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NUMERICAL SOLUTION OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATION: METHOD OF
LINES AND CRANK-NICHOLSON METHOD

MD ROKNUJJAMAN?®*, MOHAMMAD ASIF AREFIN2, AND ATISH KUMAR JOARDER?

ABSTRACT. The method of lines (MOL) is a solution procedure for solving partial differential equation (PDE) and
the Crank-Nicholson method (CNM) is an implicit finite difference method, used to solve the elliptic equation and
similar partial differential equations numerically. In this study, the numerical techniques were introduced to solve
elliptic partial differential equation (PDE) together with initial and boundary conditions. The Poisson equation
was considered as an elliptic PDE. Particularly, two methods were used to solve a two-dimensional Poisson equa-
tion numerically, such as the method of lines (MOL) and Crank-Nicholson method (CNM). The implementation of
the solutions was done using Microsoft office spreadsheet and MATLAB programing language. Lastly, the numer-
ical solutions were presented graphically which was obtained with method of lines along with Crank-Nicholson
method.

1. INTRODUCTION

The Method of Lines is a semi-discrete computational approach that estimates space derivatives by con-
verting the problem into a system of initial value ordinary differential equations (ODEs). This method
involves to solve the ODE system, allowing for efficient and accurate solutions [1-6]. To enhance accuracy,
highly efficient initial value ODE solvers can be employed, allowing for corresponding orders of accuracy
in time integration without the requirement for incredibly short time steps. In existing applications, partial
differential equations play a crucial role in various fields, with a focus on the sciences and engineering [6-8].
Many studies in scientific and engineering domains are modeled using partial differential equations, in-
cluding studies in thermoelasticity [8, 9], fluid flow [10,11], and so on. There is a growing emphasis on the
development, analysis, and implementation of numerical methods to solve these problems.

Partial differential equations usually arise when a dependent variable depends on two or more inde-
pendent variables. Computing analytic solutions for these equations is difficult, leading to the utilization
other approaches are used. Numerical methods are widely employed to address engineering problems,
while taking boundary conditions into account. Generally, the domain is discretized into a finite number of
components, or discretized into small triangles or rectangles. The values of the dependent variable at the
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nodes or grid points within these components are then computed. Another important class of ODEs orig-
inates from the application of the general approach the Method of Lines (MOL) to time-dependent Partial
Differential Equations (PDE). In this method, the PDEs system is first spatially discretized, which results in
a coupled system of ODEs in time only. Then, any well-established numerical method is applied to achieve
an accurate approximate solution to the problem [12]. Two broadly applicable techniques include Finite
Difference, which is local methods and Spectral Methods, which are global methods.

In this study, the Method of lines and Crank-Nicholson method are applied to solve two dimensional
Poisson equations with Dirichlet boundary conditions using spreadsheet [13]. The MOL is applied to ap-
proximate the PDE problem to reduce it to simpler system of ODEs. This system of ODEs is then repre-
sented in matrix form which, eigenvalues will be calculated. Therefore, the objective of this research is
to propose an efficient numerical method for the numerical solution of PDE. This paper is organized as
follows; In Sec. 2, The Method of lines was introduced and discussed. The mathematical formulation of
Poisson equation with initial and Dirichlet boundary conditions was explained and the numerical solution
procedure were describe in Sec. 3. The discussion is explained in Sec.4 and Section 5 is devoted to the
conclusion of this study:.

2. THE METHOD OF LINES

The numerical approach known as the method of lines involves solving partial differential equations
by discretizing all dimensions except one and then integrating the semi-discrete problem as a system of
ordinary differential equations (ODEs) [1-6]. An advantage of this method is it allows the solution to
take advantage of the sophisticated general-purpose methods and software that have been developed for
numerically integrating ODEs. The Method of lines is applicable for the partial differential equations; the
method usually proves to be quite efficient. The method of lines is well-suited for solving partial differential
equations. It is important that the PDE problem is well-posed as an initial value (Cauchy) problem in at
least one dimension. This requirement is essential because the ODE integrators employed are designed for
solving initial value problems.

Additionally, this method applied to the equations involves a time variable (¢) and one or more space
variables (z1, z2, z,,), transforms them into a system of ordinary differential equations (ODEs) [14]. The
part of the equations related to space variables is discredited, resulting in an approximation of the PDE in
the form of a system of ODEs. This system of ODEs can be directly integrated using a standard ODE code.
The MOL is often chosen for its ability to solve general and complex PDEs with relative ease and acceptable
efficiency. Additionally, MOL suggest the advantage of using theoretical knowledge from ODE:s to address
PDEs, and the convenience of powerful ODE solvers [15-22]. The connection between partial and ordinary
differential equations was known by Lagrange in 1759 [3], leading to the derivation of a system of ordinary
differential equations.

