]
>
,

where fw is a 1 × NM vector consists of constants, w(t) as a vector consisting of any of the wavelets is a
NM × 1 vector, we are able to write (2.6) in a simple form as

(2.8) f(t) = fww(t).

We use the subscript “w” throughout this text to refer to both wavelets.

Remark 2.6. In using (2.4) and (2.5) or any wavelet for a series expansion, we must consider several impor-
tant points as follows:

• N ∈ N≥2 is a finite value, N � ∞. The scaling functions are defined on [(n − 1)/N, n/N ] and if
N →∞, the lenght of subinervald tends to zero. Also, we cannot use infinite value due to presence
of N in the coefficients and arguments of the wavelets, that is, in

√
N and (2Nt−2n+1). We cannot

choose N = 1 in the wavelets concepts, because we revert to polynomials concepts and some of the
wavelets properties are eliminated.

• For different values of N like N1 and N2, we have different scaling functions, different subinter-
vals, different definitions, different constant coefficients and different weight functions defined on
different subintervals.
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• The application of the first summation differs from the second summation. The first summation
indicates this the obtained function is a piecewise-defined function. For example, by expanding the
first summation, we have

f(t) =

N∑∑∑
n=1

M−1∑
m=0

fnmwnm(t) =



∑M−1
m=0 f1mw1m(t), when 0 ≤ t ≤ 1

N
...

...∑M−1
m=0 fnmwnm(t), when n−1

N ≤ t ≤ n
N

...
...∑M−1

m=0 fNmwNm(t), when N−1
N ≤ t ≤ 1

,

while by expanding the second summation we have

f(t) =

N∑∑∑
n=1

M−1∑
m=0

fnmwnm(t) =

N∑∑∑
n=1

(fn0wn0(t) + fn1wn1(t) + . . .+ fn,M−1wn,M−1(t)).

Thus we cannot treat the first summation
∑∑∑

n as the second summation
∑
m. Again, we find the

fact that N is a finite value, N �∞.
• One should note that for N1 6= N2, the expression

N1∑∑∑
n=1

∞∑
m=0

fnmwnm(t)−
N2∑∑∑
n=1

M−1∑
m=0

fnmwnm(t)

cannot be simplified, because for different N , we have different coefficients and different scaling
functions defined on different subintervals.
• Although the wavelets are constructed from the polynomials, but there are many differences be-

tween the wavelets and the polynomials. For example, they have different properties on the interval
[0, tf ]. For the same M , the wavelets are more accurate than the polynomials.

2.1. Properties of Legendre and Chebyshev wavelets.

Theorem 2.7. The Caputo fractional derivative operational matrix of these wavelets Dα
w simplifies the derivative

operation as

(2.9) C
0 D

α
t w(t) ∼= Dα

ww(t).

The Caputo derivative operational matrix of Legendre wavelets Dα
lw for 0 < α ≤ 1 as

(2.10) C
0 D

α
t φ(t) ∼= Dα

lwφ(t),

is obtained from

(2.11) Dα
lw = (2N)

α



Sα Vα
1 Vα

2 V3 Vα
4 · · · Vα

N−2 Vα
N−1

0 Sα Vα
1 Vα

2 V3 · · · Vα
N−3 Vα

N−2

0 0 Sα Vα
1 Vα

2 · · · Vα
N−4 Vα

N−3
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · Sα Vα

1

0 0 0 0 0 · · · 0 Sα


,
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where

(2.12) Sα =


0 0 0 ... 0
sα1
0 sα1

1 sα1
2 ... sα1

M−1

sα2
0 sα2

1 sα2
2 ... sα2

M−1

...
...

...
. . .

...
sαM−1
0 sαM−1

1 sαM−1
2 ... sαM−1

M−1

 ,Vα
η =


0 0 0 ... 0
vα1
η0 vα1

η1 vα1
η2 ... vα1

ηM−1

vα2
η0 vα2

η1 vα2
η2 ... vα2

ηM−1

...
...

...
. . .

...
...

...
...

. . .
...

vαM−1
η0 vαM−1

η vαM−1
η2 ... vαM−1

ηM−1

 ,

(2.13) sαmi = (−1)m cmci
2

∫ 1

−1

m∑
j=1

(m+ j)!Γ(j + 1)

(−2)j(m− j)!(j!)2Γ(j − α+ 1)
(%+ 1)j−αPi(%) d%,

vαmηi = (−1)m cmci
2

∫ 1

−1

m∑
j=1

(m+ j)!Γ(j + 1)

(−2)j(m− j)!(j!)2Γ(j − α+ 1)
{(%+ 2η + 1)j−α

− (−1)m−j(%+ 2η − 1)j−α}Pi(%) d%.

(2.14)

Also, the Caputo derivative operational matrix of Chebyshev wavelets Dα
cw for 0 < α ≤ 1 as

(2.15) C
0 D

α
t ψ(t) ∼= Dα

cwψ(t),

is obtained from

(2.16) Dα
cw = (2N)

α



Sα Vα
1 Vα

2 V3 Vα
4 · · · Vα

N−2 Vα
N−1

0 Sα Vα
1 Vα

2 V3 · · · Vα
N−3 Vα

N−2

0 0 Sα Vα
1 Vα

2 · · · Vα
N−4 Vα

N−3
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · Sα Vα

1

0 0 0 0 0 · · · 0 Sα


,

where

(2.17) Sα =


0 0 0 ... 0
sα1
0 sα1

1 sα1
2 ... sα1

M−1

sα2
0 sα2

1 sα2
2 ... sα2

M−1

...
...

...
. . .

...
sαM−1
0 sαM−1

1 sαM−1
2 ... sαM−1

M−1

 ,Vα
η =


0 0 0 ... 0
vα1
η0 vα1

η1 vα1
η2 ... vα1

ηM−1

vα2
η0 vα2

η1 vα2
η2 ... vα2

ηM−1

...
...

...
. . .

...
vαM−1
η0 vαM−1

η vαM−1
η2 ... vαM−1

ηM−1

 ,

(2.18) sαmi = (−1)mmcmci

∫ π

0

m∑
j=1

(−2)j(m+ j − 1)!Γ(j + 1)

(m− j)!(2j)!Γ(j − α+ 1)
(cos θ + 1)j−α cos(iθ) dθ,

vαmηi = (−1)mmcmci

∫ π

0

m∑
j=1

(−2)j(m+ j − 1)!Γ(j + 1)

(m− j)!(2j)!Γ(j − α+ 1)
{(cos θ + 2η + 1)j−α

− (−1)m−j(cos θ + 2η − 1)j−α} cos(iθ) dθ.

(2.19)

Proof. By setting N = ξk−1 in the derived results of [43], we reach the given results in (2.10)–(2.19). �

2.2. Constant Riemann–Liouville integration operational matrix of wavelets.

Theorem 2.8. The constant Riemann–Liouville fractional integral matrices of product of two Legendre and Cheby-
shev wavelets vectors are obtained directly from these wavelets as

(2.20) RL
0I
αt
1 {w(t)w>(t)} = Γαw,

where
Γαlw = blkdiag

(
Γ̆α1 , Γ̆

α
2 , Γ̆

α
3 , . . . , Γ̆

α
N

)
,
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Γαcw = blkdiag
(
Γ̆α1 , Γ̆

α
2 , Γ̆

α
3 , . . . , Γ̆

α
N

)
,

in which for Legendre wavelets

Γ̆αn = [γnij ], i, j = 1, 2, . . . ,M, γnij =
ci−1cj−1

2

1

Γ(α)

∫ 1

−1

(
2N − z − 2n+ 1

2N
)α−1Pi−1(z)Pj−1(z) dz

and for Chebyshev wavelets

Γ̆αn = [γnij ], i, j = 1, 2, . . . ,M,

γnij = ci−1cj−1
1

Γ(α)

∫ π

0

(
2N − cos(θ)− 2n+ 1

2N
)α−1 cos((i− 1)θ) cos((j − 1)θ) sin θ dθ.

