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APPLICATIONS OF UJLAYAN AND DIXIT FRACTIONAL UNIFORM PROBABILITY
DISTRIBUTION

IQBAL H. JEBRIL1, AMIRA ABDELNEBI2, AND IQBAL M. BATIHA1,3,∗

ABSTRACT. In this work, we consider the Ujlayan-Dixit (UD) fractional derivative and integral to present the
fractional probability density function for the Continuous Uniform Distribution (CUD). Some applications for
this distribution using the UD approach are developed by introduce new fractional notions on the probability
theory, which involve cumulative distribution, survival and hazard functions. For continuous random variables,
various additional concepts and applications are established, including the fractional expectation, the fractional
variance and the fractional moments. Finally, the UD fractional standard deviation and the UD fractional Shannon
entropy are provided.

1. INTRODUCTION

In the last few decades, fractional calculus has emerged as a focus of research and development related
to the modeling of practical problems. Over time, various definitions of fractional derivatives and integrals
have been proposed, with possible modifications applied as needed (e.g. Riemann-Liouville [1], Caputo [2],
Caputo-Hadamard [3] and Conformable derivative [4]).

This field of research has many applications across different scientific and engineering domains. It plays
a crucial role in disciplines such as physics, computer science, biology and economics, contributing to
advancements in each; for further information, refer to sources [5–9]. Within this wide range of uses, our
interest has focused on probability theory, where it aids in understanding complex stochastic processes,
modeling uncertainty, and solving problems related to random variables and distributions.

In fact, numerous published articles have specifically explored the intersection of probability theory and
fractional calculus. To cite few, in [10], a new concepts on probability theory using fractional integration
in the RL-sense has introduced and some applications on expectations, variances and moments of contin-
uous random variables having probability density functions (p.d.f.) defined on some bonded real lines
are presented in [11]. Then, in [12], the authors explored several applications of the continuous uniform
distribution and the Beta probability distribution using the fractional normalized concepts on continuous
random variables. Recently, the authors in [13] have used fractional differential equations (FDE) to produce
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the probability density functions of random variables. For more details about other works in relation to the
fractional calculus and some of its applications, the reader may refer to references [14–24].

Dixit and Ujlayan, in [25] and [26], defined the Dixit-Ujlayan (UD) fractional derivative, a new approach
that transforms the fractional derivative into a convex combination of the function and its ordinary deriva-
tive, without introducing extra variables. This simplification reduces the equation to a classical differential
form, allowing it to be solved using standard, well-known techniques. From there, it started with several
applications in the fields of science, engineering, and finance. Then, in [27], Alhribat et al. utilized UD
fractional differential equations to create new fractional distributions based on existing probability distri-
butions, establishing UD fractional probability distribution functions for the exponential, Pareto, Levy, and
Lomax distributions.

In this paper, UD fractional derivative and integral are applied to derive the fractional probability den-
sity function for the Continuous Uniform Distribution (CUD) and some applications for this distribution
are developed, which involve cumulative distribution, survival and hazard functions with some graphi-
cal representations. Additionally, new concepts and applications, such as fractional expectation, fractional
variance, and fractional moments, are introduced. Finally, the UD fractional standard deviation and the
UD fractional Shannon entropy are presented.

2. SOME PRELIMINARY RESULTS

The purpose of this section is to provide clear information regarding the basic definitions and properties
of the UD derivative. For additional details, we motivate readers to consult these references [25, 26].

Definition 2.1 (UD derivative). [26] For a function g : [0,+∞) → R and α ∈ [0, 1], we define the UD
derivative of order α of g by

(2.1) Dαg(x) = lim
ε→0

eε(1−α)g
(
xe

εα
x

)
− g(x)

ε
,

if limit exists. Also, if g is UD differentiable in the interval (0, x) and for x > 0 and α ∈ [0, 1] such that
limx→0+ D

αg(x) exist, then

Dαg(0) = lim
t→0+

Dαg(x).

We take into account that,

Dαg(x) =
dαg(x)

dxα
.