" = K% (=2y1 + y2)
v = K*(y1 — 2y2 + y3)
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The D’Alemberts equation observed by Lagrange is given by
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With a finite number of mass points attached to a light string, the same equations (1) are found. It is also
noted that Fourier In 1807 [3] motivated by the problem of heat conduction and obtained the equation

3) yi' = K (yi1 — 20+ yig1)i= 1,2, ... N
The heat equation was obtained by considering the value of N to be large
ou 0%u
4 pudnR S
@) ot~ o2

Nevertheless, the numerical application of the method of lines (MOL) was first applied by Rothe in 1930
[23]. He considered the method to address a parabolic equation.

(5) Ugs= R (X, t) us+S (x,t, 1),
WithR > 0,0 <2 < 1,0 <t <T. He used the approach to estimate the equation after discretizing the
time variables in equation (5).

Un+1 —
h

Equation (6) represents a transversal approach for integrating the ordinary differential equations (ODEs)

along lines parallel to the x-axis. In other words, transversal designs results to boundary value problems,

(6) un+1// =R (xvthrl) fn + S ($7tn+17un) ) tn = nh

while longitudinal systems give rise to initial value problems. In this paper, we have established a solu-
tion methodology for partial differential equations (PDEs) using the Method of Lines (MOL) along with
the Crank-Nicolson Method (CNM). Subsequently, we have examined numerical solutions of the Poission
equation through the application of this solution procedure involving MOL and CNM.
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FIGURE 1. Rectangular region R with boundary conditions.
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FIGURE 2. Illustration of discretization in the x-directions.
3. MATHEMATICAL FORMULATION
The governing equation is given by [15,16,20,22,24,25]
7) Au= f(z, y)
where the Laplace operator is defined by A = % + g%, Equation (7) is an elliptic second order linear

partial differential equation. In equation (7), the dependent variable u (X, y) is a function of its arguments
and depends on the independent variables x and y. The function f (x, y) is known as a source function. To
compute the numerical solution of equation (7). we divide the interval into an equal parts with step length

h=Az= Nt and considered a plane region defined, R = {(z,y): 0 <z <1land0<y<1
The initial condition; u (z,0) = f (z) ; a <z <},

We also impose the Dirichlet boundary condition

w(0,y) =0, u(z,0) =0;u(x,0.5) =200z, u(0.5,y) = 200y.

In the region denoted as R, focus to Dirichlet boundary conditions as illustrated in Figure 1, the dimen-
sions of the variables are associated with the Cartesian coordinate system. Precisely, the length along with
the variable X extends along the positive horizontal X-axis, while the length along the variable Y extends
along the positive vertical Y-axis. This geometric alighment provides a clear framework for understanding
the spatial distribution and boundary conditions within the designated region R.

The first step is discretization of the z-variable. The region is divided into strips by IV dividing straight
lines (hence the name method of lines) parallel to the y-axis. Since we are discrediting along =, we now
split the region R in Figure 1 into a finite number of rectangular elements. We divide the interval into N

a
N+1

nodes and the sides in and on the region, R can be classified into two groups, viz. interior and exterior.

equal parts with step length h = Az = will split the plane region R into 16 rectangular elements. The
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FIGURE 3. Geometric shape with specified Boundary condition.

The interior nodes and sides lie inside the region R while the exterior nodes and sides lie on the boundary
of the region R. Further, all the interior nodes and sides are common to adjacent rectangular elements. Of
course, this fact is exempted for the exterior nodes and sides. The nodes of the region R are numbered and
shown in Figure 3.

3.1. Numerical Solutions. Let us illustrate this by an example of poison equation [24, 25].

?u  *u
®) @'Faiyz—f(%y)
Applying the Crank-Nicholson scheme when z is independent variable [14]
0%u 1
) 92 ﬁ[uiﬁ-l,j = 2w 5+ Uim1,j F Uit 41 — U1 F Ui, j4]
Where h is the spacing of discretized lines [16]
a
h=Ar= N

Apply the MOL approximation in Equation (8) becomes,
Puiyy 1

oy2  2h2
Now using the figure which domain is divided into squares of 0.125-unit size, the boundary condition

(10)

(i1 + 2w — wim1j — Uig1 41 + 2 g1 — wim1 1] + f (2,9)

implies that,

U1,0 = U2,0 = U3,0 = Up,1 = Up,2 = Up,3 =0
U4 = Ugq,1 = 25, U24 = Ug 2 = 50

and U3,4 = U4,3 = 75
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Let, f(z,y) =1

Now for eachi,j=1,2,3. ...... N and applying the boundary conditions;
Considering the node (1,1), then the equation (10) becomes,
0u 1
33;12,1) =572 [—uz21 + 2u11 — uo1 — U2 + 2u12 — ug 2| + 1,
0%u 1
8y21 = gy [Fu2 +2u1 — 0 —us + 2us — 0] + 1,
82U1 1