Proof. The proof is given in [37]. �

We also have the following operational properties of these wavelets:

(2.21) fww(t)w>(t) ∼= w>(t)f̃w,

(2.22) w(
1

λ
t) = Sww(t),

(2.23) w(t− τι) =

{
0, 0 ≤ t < τι

Dιw(t), τι ≤ t ≤ 1,

(2.24) w(t− τ(t)) =

{
0, 0 ≤ t < τ(t)

Dtw(t), τ(t) ≤ t ≤ 1,

where f̃w is the product operational matrix of the desired wavelets for fw, Sw is the stretch operational
matrix for a stretch 1/λ, Dι is the delay operational matrix for a time-delay τι defined for ndι = τιN as

Dι =

 0(N−ndι )M×ndιM I(N−ndι )M

0ndιM×MN

 ,
and Dt is the piecewise delay operational matrix for a piecewise delay τ(t). Since Dι and Dt have the same
structure for both wavelets, we do not use the subscript “w" for them. For more details, see [38, 40, 41] and
set N = ξk−1 in their formulas. We use the general form for the important properties (2.15) and (2.10) as
(2.9). One can find the fact that these operational matrices simplify the operational processes.

In the next sections, we will model the given problems. It should be noted that one must rescale the
problem before modeling it by the given procedures. Since we use polynomials concepts for modeling the
first and second problems, we will not discuss on the initial and final conditions; the reader is referred to
see the procedures given in [7] for more details. In the third problem, we use the wavelets concepts that
have many differences with the polynomials concepts and we model the conditions with the wavelets.

3. MODELING PROCESS FOR OPTIMIZATION OF TWO-DIMENSIONAL PDES

From [7], for the shifted Legendre polynomials or shifted Chebyshev polynomials denoted by {ϕm(t)},
we have

f(t) =

M−1∑
m=0

fϕmϕm(t)

= fϕϕ(t),(3.1)
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(3.2) C
0 D

α
t ϕ(t) ∼= Dα

ϕϕ(t),

(3.3) fϕϕ(t)ϕ>(t) ∼= ϕ>(t)f̃ϕ

In addition to the concepts given in [7], we need the following property.

Theorem 3.1. The constant Riemann–Liouville integration operational matrix of the product of these shifted polyno-
mials simplifies the Riemann–Liouville α-integral operation as

(3.4) RL
0I
α
1 {ϕ(t)ϕ>(t)} = 1

0Γ
α
ϕ,

where tf0 Γαϕ is the M ×M , exact, left constant Riemann–Liouville integration operational matrix of the product of
any of these polynomials and for m,m′ = 0, 1, . . . ,M − 1,

1
0Γ

α
SC =

2

π

[
γSCm+1,m′+1

]
, γSCm+1,m′+1 =


1

Γ(1+α) , m = m′ = 0√
2
∑m′

j=0 aSC(m′, j) Γ(j+1)
Γ(j+α+1) , m = 0

γ1,n, n = 1, . . . ,M, m′ = 0

2
∑m
i=0 aSC(m, i)

∑m′

j=0 aSC(m′, j) Γ(i+j+1)
Γ(i+j+α+1) , m,m′ > 0,

1
0Γ

α
SL =

[
γSLm+1,m′+1

]
, γSLm+1,m′+1 =


1

Γ(1+α) , m = m′ = 0

cm′
∑m′

j=0 aSL(m′, j) Γ(j+1)
Γ(j+α+1) , m = 0

γ1,n, n = 1, . . . ,M, m′ = 0

cmcm′
∑m
i=0 aSL(m, i)

∑m′

j=0 aSL(m′, j) Γ(i+j+1)
Γ(i+j+α+1) , m,m′ > 0,

in which aSC(m, i) = (−1)mam
∑m
i=0

(−2)i(am+i−1)!
(m−i)!(2i)! 2i and aSL(m, i) = (−1)m

∑m
i=0

(m+i)!
(−2)i(m−i)!(i!)2 2i.

Proof. The proof is given in [8]. �

Assume that ϕ(z) is of size M1 × 1, ϕ(y) is of size M2 × 1 and ϕ(t) is of size M3 × 1. Like the procedure
given in [7], we express the state and the control of the system as products of separable functions of z, y
and t such that

(3.5) x(z, y, t) = (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))xϕ,

(3.6) u(z, y, t) = (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))uϕ.

Using (3.5) and (3.6), applying (3.1) to a1(z), a2(y), a3(t) and xd(z, y) = µ(z)ν(y) (as a separable function),
and using (3.3) and (3.4) we can write

J = 1
2a0x

2(zf , yf , tf ) + 1
2
RL

0I
ᾱt
tf
RL

0I
ᾱy
yf

RL
0I
ᾱz
zf

[
a1(z)a2(y)a3(t)

{
x2(z, y, t) + u2(z, y, t)

} ]
+ 1

2a4
RL

0I
ᾱy
yf

RL
0I
ᾱz
zf

[x(z, y, tf )− xd(z, y)]
2

= 1
2a0x

2(zf , yf , tf ) + 1
2z
ᾱz
f y

ᾱy
f tᾱtf

1

Γ(ᾱz)

1

Γ(ᾱy)

1

Γ(ᾱt)

∫ 1

0

(1− t)ᾱt−1

∫ 1

0

(1− y)ᾱy−1

∫ 1

0

(1− z)ᾱz−1

{
x>ϕ (ϕ(z)⊗ (ϕ(y)⊗ϕ(t)))(a1(z)ϕ>(z)⊗ (a2(y)ϕ>(y)⊗ a3(t)ϕ>(t)))xϕ

+ u>ϕ (ϕ(z)⊗ (ϕ(y)⊗ϕ(t)))(a1(z)ϕ>(z)⊗ (a2(y)ϕ>(y)⊗ a3(t)ϕ>(t)))uϕ
}
dz dy dt

+ c+ 1
2a4z

ᾱz
f y

ᾱy
f

1

Γ(ᾱz)

1

Γ(ᾱy)

∫ 1

0

(1− y)ᾱy−1

∫ 1

0

(1− z)ᾱz−1

{
x>ϕ (ϕ(z)⊗ (ϕ(y)⊗ϕ(1)))(ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(1)))xϕ
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− 2(µϕϕ(z)× νϕϕ(y))(ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(1)))xϕ
}
dz dy

= 1
2a0x

2(zf , yf , tf ) + 1
2z
ᾱz
f y

ᾱy
f tᾱtf

1

Γ(ᾱz)

1

Γ(ᾱy)

1

Γ(ᾱt)