Theorem 2.2. [25] Let g : [0,+∞) → R be a differentiable function and α ∈ [0, 1]. Then, g is UD differentiable,
and

(2.2) Dαg(x) = (1− α)g(x) + αg′(x).

Note that, if α = 0 we have D0g(x) = g(x), and for α = 1 we have D1g(x) = g′(x).

Let us now state some properties of the UD derivative.

Property 1. [25] Let 0 ≤ α, β ≤ 1. If g1 and g2 are UD differentiable, then

1. The UD derivative is a linear operator, i.e.,

Dα(µ1g1 + µ2g2) = µ1D
αg1 + µ2D

αg2, for all µ1, µ2 ∈ R.

2. The UD derivative is a commutative operator, i.e.,

Dα(Dβg1) = Dβ(Dαg1).
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3. The UD derivative satisfies the following product rule

Dα(g1.g2) = (Dαg1)g2 + α(Dαg2)g1.

So, Leibnitz’s rule for fractional derivatives Dα(g1.g2) 6= g2D
αg1 + g1D

αg2, does not satisfied here.
4. The quotient rule is satisfied by the UD derivative, i.e.,

Dα

(
g1
g2

)
=

(Dαg1)g2 − α(Dαg2)g1
(g2)2

, with g2(t) 6= 0.

5. The semi-group property is not satisfied by the UD derivative, i.e.,

Dα(Dβg1) 6= Dα+βg1.

6. In particular case, for α ∈ [0, 1] and x ≥ 0, The UD derivatives of some elementary real-valued
differentiable functions are given by

* Dα(C) = (1− α)C, where C ∈ R.
* Dα((ax+ b)n) = (1− α)(ax+ b)n + anα(ax+ b)n−1, for each a, b ∈ R and n ∈ N∗.

Definition 2.3 (UD integral). [25] Given a continuous function g : [a, b] → R. The UD integral operator of
order α where α ∈ (0, 1], is defined as

Iαa g(x) =
1

α
e

(α−1)
α x

∫ x

a

e
(1−α)
α tg(t)dt.

The following property contains some fundamental characteristics of the UD integral.

Property 2. [25] If g1 and g2 are continuous functions then the operator Iαa has the following properties:

1. Iαa (µ1g1 + µ2g2) = µ1I
α
a g1 + µ2I

α
a g2, for all µ1, µ2 ∈ R.

2. Iαa (Iβa g1) = Iβa (I
α
a g1), α, β ∈ (0, 1].

3. Iαa (Iαa g1) 6= I2αa g1.

4. Dα(Iαa g1) = g1.

3. MAIN RESULTS

We begin our main Results by some definitions and properties.

3.1. Expectation, Variance, and Moments.

Definition 3.1. The UD Fractional expectation of order α ∈ (0, 1], for a random variable X with a fractional
p.d.f. fα defined on [a, b] is given by

Eα(X) =
1

α
e

(α−1)
α x

∫ x

a

e
(1−α)
α ttfα(t)dt , a ≤ x ≤ b.

Definition 3.2. The UD fractional variance of order α ∈ (0, 1], for a random variable X having a fractional
p.d.f . fα on [a, b] is defined as

σ2
α(X) = Vα(X) :=

1

α
e

(α−1)
α x

∫ x

a

e
(1−α)
α t(t− Eα(X))2fα(t)dt.

Definition 3.3. The UD fractional moment of orders r > 0, α ∈ (0, 1], for a continuous random variable X
having a fractional p.d.f . fα on [a, b] is defined by

Eα(X
r) :=

1

α
e

(α−1)
α x

∫ x

a

e
(1−α)
α ttrfα(t)dt , a ≤ x ≤ b.

Proposition 1. Based on the above definitions and the fact that Iαa fα(b) = 1 , we represent some properties.
For α ∈ (0, 1], we have
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1*: For any real number C, we have

Eα(C) = C.

2*:

Eα(Eα(X)) = Eα(X).