∫ 1

0

(1− t)ᾱt−1

∫ 1

0

(1− y)ᾱy−1

∫ 1

0

(1− z)ᾱz−1

{
x>ϕ (ϕ(z)⊗ (ϕ(y)⊗ϕ(t)))(ϕ(z)ã1ϕ ⊗ (ϕ>(y)ã2ϕ ⊗ϕ>(t)ã3ϕ))xϕ

+ u>ϕ (ϕ(z)⊗ (ϕ(y)⊗ϕ(t)))(ϕ(z)ã1ϕ ⊗ (ϕ>(y)ã2ϕ ⊗ϕ>(t)ã3ϕ))uϕ
}
dz dy dt

+ c+ 1
2a4z

ᾱz
f y

ᾱy
f

1

Γ(ᾱz)

1

Γ(ᾱy)

∫ 1

0

(1− y)ᾱy−1

∫ 1

0

(1− z)ᾱz−1

{
x>ϕ (ϕ(z)ϕ>(z)⊗ (ϕ(y)ϕ>(y)⊗ϕ(1)ϕ>(1)))xϕ

− 2(µϕϕ(z)ϕ>(z)⊗ (νϕϕ(y)ϕ>(y)⊗ϕ>(1)))xϕ
}
dz dy

= 1
2a0x

2(zf , yf , tf ) + 1
2z
ᾱz
f y

ᾱy
f tᾱtf

1

Γ(ᾱz)

1

Γ(ᾱy)

1

Γ(ᾱt)

∫ 1

0

(1− t)ᾱt−1

∫ 1

0

(1− y)ᾱy−1

∫ 1

0

(1− z)ᾱz−1

{
x>ϕ (ϕ(z)ϕ>(z)⊗ (ϕ(y)ϕ>(y)⊗ϕ(t)ϕ>(t)))(ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ))xϕ

+ u>ϕ (ϕ(z)ϕ>(z)⊗ (ϕ(y)ϕ>(y)⊗ϕ(t)ϕ>(t)))(ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ))uϕ
}
dz dy dt

+ c+ 1
2a4z

ᾱz
f y

ᾱy
f

1

Γ(ᾱz)

1

Γ(ᾱy)

∫ 1

0

(1− y)ᾱy−1

∫ 1

0

(1− z)ᾱz−1

{
x>ϕ (ϕ(z)ϕ>(z)⊗ (ϕ(y)ϕ>(y)⊗ϕ(1)ϕ>(1)))xϕ

− 2(µϕϕ(z)ϕ>(z)⊗ (νϕϕ(y)ϕ>(y)⊗ϕ>(1)))xϕ
}
dz dy

= 1
2a0x

2(zf , yf , tf ) + 1
2z
ᾱz
f y

ᾱy
f tᾱtf

1

Γ(ᾱy)

1

Γ(ᾱt)

∫ 1

0

(1− t)ᾱt−1

∫ 1

0

(1− y)ᾱy−1

{
x>ϕ (1

0Γ
ᾱz
ϕ ⊗ (ϕ(y)ϕ>(y)⊗ϕ(t)ϕ>(t))(ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ))xϕ

+ u>ϕ (1
0Γ

ᾱz
ϕ ⊗ (ϕ(y)ϕ>(y)⊗ϕ(t)ϕ>(t)))(ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ))uϕ

}
dy dt

+ c+ 1
2a4z

ᾱz
f y

ᾱy
f

∫ 1

0

(1− y)ᾱy−1
{
x>ϕ (1

0Γ
ᾱz
ϕ ⊗ (ϕ(y)ϕ>(y)⊗ϕ(1)ϕ>(1)))xϕ

− 2(µϕ
1
0Γ

ᾱz
ϕ ⊗ (νϕϕ(y)ϕ>(y)⊗ϕ>(1)))xϕ

}
dy

= 1
2a0x

>
ϕ (ϕ(1)⊗ (ϕ(1)⊗ϕ(1)))(ϕ>(1)⊗ (ϕ>(1)⊗ϕ>(1)))xϕ

+ 1
2z
ᾱz
f y

ᾱy
f tᾱtf

1

Γ(ᾱt)

∫ 1

0

(1− t)ᾱt−1
{
x>ϕ (1

0Γ
ᾱz
ϕ ⊗ (1

0Γ
ᾱy
ϕ ⊗ϕ(t)ϕ>(t))(ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ))xϕ

+ u>ϕ (1
0Γ

ᾱz
ϕ ⊗ (1

0Γ
ᾱy
ϕ ⊗ϕ(t)ϕ>(t)))(ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ))uϕ

}
dt

+ c+ 1
2a4z

ᾱz
f y

ᾱy
f

{
x>ϕ (1

0Γ
ᾱz
ϕ ⊗ (1

0Γ
ᾱy
ϕ ⊗ϕ(1)ϕ>(1)))xϕ

− 2(µϕ
1
0Γ

ᾱz
ϕ ⊗ (νϕ

1
0Γ

ᾱy
ϕ ⊗ϕ>(1)))xϕ

}
= 1

2a0x
>
ϕ (ϕ(1)ϕ>(1)⊗ (ϕ(1)ϕ>(1)⊗ϕ(1)ϕ>(1)))xϕ + 1

2z
ᾱz
f y

ᾱy
f tᾱtf x>ϕ (1

0Γ
ᾱz
ϕ ⊗ (1

0Γ
ᾱy
ϕ ⊗ 1

0Γ
ᾱt
ϕ ))

× (ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ))xϕ + 1
2z
ᾱz
f y

ᾱy
f tᾱtf u>ϕ (1

0Γ
ᾱz
ϕ ⊗ (1

0Γ
ᾱy
ϕ ⊗ 1

0Γ
ᾱt
ϕ ))(ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ))uϕ

+ c+ 1
2a4z

ᾱz
f y

ᾱy
f

{
x>ϕ (1

0Γ
ᾱz
ϕ ⊗ (1

0Γ
ᾱy
ϕ ⊗ϕ(1)ϕ>(1)))xϕ

− 2(µϕ
1
0Γ

ᾱz
ϕ ⊗ (νϕ

1
0Γ

ᾱy
ϕ ⊗ϕ>(1)))xϕ

}
.(3.7)

Rearranging (3.7) gives

J(x, u, ᾱz, ᾱy, ᾱt) =c+ 1
2

[
xϕ

uϕ

]> [
H1 H2

H3 H4

][
xϕ

uϕ

]
+ f>ϕ

[
xϕ

uϕ

]
,(3.8)
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where c = 1
2a4

RL
0I
ᾱy
yf

RL
0I
ᾱz
zf

[
x2
d(z, y)

]
is obtained by integration and has no effect on the QP problem, and

the elements of J in (3.8) are given by

H1 =a0(ϕ(1)ϕ>(1)⊗ (ϕ(1)ϕ>(1)⊗ϕ(1)ϕ>(1))) + zᾱzf y
ᾱy
f tᾱtf (1

0Γ
ᾱz
ϕ ⊗ (1

0Γ
ᾱy
ϕ ⊗ 1

0Γ
ᾱt
ϕ ))

× (ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ)) + a4z
ᾱz
f y

ᾱy
f (1

0Γ
ᾱz
ϕ ⊗ (1

0Γ
ᾱy
ϕ ⊗ϕ(1)ϕ>(1))),

(3.9)

(3.10) H2 = H3 = 0M1M2M3×M1M2M3
,

(3.11) H4 = zᾱzf y
ᾱy
f tᾱtf (1

0Γ
ᾱz
ϕ ⊗ (1

0Γ
ᾱy
ϕ ⊗ 1

0Γ
ᾱt
ϕ ))(ã1ϕ ⊗ (ã2ϕ ⊗ ã3ϕ)),

(3.12) f>ϕ =
[
−a4z

ᾱz
f y

ᾱy
f (µϕ

1
0Γ

ᾱz
ϕ ⊗ (νϕ

1
0Γ

ᾱy
ϕ ⊗ϕ>(1))) 0

]
.

The procedure of modeling (1.2) is similar to that presented in [7], hence, we just present the results.
Using (3.5), (3.6) and (3.2),

C
0 D

αt
t (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))xϕ = b(z)C0 D

αz
z (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))xϕ

+ c(y)C0 D
αy
y (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))xϕ + d(z)e(y)ft(t)(ϕ

>(z)⊗ (ϕ>(y)⊗ϕ>(t)))uϕ

+ gz(z)gy(y)gt(t).

(3.13)

Now by (3.1)–(3.3), it follows from (3.13) that

t−αtf (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))(IM1 ⊗ (IM2 ⊗Dαt
ϕ
>))xϕ

= z−αzf (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))(b̃ϕD
αz
ϕ
> ⊗ (IM2

⊗ IM3
))xϕ

+ y
−αy
f (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))(IM1

⊗ (c̃ϕD
αy
ϕ
> ⊗ IM3

))xϕ

+ (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))(d̃ϕ ⊗ (ẽϕ ⊗ f̃tϕ))uϕ

+ (ϕ>(z)⊗ (ϕ>(y)⊗ϕ>(t)))(gzϕ ⊗ (gyϕ ⊗ gtϕ)).

(3.14)

From (3.14), we derive the static model of the fractional partial differential equation with a three-
dimensional control (1.2) as

[z−αzf (b̃ϕD
αz
ϕ
> ⊗ (IM2 ⊗ IM3)) + y

−αy
f (IM1 ⊗ (c̃ϕD

αy
ϕ
> ⊗ IM3)− t−αtf (IM1 ⊗ (IM2 ⊗Dαt

ϕ
>))]xϕ

+ (d̃ϕ ⊗ (ẽϕ ⊗ f̃tϕ))uϕ = −(gzϕ ⊗ (gyϕ ⊗ gtϕ)).
(3.15)

By

(3.16) A =


A11 A12

A21 A22

...
...

Al1 Al2

 ,b =


b1

b2

...
bl

 ,
the optimal PDE control problem with l constraints and conditions is modeled as

minimize
χϕ

1
2χ
>
ϕ Hϕχϕ + f>ϕχϕ

subject to Aχϕ = bϕ,

where χϕ = [xϕ; uϕ], Hϕ and f>ϕ are given in (3.9)–(3.12), and A· and b· in (3.16) are derived from the
problem and its conditions and/or constraints. For example, from (3.15), we have

(3.17) A11 = z−αzf (b̃ϕD
αz
ϕ
> ⊗ (IM2 ⊗ IM3)) + y

−αy
f (IM1 ⊗ (c̃ϕD

αy
ϕ
> ⊗ IM3)− t−αtf (IM1 ⊗ (IM2 ⊗Dαt

ϕ
>)),
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(3.18) A12 = d̃ϕ ⊗ (ẽϕ ⊗ f̃tϕ),

(3.19) b1 = −gzϕ ⊗ (gyϕ ⊗ gtϕ).

Since the elements of (1.2) are different for each problem, some changes in (3.17)–(3.19) will be required.

Remark 3.2. We presented the procedure for modeling the Riemann–Liouville performance index and there
may be the Riemann–Liouville constraint in the problem like that given in (1.14); by using the procedure,
we can model it.

4. MODELING PROCESS FOR OPTIMIZATION OF NONLINEAR PDES

Now, we are going to develop our method for the systems with nonlinear partial differential equations.
We present here the following lemma without proof, by extending the similar lemma, which was presented
for one dimensional optimal control problems in [44].

Lemma 4.1. Assume the fractional partial differential equation is in the form (1.8), where = is continuous and
satisfies local Lipschitz conditions and the state variables are separable. Also, we have a performance index as (1.7).
The nonlinear optimal control problem of minimizing (1.7) for a nonlinear PDE (1.8) can be replaced by the following
sequence of linear optimal control problems, which this sequence converges to a solution:
for i ≥ 1, minimize

J [i](x, u, ᾱt, ᾱy) = 1
2a0x

[i]2(yf , tf ) + 1
2
RL

0I
ᾱt
tf
RL

0I
ᾱy
yf

[
a2(y)a3(t)

{
x[i]2(y, t) + u[i]2(y, t)

}]
+ 1

2a4
RL

0I
ᾱy
yf

[
x[i](y, tf )− xd(y)

]2(4.1)

subject to

(4.2)
∂αtx(y, t)[i]

∂yαt
= b[i−1](y, t)

∂αyx(y, t)

∂tαy
+ c[i−1](y, t)x[i](y, t) + d[i−1](y, t)u[i](y, t) + e[i−1](y, t),

where x[0](y, t) = x(0, 0), u[0](y, t) = 0 and b[i−1], c[i−1] and d[i−1] are derived by linearizing (1.8).

Theorem 4.2. Assume that ϕ(y) is of size M1 × 1 and ϕ(t) is of size M2 × 1. The optimal control of the nonlinear
optimization problem for the fractional nonlinear partial differential equation (1.8) can be obtained by solving the
following quadratic programming

(4.3) for i ≥ 1,minimize
χϕ

1
2

[
x

[i]
ϕ

u
[i]
ϕ

]> [
H1 H2

H3 H4

][
x

[i]
ϕ

u
[i]
ϕ

]
+ f>ϕ

[
x

[i]
ϕ

u
[i]
ϕ

]

(4.4) subject to

[
A

[i−1]
1 A

[i−1]
2

Ac

][
x

[i]
ϕ

u
[i]
ϕ

]
=

[
b

[i−1]
1

bc

]
,

until the conditions given in [44] is reached, in which

(4.5) H1 = a0(ϕ(1)ϕ>(1)⊗ϕ(1)ϕ>(1)) + y
ᾱy
f tᾱtf (1

0Γ
ᾱy
ϕ ⊗ 1

0Γ
ᾱt
ϕ ))(ã2ϕ ⊗ ã3ϕ),

(4.6) H2 = 0M1M2×M1M2 ,

(4.7) H3 = 0M1M2×M1M2
,
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(4.8) H4 = y
ᾱy
f tᾱtf (1

0Γ
ᾱy
ϕ ⊗ 1

0Γ
ᾱt
ϕ )(ã2ϕ ⊗ ã3ϕ),

(4.9) f>ϕ =
[
−a4y

ᾱy
f (νϕ

1
0Γ

ᾱy
ϕ ⊗ϕ>(1)) 0

]
,

(4.10) A
[i−1]
1 = t

−αy
f (b̃[i−1]

y,ϕ ⊗ b̃
[i−1]
t,ϕ )(IM1

⊗Dαy
ϕ
>) + (c̃[i−1]

y,ϕ ⊗ c̃
[i−1]
t,ϕ )− y−αtf (Dαt

ϕ
> ⊗ IM2

),

(4.11) A
[i−1]
2 = d̃[i−1]

y,ϕ ⊗ d̃
[i−1]
t,ϕ ,

(4.12) b
[i−1]
1 = e[i−1]

y,ϕ ⊗ e
[i−1]
t,ϕ ,

and Ac and bc are constructed based on the given initial and boundary conditions.