3*:

V arα(X) = Eα(X
2)− E2

α(X).

Proof. 1*: For the first property, we have

Eα(C) =
C

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α tfα(t)dt

= CIαa f(b),

= C.

2*: For the second property, we have

Eα(Eα(X)) =
1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α t(Eα(X))fα(t)dt,

= Eα(X)
1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α tfα(t)dt,

= Eα(X)Iαa f(b),

= Eα(X).

3*: Indeed, by definition

V arα(X) =
1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α t(t− Eα(X))2fα(t)dt

=
1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α tt2fα(t)dt+ E2

α(X)
1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α tfα(t)dt

− 2Eα(X)
1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α ttfα(t)dt

= Eα(X
2) + Iαa fα(b)E

2
α(X)− 2Eα(X)Eα(X)

= V arα(X) = Eα(X
2)− E2

α(X).

Using (3.5) we get

V arα(X) = Eα(X
2) + E2

α(X)− 2E2
α(X),

= Eα(X
2)− E2

α(X).

�

3.2. The UD Fractional Continuous Uniform Distribution (CUD). The probability density function for
the continuous uniform distribution (CUD) for any x ∈ [a, b], where b > a, is given by

(3.1) f(x) =
1

b− a
, a ≤ x ≤ b.

Let us take y = 1
b−a , then the first derivative of y can be written as follows:

(3.2) y′ = 0,
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where the obtained equation (3.2) is a first-order ordinary differential equation. Now, consider the α-order
differential equation with regard to the UD derivative as follows:

Dαy = 0,

(1− α)y + αy′ = 0,

αy′ + (1− α)y = 0.(3.3)

Thus, the equation (3.3) is a linear differential equation of first order with an integrating factor

$(x) = e
∫ (1−α)

α dx,

= e
(1−α)
α x.

So, the following represents the general solution of the equation (3.3):

y =
K

$(x)
,

= Ke
(α−1)
α x.

Consequently, the new probability distribution will be

fα(x) = Ke
(α−1)
α x.(3.4)

To determine the normalizing constant K, we need to propose the following condition

Iαa fα(b) = 1,(3.5)

which implies that

K
α
e

(α−1)
α b

∫ b

a

e
(1−α)
α tfα(t)dt = 1,

K
α
e

(α−1)
α b

∫ b

a

e
(1−α)
α te

(α−1)
α tdt = 1,

K
α
e

(α−1)
α b

∫ b

a

1dt = 1.

As a result, the normalizing constant K is presented by

K =
αe

(1−α)
α b

b− a
.(3.6)

Therefore, the UD fractional probability density function (UDFPDF) of the α-continuous uniform distribu-
tion can be written as,

fα(x) =
αe

(1−α)
α b

b− a
e

(α−1)
α x, a ≤ x ≤ b, 0 < α < 1.(3.7)

We take into account that

lim
α→1−

fα(x) =
1

b− a
= f(x).(3.8)

In order to plot the graph of the UD fractional probability density function (UDPDF) of α-continuous uni-
form distribution (α-CUD) according to different values of α, we take the data a = 5 and b = 10, then the
result is shown in Figure 1.

We note that The UD fractional probability density function is a constant function when α = 1, which
means that it is graphically identical to the classical case of the probability density function for the contin-
uous uniform distribution.
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FIGURE 1. The UD fractional probability density function of α-CUD for different values of α.

3.3. Applications of the UD Fractional Continuous Uniform Distribution (CUD). In this part, we estab-
lish some new applications of fractional calculus on probabilistic random variables, and accordingly we
decided to address the UD fractional probability for the α-CUD.