Proof. From Lemma 4.1, first we form (4.2) and (4.1); then, we take b[i−1](y, t) = b
[i−1]
y (y)b

[i−1]
t (t),

c[i−1](y, t) = c
[i−1]
y (y)c

[i−1]
t (t), and d[i−1](y, t) = d

[i−1]
y (y)d

[i−1]
t (t). Using (2.8), we can expand each

term, for example, b[i−1]
y (y) = ϕ(y)b

[i−1]
y,ϕ , b[i−1]

t (t) = ϕ(t)b
[i−1]
t,ϕ . Similarly, we take e[i−1](y, t) =

ϕ>(y)e
[i−1]
y,ϕ ϕ>(t)e

[i−1]
t,ϕ . Now by using the procedure given in Section 3, we can reach the given sequence

of quadratic programming programs given in (4.3) and (4.4) with the elements given in (4.5)–(4.12). �

The main task in the above model is to determine the coefficients of each vector.

5. MODELING PROCESS BY USING WAVELETS FOR OPTIMIZATION OF DELAY PDES

Consider the optimal control problem of delay PDE, which the delayed plant is described by the delay
PDE in (1.12) and the performance index or the cost function is given in (1.7). Here, we use the wavelets
to model this optimal control problem. We express the state and the control of the system as products of
separable functions of y and t such that

x(y, t) = f(y)g(t).

Using (2.8), we expand the state in terms of the desired wavelets as

(5.1) x(y, t) = (w>(y)⊗w>(t))xw,

where xw is M1M2N1N2 × 1 vector of unknown parameters. From this for the control, we have

(5.2) u(y, t) = (w>(y)⊗w>(t))uw,

where uw is M1M2N1N2 × 1 vector of unknown parameters.
For the initial function or the history function (1.13), when 0 < t < τ , we see that −τ < t − τ < 0, thus

we find that

(5.3) x(y, t− τ) =

{
ζ(y)θ(t− τ), 0 < t < τ

x(y, t− τ), τ ≤ t < tf
, 0 < y < yf .

Similarly,

(5.4) x(y, t− τ(t)) =

{
ζ(y)θ(t− τ(t)), 0 < t < τ(t)

x(y, t− τ(t)), τ(t) ≤ t < tf
, 0 < y < yf .

After rescaling,

(5.5) ζ(y) = w>(y)ζw,
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(5.6) θ(t− τ) = w>(t)θw,

(5.7) θ(t− τ(t)) = w>(t)θtw.

The procedures of expanding θ(t− τ) and θ(t− τ(t)) by the wavelets are given in [41] and [40].
Inserting the results in (5.1)–(5.7) into (1.12) and using (2.21)-(2.24) yield

t−αtf (I⊗Dαt
w
>)xw = y

−αy
f (b̃1wD

αy
w
> ⊗ b̃2w)xw + (I⊗ c̃wD>)xw + (ζw ⊗ c̃wθw)

+ (I⊗ d̃wDt>)xw + (ζw ⊗ d̃wθ
t
w) + (I⊗ ẽwS>)xw + (f̃1w ⊗ f̃2w)uw + (g1w ⊗ g2w).

(5.8)

Factoring and reformulating (5.8), we obtain

[−t−αtf (I⊗Dαt
w
>) + y

−αy
f (b̃1wD

αy
w
> ⊗ b̃2w) + (I⊗ c̃wD>) + (I⊗ d̃wDt>) + (I⊗ ẽwS>)]xw

+ (f̃1w ⊗ f̃2w)uw = −(ζw ⊗ c̃wθw)− (ζw ⊗ d̃wθ
t
w)− (g1w ⊗ g2w).

(5.9)

So we find the equvalent model of (1.12) as a static equation (5.9).
We must model the Riemann–Liouville performance index by the wavelets. The procedure is similar to

that the procedure given for (1.1) but by using (2.20), hence we do not present it.
Now, we model the initial condition (1.9). From (5.1), we have

x(0, t) = (w>(0)⊗w>(t))xw

and

x(y, 0) = (w>(y)⊗w>(0))xw.

Knowing xw = [x1, x2, . . . , xM2N2 ] for M1 = M2 = M and N1 = N2 = N , expanding (after rescaling)

h(t) = w>(t)h>w ,

taking w10(0) = w0
0 , w11(0) = w0

1 , w1M−1(0) = w0
M−1, M1 = M2 = M and N1 = N2 = N , by defining

(5.10) W0 =


w0

0 0 w0
1 0 w0

2 · · · w0
M−1 0 0 0 . . . 0 0

0 w0
0 0 w0

1 0 w0
2 · · · w0

M−1 0 0 0 . . . 0
...

0 0 0 . . . 0 0 w0
0 0 w0

1 0 w0
2 · · · w0

M−1

 ,
and

(5.11) Wc =
[

W0 0MN×(M2N2−M2N)

]
,

we model the first condition in (1.9) as

(5.12) Wcxw = h>w .

We can use (5.12) with the elements given in (5.10), (5.11) as a model of the given condition. For the second
condition in (1.9), after rescaling by

i(y) = w>(y)i>w ,

we have

x(y, 0) = w>(y)(I⊗w>(0))xw

= w>(y)i>w .(5.13)
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Factoring the wavelets vector in (5.13), yields

(5.14) (I⊗w>(0))xw = i>w .

Hence, we modeled the second condition in (1.9) as (5.14). For modeling the boundary conditions in (1.10),
after rescaling,

x(1, t) = (w>(1)⊗w>(t))xw = h(t)

and
x(y, 1) = (w>(y)⊗w>(1))xw = i(y).

When y = 1, by setting w10(1) = w1
0 , w11(1) = w1

1 , w1M−1(1) = w1
M−1, and

(5.15) W1 =


w1

0 0 w1
1 0 w1

2 · · · w1
M−1 0 0 0 . . . 0 0

0 w1
0 0 w1

1 0 w1
2 · · · w1

M−1 0 0 0 . . . 0
...

0 0 0 . . . 0 0 w1
0 0 w1

1 0 w1
2 · · · w1

M−1

 ,
we find

(5.16) Wc =
[

0MN×(M2N2−M2N) W1
]
.

We can use (5.12) with the elements given in (5.15), (5.16) as a model of the given condition. In a similar
manner, when t = 1,

x(y, 1) = w>(y)(I⊗w>(1))xw

= w>(y)i>w .(5.17)

From (5.17),

(5.18) (I⊗w>(1))xw = i>w .

We modeled the second condition in (1.10) as (5.18). Taking the given equations together, we reach the
model. Using a similar procedure and the given properties, we can model fractional/integer Robin condi-
tions given in (1.11). Hence, the optimal control problem of the delayed PDE is modeled as

minimize
χw

1
2χ
>
w Hwχw + f>wχw

subject to Aχw = bw,

After using the QP solver from a software package to find the solutions, we find the solutions from the
wavelets expansions (5.1) and (5.2). In the given QP problems, J = c+ JQP .

Proposition 1. From the definitions of the wavelets, we must add the 2N(N − 1) following constraint to the
model of the problem for the wavelets vectors defined with the same N and M

(5.19) Clccxw = 0,

where

(5.20) Clcc =
[
C1y↗1t; C2y↗1t; . . . ; CNy↗(N−1)t; C1t↗1y; C2t↗1y; . . . ; CNt↗(N−1)y

]
.

By w(t) := [w10(t), w11(t), . . . , w1M−1(t)], the blocks of this matrix can be found as follows

C1y↗1t = [Ω1 ⊗ ρf1 −Ω1 ⊗ ρi1],

Ω1 =
[
[w(ys)],0numRow([w>(ys)])×M(N−1)

]
,

ρf1 =
[
w( 1

N ),01×M(N−1)

]
,
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ρi1 =
[
01×M ,w(0),01×M(N−2)

]
,

C2y↗1t = [Ω2 ⊗ ρf1 −Ω2 ⊗ ρi1],

Ω2 =
[
0numRow([w(ys)])×M , [w(ys)],0numRow([w(ys)])×M(N−2)

]
,

C1y↗2t = [Ω1 ⊗ ρf2 −Ω1 ⊗ ρi2],

ρf2 =
[
01×M ,w( 1

N ),01×M(N−1)

]
,

ρi2 =
[
01×2M ,w(0),01×M(N−3)

]
,

C1t↗y = [ρf1 ⊗Ω1 − ρi1 ⊗Ω1].

Proof. From the difintion of the wavelets, we have some intersection, by setting In = [(n − 1)/N, n/N ], we
see that there exist some points as tc, where {tc} = In∩In+1. By looking at Figure 1, we see that there are red
lines at which we must to ensure the continuity of the obtained state. We must have x(t−c ) = x(t+c ) at {tc},
which by considering another dimensional of the state is called the lines compatibility constraint. Using
the lines compatibility constraint at sample points ys, we reach the form given in (5.19) and (5.20). �

11 N − 1N − 1

11

N − 1N − 1

FIGURE 1. Lines of compatibility constraint.

6. CONVERGENCE

In this section, we discuss the convergence of the methods. Since several theorems are given for the
polynomials in [7], we just present one theorem for them; then we present some theorems for the wavelets.

Theorem 6.1. Let f(t) be a twice differentiable function on [0, 1] with bounded second derivative l, l = max
0≤t≤1

|f ′′(t)|.
For M > 2, the expansionf(t) = fϕϕ(t) and the desired polynomial as fM,ϕ(t) = fϕϕ(t), where fϕ and ϕ(t) are
given by

fϕ := [fϕ0 , f
ϕ
1 , f

ϕ
2 , . . . , f

ϕ
M−2, f

ϕ
M−1],

ϕ(t) := [ϕ0(t), ϕ1(t), ϕ2(t), . . . , ϕM−1(t)]>,

and the constant coefficients {fϕm} are obtained from

(6.1) fϕm =

∫ 1

0

f(t)ϕm(t)wϕ(t) dt,
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we have the following error estimates

‖f − fM,SL‖wP̄m≤ l
√

1

512
ln

2M + 3

2M − 5
+

1

256
ln

2M − 3

2M + 1
,

‖f − fM,SC‖wT̄m≤ l
√

π

16

(
M − 1

2M(M − 2)
+

1

4
ln
M − 2

M

)
.

As mentioned in [39], the difference between these values is due to the different processes of approximating fM,SL and
fM,SC and it does not prove anything.

Proof. For both polynomials, we can write

‖f − fM,ϕ‖2wϕ=

∥∥∥∥ ∞∑
m=0

fϕmϕm(t)−
M−1∑
m=0

fϕmϕm(t)

∥∥∥∥2

wϕ

=

∥∥∥∥ ∞∑
m=M

fϕmϕm(t)

∥∥∥∥2

wϕ

=

∞∑
m=M

(fϕm)
2
.(6.2)

For the shifted Legendre polynomials, “SLPs”, it follows from (6.1) that

(6.3) fSLm =
cm
2

∫ 1

−1

f
(z + 1

2

)
Pm(z) dz.

By applying integration by parts, for m ≥ 2 in (6.3),

fSLm =
cm
2

∫ 1

−1

f(
z + 1

2
)Pm(z) dz =

cm
4

1

2m+ 1

[
f(
z + 1

2
) {Pm+1(z)− Pm−1(z)}

]z=1

z=−1

− cm
4

1

2m+ 1

∫ 1

−1

f ′(
z + 1

2
)
{
Pm+1(z)− Pm−1(z)]

}
dz

= −cm
4

1

2m+ 1

∫ 1

−1

f ′(
z + 1

2
)
{ 1

2m+ 3
(P ′m+2(z)− P ′m(z))− 1

2m− 1
(P ′m(z)− P ′m−2(z))

}
dz

=
cm

8
√

2m+ 1

∫ 1

−1

f ′′(
z + 1

2
)
{Pm+2(z)

2m+ 3
− 2(2m+ 1)Pm(z)

(2m− 1)(2m+ 3)
+
Pm−2(z)

2m− 1

}
dz.

Thus we can get an upper bound as∣∣fSLm ∣∣ ≤ √
6l

4
√

(2m− 3)(2m− 1)(2m+ 3)(2m+ 5)
.

By setting in (6.2), we get

‖f − fM,SL‖2wT̄m ≤
6l2

16

∞∑
m=M

1

(2m− 3)(2m− 1)(2m+ 3)(2m+ 5)

≤ 6l2

16

∫ ∞
M−1

1

(2y − 3)(2y − 1)(2y + 3)(2y + 5)
dy

≤ l2

512
ln

2M + 3

2M − 5
+

l2

256
ln

2M − 3

2M + 1
.

For the shifted Chebyshev polynomials, “SCPs”, from (6.1)

(6.4) fSCm =
cm√

2

∫ π

0

f
(cos(θ) + 1

2

)
cosmθ dθ.
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Hence for m ≥ 2, by applying integration by parts in (6.4),∣∣fSCm ∣∣ ≤ √
πl

4(m2 − 1)
.

Setting in (6.2) yields

‖f − fM,SC‖2wT̄m ≤
πl2

16

∞∑
m=M

1

(m2 − 1)2

≤ πl2

16

∫ ∞
M−1

1

(y2 − 1)2
dy

≤ πl2

16

( 1
2 (M − 1)

M(M − 2)
+

1

4
ln
M − 2

M

)
.

�

Theorem 6.2. Assume that f(y) and g(t) are Lipschitz functions on y ∈ [0, 1] and t ∈ [0, 1]. Then, a two-
dimensional function x(y, t) = f(y)g(t) can be expanded as

x(y, t) =

N∑∑∑
n=1

∞∑
m=0

fnmwnm(y)

N∑∑∑
n=1

∞∑
m=0

gnmwnm(t),

where this series converges uniformly to x(y, t).