3.3.1. The UD fractional cumulative distribution function. For the α-CUD, the UD fractional cumulative dis-
tribution function can be obtained by

Fα(x) = e
(1−α)
α be

(α−1)
α x

[
x− a
b− a

]
.(3.9)

In fact, we have

Fα(x) = Pα(X ≤ x),

= Iαa fα(x),

=
1

α
e

(α−1)
α x

∫ x

a

e
(1−α)
α tfα(t)dt,

=
αe

(1−α)
α b

b− a
1

α
e

(α−1)
α x

∫ x

a

e
(1−α)
α te

(α−1)
α tdt,

=
e

(1−α)
α be

(α−1)
α x

b− a

∫ x

a

1dt,

= e
(1−α)
α be

(α−1)
α x

[
x− a
b− a

]
.

Note that

lim
α→1−

Fα(x) =
x− a
b− a

= F(x),(3.10)

where F is the classical cumulative distribution function for CUD. Figure 3.3.1 show the UD fractional
cumulative distribution function (UDFCDF) of α-CUD under different values of α, and Figure 3.3.1 show
the comparison between the UD fractional cumulative distribution function for α = 1, and the classical case
of the cumulative distribution function for the continuous uniform distribution.
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FIGURE 2. The UDFCDF of α-CUD according to different values of α.
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FIGURE 3. A graphical comparison between the UDFCDF of α-CUD for α = 1 and the
classical CDF.

3.3.2. The UD fractional survival function. The UD fractional survival distribution function of the random
variable X is given by

Sα(x) = 1−Fα(x),

= 1− e
(1−α)
α be

(α−1)
α x

[
x− a
b− a

]
.

=
b− a− e

(1−α)
α be

(α−1)
α x [x− a]

b− a
.(3.11)

In particular case, we can have

lim
α→1−

Sα(x) =
b− x
b− a

= S(x),(3.12)

where S is the classical survival function for CUD.
The fractional survival distribution function UDFSDF for α-CUD can also be plotted by taking different

values of α, as illustrated in Figure 4. Then, a comparison between the UD fractional survival distribution
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FIGURE 4. The UDFSDF of α-CUD under different values of α.
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FIGURE 5. A graphical comparison between the UDFSDF of α-CUD for α = 1 and the
classical SDF.

function for α = 1, and the classical case of the survival distribution function for the continuous uniform
distribution, is then shown graphically in Figure 5.

3.3.3. The UD fractional hazard function. The UD fractional hazard distribution function of X is defined by

Hα(x) =
fα(x)

Sα(x)
,

=
αe

(1−α)
α

b

b−a e
(α−1)
α x

b−a−e
(1−α)
α

be
(α−1)
α

x[x−a]
b−a

,

=
αe

(1−α)
α be

(α−1)
α x

b− a− e
(1−α)
α be

(α−1)
α x [x− a]

.(3.13)

If, α→ 1− in the above formula, then we get the classical hazard function for CUD

lim
α→1−

Hα(x) =
1

b− x
= H(x).(3.14)
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FIGURE 6. A comparison between the UDFHDF of α-CUD for α = 1 and the classical HDF

Similarly, a graphical comparison between the UD fractional hazard distribution function UDFHDF for
α = 1, and the classical case of the hazard distribution function for the continuous uniform distribution, is
then illustrated in Figure 6.

3.3.4. The UD fractional expectation. According to the Definition 3.1, The UD fractional expectation Eα of a
continuous random variable X whose UDFPDF fα(x) is given by

Eα[X] = Iαa xfα(x)|x=b,

=
1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α ttfα(t)dt,

=
αe

(1−α)
α b

b− a
1

α
e

(α−1)
α b

∫ b

a

te
(1−α)
α te

(α−1)
α tdt,

=
e

(1−α)
α be

(α−1)
α b

b− a

∫ b

a

tdt,

=
1

b− a

[
t2

2

]b
a

,

=

[
b2 − a2

2(b− a)

]
,

=

[
b+ a

2

]
= E(X).(3.15)