Proof. Since f(y) and g(t) are Lipschitz in y and t, we can get |f(y)|, |f ′(y)|, |f ′′(y)| ≤ kf and
|g(t)|, |g′(t)|, |g′′(t)| ≤ kg , where kf and kg are constants. Then from (2.7), we can find upper bound for
|fni| and |gni|, where i = 0, 1, 2. Now we can write

|x(y, t)| =
∣∣∣∣∣
N∑∑∑
n=1

∞∑
m=0

fnmwnm(y)

N∑∑∑
n=1

∞∑
m=0

gnmwnm(t)

∣∣∣∣∣
=

∣∣∣∣∣
N∑∑∑
n=1

∞∑
m=0

fnmwnm(y)

∣∣∣∣∣
∣∣∣∣∣
N∑∑∑
n=1

∞∑
m=0

gnmwnm(t)

∣∣∣∣∣
=

∣∣∣∣∣
N∑∑∑
n=1

fn0wn0(y) + fn1wn1(y) +

∞∑
m=2

fnmwnm(y)

∣∣∣∣∣
∣∣∣∣∣
N∑∑∑
n=1

gn0wn0(t) + gn1wn1(t) +

∞∑
m=2

gnmwnm(t)

∣∣∣∣∣

=



|f10wn0(y) + f11w11(y) +
∑∞
m=2 f1mw1m(y)| if 0 ≤ y ≤ 1

N
...
|fn0wn0(y) + fn1wn1(y) +

∑∞
m=2 fnmwnm(y)| if (n−1)

N ≤ y ≤ n
N

...
|fN0wN0(y) + fN1wN1(y) +

∑∞
m=2 fNmwNm(y)| if (N−1)

N ≤ y ≤ 1

×



|g10wn0(t) + g11w11(t) +
∑∞
m=2 g1mw1m(t)| if 0 ≤ t ≤ 1

N
...
|gn0wn0(t) + gn1wn1(t) +

∑∞
m=2 gnmwnm(t)| if (n−1)

N ≤ t ≤ n
N

...
|gN0wN0(t) + gN1wN1(t) +

∑∞
m=2 gNmwNm(t)| if (N−1)

N ≤ t ≤ 1

≤
N∑∑∑
n=1

δy,wδn,t,w ≤ δ,
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where δy,w ∈ R is the upper bound obtained for the first series by using |fni| for the n-th subinterval in
which we have the maximum error, for example, see [41], , δn,t,w for the second series by using |gni|, and
δ ∈ R. Hence the given series is absolutely convergent and the expansion converges to x(y, t) uniformly. �

Lemma 6.3. For a twice differentiable function f(y) defined on [0, 1], with bounded second derivatives |f ′′(y)| ≤ δ2f ,
we have the following norm in L2 with respect to the weight function ςnw(y),

‖f(y)− fww(y)‖ςnw(y) ≤ hw(δ2f ,m,N),

where hw(δ2f ,m,N) is a constant and obtained according to the relative wavelets and it tends to zero as M →∞.

Lemma 6.4. For a function f(y) defined in Lemma 6.3, we have the following inequality norm in L2 with respect to
the weight function ςnw(y),

‖fww(y)‖ςnw(y) ≤ ‖f(y)‖ςnw(y) .

Theorem 6.5. Assume that a function f(y) is a differentiable function f(y), defined on [0, 1], with bounded deriva-
tives as |C0 D2+α

y f(y)| ≤ δf . Then the following norm in L2 with respect to ςnw(y)∥∥C
0 D

α
y f(y)− fwD

α
ww(y)

∥∥
ςnw(y)

tends to zero as M →∞, where Dα
w is Caputo derivative operational matrix of the desired wavelet.

Proof. See [43]. �

Corollary 1. For a differentiable bounded function defined as f(y)g(t), by using the given expansions,∥∥∥∥∂αt [f(y)g(t)]

∂tαt
− (w>(y)⊗w>(t))(I⊗ b̃wD

αt
w
>)(f>w ⊗ g>w )

∥∥∥∥
ςnw(y)ςnw(t)

tends to zero as M →∞.

Theorem 6.6. Suppose the assumptions of Theorems 6.5 are satisfied for f(y) and g(t), x(y, t) = f(y)g(t),
‖f(y)‖ςnw(y) ≤ µf , and ‖g(t)‖ςnw(y) ≤ µg . Then

‖f(y)g(t)− (w>(y)⊗w>(t))xw‖ςnw(y)ςnw(t) ≤ µghw(δ2f ,m,N) + µfhw(δ2g,m,N),

where hw(δf ,m,N) and hw(δf ,m,N) are constants and obtained according to the relative wavelets. It means if
M →∞, then the given norm for the expansion of two-dimensional function tends to zero.

Proof. From Lemmas 6.3 and 6.4, we can write∥∥f(y)g(t)− (w>(y)⊗w>(t))xw

∥∥
ςnw(y)ςnw(t)

≤
∥∥g(t)f(y)−w>(y)f>w

∥∥
ςnw(y)ςnw(t)

+
∥∥f(y)g(t)−w>(t)g>w

∥∥
ςnw(y)ςnw(t)

≤ µghw(δ2f ,m,N) + µfhw(δ2g,m,N).

From the relations of the wavelets, we can find hw(δf ,m,N) and hw(δf ,m,N) and we see that if M → ∞,
then the given norm for the expansion of two-dimensional function tends to zero. �

7. MODELING RESULTS FOR PDE OPTIMIZATION EXAMPLES

In this section, we apply the methods to some optimal control problems of PDEs that have applications in
engineering and natural sciences. The fractional PDEs of these problems are governed from the well-known
equations. The given results are generated by MATLAB R2013b. Based on the given ideas, we model each
of them to obtain their optimal solutions. We consider complicated conditions or constraints to show the
advantage of the method. In a traditional method, one should resolve the problem and repeat the solution
processes for a new scenario while in our method there is no need to do these tasks. Knowing the fact that
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solving the integer order of any of the following problems is not an easy task, one realizes that solving the
fractional order is much more complicated, especially with the new given scenarios.

Remark 7.1. As can easily be seen in some texts, one can define countless trivial problems with exact so-
lutions. First, a problem for X(y, t) = 0 and U(y, t) = 0 is defined as 0 = f(X(y, t), U(y, t)), then
by setting 0 = X(y, t) = x(y, t) − x(y, t) = x(y, t) − f1(y)g1(t) and 0 = U(y, t) = u(y, t) − u(y, t) =

u(y, t) − f2(y)g2(t), the transformed problem is defined as a new problem with exact solutions as x(y, t) =

f1(y)g1(t) and u(y, t) = f2(y)g2(t). The initial and boundary conditions can be easily derived, for exam-
ple, x(y, 0) = f1(y)g1(0). Similar procedure can be applied, for example, just setting U(y, t) = 0 or setting
0 = (f1(y)g1(t)x(y, t)− f2(y)g2(t)u(y, t)). But the resulted problem is not an optimal control problem and it
contains several unfixable fundamental flaws; for instance, for infinite performance indices such as indices
with (x(y, t) − f1(y)g1(t))n1 and/or (u(y, t) − f2(y)g2(t))n2 for n1, n2 = 1, 2, . . ., the solutions remain the
same, while this is definitely impossible in the optimal control theory.

7.1. Example 1, a system with a nonlinear PDE. This interesting optimal control problem is adapted from
[45]. Consider new fractional types of one dimensional heat equation with a nonlinearity of Schlögl type
studied in [45] with a performance index as

J = 1
2

∫ tf

0

∫ yf

0

{
x2(y, t) + u2(y, t)

}
dy dt,

where tf = 2 and yf = 1. Now, if we change the order of the PDE,
• Case 1:

∂αx(y, t)

∂tα
=
∂2x(y, t)

∂y2
+ 15(x(y, t)− x3(y, t)) + u(y, t),

α = 0.91,

x(0, t) = 0, x(1, t) = 0,

x(y, 0) = 0.2 sin(πy).

Ref. [45] used the model predictive control combination method for solving the integer version of this
problem, that is, α = 1 in Case 1. Here, we use the proposed method and the optimal solutions for the
problems is presented in Figure 2. Then, as more complicated situations, we consider different scenarios.
As another case, we change the conditions and use the given state equation in which
• Case 2:

α = 0.4,

x(0, t) = −0.15t,

x(1, t) = 0.1t,

x(y, 0) = 0.1− 0.1 cos(2πy).

The results of our method for this fractional nonlinear optimization problem are shown in Figure 3. Now,
we again change the order of the PDE,
• Case 3:

∂αx(y, t)

∂tα
=
∂α+1x(y, t)

∂yα+1
+ 15(x(y, t)− x3(y, t)) + u(y, t),

α = 0.4,

x(0, t) = −0.15t,

x(1, t) = 0.1t,

x(y, 0) = 0.1− 0.1 cos(2πy).

The optimal solutions are shown in Figure 4, which one can see the differences due to changing a derivative
order of the PDE, that is, changing ∂2x(y, t)/∂y2 to ∂α+1x(y, t)/∂yα+1.
Now as another case, assume that there is a temperature constraint in Case 3 as a plate that the temperature
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must be less than or equal to temperature of this plate as
• Case 4: the given equations in Case 3 hold and also, we must have

x(y, t) ≤ 0.11 when 0.3 ≤ y ≤ 0.8 and 1.3 ≤ t ≤ 2.

This plate is shown schematically in the graph of optimal state in Figure 5. It is obvious from the previous
solutions that the solutions of the system for Case 3 cannot satisfy the state constraint. As an advantage
of the proposed QP modeling, we solve the problem with this temperature constraint and the optimal
solutions are presented in Figure 5; we can see the constraint is satisfied.
Now as new constraint, we have a fractional isoperimetric constraint in Case 3 as
• Case 5: the given equations in Case 3 hold and also we must have

RL
0I
ᾱi,t
tf

RL
0I
ᾱi,y
yf

[15x(y, t)− u(y, t)] ≤ 0.5,

where ᾱi,t = 0.8, ᾱi,y = 0.7. We have the two-dimensional Riemann–Liouville isoperimetric constraint
in the new problem. The solutions of Case 3 cannot satisfy the fractional isoperimetric constraint. As an
advantage of the QP method, we can solve this problem; by doing so, the optimal solutions are presented
in Figure 6.
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FIGURE 2. Optimal solutions for Case 1 of Example 1.
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FIGURE 3. Optimal solutions for Case 2 of Example 1.
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FIGURE 4. Optimal solutions for Case 3 of Example 1.
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FIGURE 5. Optimal solutions for Case 4 of Example 1.
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FIGURE 6. Optimal solutions for Case 5 of Example 1.

7.2. Example 2, a system with a nonlinear delay/stretch PDE. This interesting optimal control problem is
adapted from [28]. Consider a new pure fractional version of a reaction diffusion model presented in [28].
By taking x(y, t) as the population density at time t and position y, where 0 ≤ t ≤ 5 and 0 ≤ y ≤ π,

∂αtx(y, t)

∂tαt
=
∂αyx(y, t)

∂yαy
− 0.5x(y, ω(t))[1 + x(y, t)] + u(y, t)
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with the boundary conditions
∂x(y, t)

∂y

∣∣∣∣
y=0

= 0,
∂x(y, t)

∂y

∣∣∣∣
y=π

= 0,

x(y, 0) = 1− cos(2y).

The goal is to minimize the new, combined, Riemann–Liouville performance indices as

J = 0.1RL0I
ᾱt
5
RL

0I
ᾱy
π

[
u2(y, t)

]
+ RL

0I
ᾱy
π

[
x(y, 5)− 6 + 3 cos(3y)

]2
subject to the given PDE, where 0 < αt ≤ 1, 1 < αy ≤ 2, ᾱt = αt and ᾱy = αy − 1. Also:
•Case 1: ω(t) is a stretched argument, which is also called a proportional delay, scaled delay or pantograph-
type delay in some texts like [46], defined as

ω(t) =
t

2
.

• Case 2: ω(t) is a time-delay argument defined with a history function as

ω(t) = t− 0.5, and x(y, t) = 1− cos(2y) when − 0.5 ≤ t ≤ 0.

We solve this problem for αt = 1, αy = 2 and αt = 0.9, αy = 1.7 for the both cases. The results are show
in Figures 7–10.
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FIGURE 7. Optimal solutions for Case 1 of Example 2, αt = 1, αy = 2.
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FIGURE 8. Optimal solutions for Case 1 of Example 2, αt = 0.9, αy = 1.7.
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FIGURE 9. Optimal solutions for Case 2 of Example 2, αt = 1, αy = 2.
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FIGURE 10. Optimal solutions for Case 2 of Example 2, αt = 0.9, αy = 1.7.

7.3. Example 3, a system with a two-dimensional PDE. Consider the problem of controlling two-
dimensional wave equation in Cartesian zy-coordinate system as

∂αtx(z, y, t)

∂tαt
=
∂αzx(z, y, t)

∂zαz
+
∂αyx(z, y, t)

∂yαy
+ (z + 1)(y + 1)u(z, y, t),

where t is the time, tf = 2, zf = 1, yf = 1, αt = 1.9, αz = 1.8 and αy = 1.6; the performance index and the
boundary conditions are given as the following scenarios:

• Case 1:
J = 1

2
RL

0I
ᾱt
tf
RL

0I
ᾱy
yf

RL
0I
ᾱz
zf

[
x2(z, y, t) + u2(z, y, t)

]
,

x(0, y, t) = 0, x(1, y, t) = 100zy.

• Case 2: the performance index is the same as before, and we only have one condition as

x(0, y, t)− x(1, y, t) = 10.

• Case 3:

J = 1
2x

2(zf , yf , tf ) + 1
2
RL

0I
ᾱt
tf
RL

0I
ᾱy
yf

RL
0I
ᾱz
zf

[
x2(z, y, t) + u2(z, y, t)

]
+ 1

2
RL

0I
ᾱy
yf

RL
0I
ᾱz
zf

[
10 (x(z, y, tf )− xd(z, y))

2 ]
,

x(0, y, t) = 10, xd(z, y) = 100− 100 cos(z) cos(y).
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For Case 1, the optimal state and control for z = 0.5 are shown in Figure 11. For Case 2, the optimal
states are shown at z = 0 and z = 1 in Figure 12. And for Case 3, the desired reference and the optimal state
and control at t = tf are shown in Figure 13.

Some of important PDEs are given by two-dimensional PDEs. Hence, we need to study systems de-
scribed by two-dimensional PDEs in the optimal control systems. Here, we present this example as a
two-dimensional PDE optimal control problem to see applicability of the proposed method. Some sce-
narios have been chosen and new scenarios such as a three-dimensional Riemann–Liouville isoperimetric
constraint can be investigated for two-dimensional PDE optimal control problems such as this.
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FIGURE 11. Optimal solutions for Case 1 of Example 3.
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FIGURE 12. Optimal solutions for Case 2 of Example 3.
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CONCLUSION

We extended the ideas presented in the previous works to the pure fractional optimal control of
nonlinear, delay and two-dimensional PDEs and we presented the new methods. The methods can be
used to solve such problems with different kinds of the conditions and/or constraints. We saw that
there is no need to obtain the optimality conditions in these methods. Some problems with fractional
PDEs and the Riemann–Liouville performance indices have been solved to show their applicability. The
Riemann–Liouville isoperimetric constraints for PDEs has been introduced. The formulations have been
presented in general forms with terminal, minimum total energy and tracking performance indices for
different purposes of PDE optimization.
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