3.3.5. The UD fractional moment of orders (r, α). The UD fractional moment of orders (r, α) denoted by
Eα[X

r] of a continuous random variable X whose UDFPDF fα(x) is given by

Eα[X
r] = Iαa x

rfα(x)|x=b,

=
1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α ttrfα(t)dt,

=
αe

(1−α)
α b

b− a
1

α
e

(α−1)
α b

∫ b

a

tre
(1−α)
α te

(α−1)
α tdt,
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=
e

(1−α)
α be

(α−1)
α b

b− a

∫ b

a

trdt,

=
1

b− a

[
tr+1

r + 1

]b
a

,

=

[
br+1 − ar+1

(r + 1)(b− a)

]
= E(Xr).(3.16)

For r = 2, we have

Eα(X
2) =

[
b3 − a3

3(b− a)

]
,

=

[
a2 + b2 + ab

3

]
= E(X2).(3.17)

3.3.6. The rth-UD fractional central moment Eα(X − µ)r. First, we put

µ = Eα(X) =

[
b+ a

2

]
.

Then, the rth UD fractional central moment Eα(X − µ)r of X is defined by

Eα(X − µ)r = Iαa (x− µ)rfα(x)|x=b.(3.18)

Using the formula (3.18), we can determine the following list of central moments:

1. First central moment

Eα(X − µ) = 0.(3.19)

This is always zero since it represents the mean of the deviations from the mean itself.
2. Second central moment

Eα(X − µ)2 =
(b− a)2

12
.(3.20)

3.3.7. The UD fractional variance. The UD fractional variance V arα or σ2
α of X is defined by

V arα(X) = Eα(X
2)− E2

α(X),

=

[
a2 + b2 + ab

3

]
−
[
b+ a

2

]2
,

=
(b− a)2

12
.(3.21)

3.3.8. The UD fractional standard deviation σα. The UD fractional standard deviation σα of X for a α-CUD is
given by

σα =
√
V arα(X),

=

√
(b− a)2

12
,

=

√
3(b− a)

6
.(3.22)
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3.3.9. The UD fractional Shannon entropy αH . For a α-CUD, the UD fractional Shannon entropy αH of X is
given by

αH(X) = − 1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α tfα(t) log(fα(t))dt.(3.23)

First, we calculate the the quantity log(fα(t)), we have

log(fα(t)) = log

(
αe

(1−α)
α b

b− a
e

(α−1)
α t

)
,

= log

(
α

b− a

)
+ log

(
e

(1−α)
α b

)
+ log

(
e

(α−1)
α t

)
,

= log

(
α

b− a

)
+

(1− α)
α

b+
(α− 1)

α
t.

Next, we calculate fα(t) log(fα(t)), we get

fα(t) log(fα(t)) =

(
αe

(1−α)
α b

b− a
e

(α−1)
α t

)[
log

(
α

b− a

)
+

(1− α)
α

b+
(α− 1)

α
t

]
,

=

[
log

(
α

b− a

)
αe

(1−α)
α b

b− a
e

(α−1)
α t

]

+

[
(1− α)
α

b
αe

(1−α)
α b

b− a
e

(α−1)
α t

]
+

[
(α− 1)

α

αe
(1−α)
α b

b− a
te

(α−1)
α t

]
.

Therefore, the UD fractional Shannon entropy αH of X becomes

αH(X) = − 1

α
e

(α−1)
α b

∫ b

a

e
(1−α)
α tfα(t) log(fα(t))dt,

= − log

(
α

b− a

)
−
(
1− α
α

)
b−

(
α− 1

α

)(
b+ a

2

)
.(3.24)

Note that

lim
α→1−

αH(X) = − log

(
1

b− a

)
,

= − log(1) + log(b− a),

= log(b− a) = H(X),

where H is the classical Shannon entropy of X for the continuous uniform distribution (CUD).

4. CONCLUSION

In this paper, we have presented some original results on the probability theory. Cumulative distribution,
survival, and hazard functions with some graphical representations represent some of the applications for
the Continuous Uniform Distribution (CUD) that are developed using the UD fractional derivative and
integral to derive the fractional probability density function. Novel notions are also presented, including
UD fractional moments, UD fractional variance, and UD fractional expectation. The UD fractional standard
deviation and UD fractional Shannon entropy are finally provided.
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