(11) 6y2 = W [*Ug + 2’UJ1 — U5 + 2’(},4] +1

Similarly, considering node (1,1), (1,2), (1,3), (2,1), (2,2), (2,3) and (3,1), (3,2), (3,3), then the equation (10)
becomes

0%u 1
(12) W; = W[—?% + 2uq + uy — ug] +1
0%u 1

(13) W; = W [—Ug + QU7] +1

0? 1
(14) ayu; = W [*Ug + 2’LL2 —u; — Ug + 2’UJ5 — U4] +1

0? 1
(15) Wu;:W[*U6+2U57U47U9+2’UJ87U7]+1

0%u 1

(16) W; = ﬁ [—’LLQ + 2“8 — ’LL7] +1

(92163 1
(17) o ~ o [—25 4+ 2ug — up — 50 + 2ug — us) + 1

8%6 1
(18) TyQ:ﬁ[—50+2U6—U5—75+2UQ—U8}+1

82u9 1
(19) W:W[—mwug—uﬁz><75—50]+1
Again, we consider the Crank-Nicholson Scheme when y is independent variable
0%u 1

(20) a7 gz Wit = 2 o1+ Ui = 2uigg F Ui o]

Substitute equations (9) and (10) into (8) is given by
(21) Uiy — Wi U1+ QUi a1 — Uit i1 1+ U1+ Uig,j—1 = 2R f (2, Y)

Now, apply the boundary condition fori,j=1,2,3.....N and obtain the system of ODEs. Considering nodes
(1,2), (1,3), (2,1), (2,2), (2,3) and (3,1), (3,2), (3,3), then the equation (21) becomes

—ug1 — 4ur1 +ug + 2ug 2 — ur 2+ up + Ut + U2 = 2(-125)2
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(22) duy + ug + ug — 2uz = 2(.125)*

(23) uy + ug — 4ug — us — uy + 2ug = 2(.125)2

(24) Uy + us — dur — ug + 100 — 25 = 2(.125)°

(25) uy — dug — ug + ug — us + 2ug = 2 (.125)°

(26) Uo + uz + ug — 4us — ug + uy — ug + 2ug = 2 (.125)2
(27) us + ug + uy — dug — ug + 2 X 75 — 50 + 25 = 2 (.125)?
(28) Uy — Aus + us — ug — 25 + 2 x 50 = 2(.125)°

(29) us + us — dug + ug — ug — 50 + 2 X 75 + 25 = 2(.125)°
(30) ug + us — Aug — 75 + 0 — 75 + 50 + 50 = 2(.125)?

The above equations represent a system of ODEs. By considering Matlab code the required solution for the
system of ODEs is given by

U = [ -10.4132, 20.8238, 13.1834, 20.8238, -0.0182, 43.0405, 13.1834, 43.0405, 9.0124] Substitute the above
solution in equations (11) given by

P 1 [0.0041 — .0012 — .0082] + 1
oy?  2(.125)2° ' '

By integrating on both sides,
g = —0.4152y% + 1y + ¢
Applying the boundary condition and using the solution of the system of equations, the required solution
is given by
(31) u; = —0.4152y% 4 0.1038y — 10.4651

Similarly, substitute the above solution and apply the boundary conditions in equations (12)-(19), the final
solutions are given by

(32) us = 0.1944y — 0.072896y + 20.829874

(33) us = —1198.895y° + 449.634Ty — 24.294338

(34) ug = 0.1731y% — 0.108186y + 20.785935
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(35) us = 0.6267y2 + 0.391685y — 0.15529
(36) ug = —2002.7163y> + 1251.69y — 144.7122
(37) uy = 0.6971y? — 0.2614y + 13.1834
(38) ug = 0.63782y% — 0.239182y + 43.0405
(39) ug = 400.905y% — 150.339375y + 9.0124

FIGURE 4. Illustration of numerical solutions to the 2D Poisson Equation using the Method
of Lines (MOL) and Crank-Nicolson Method (CNM

4. DISCUSSIONS

In this study, we provide a basic introduction of the Method of Lines (MOL) and the Crank-Nicholson
method (CNM) for solving elliptic partial differential equations (PDEs). The graph in Figure 4 represents the
numerical solution of the Poisson equation using the Method of Lines (MOL) and Crank-Nicolson Method
(CNM).
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5. CONCLUSION

In this paper we have introduced method of lines and CNM to implementations of numerical methods
for solving 2D Poisson equation with initial and Dirichlet boundary conditions. Other types of boundary
conditions and right-hand side function of the Poisson equation could be considered to solve the same
problem using method of lines. Number of physical problems have irregularly shaped boundaries and
boundary conditions are expressed using derivatives. Boundary conditions which are expressed using dif-
ferential equations are difficult to handle using implicit finite difference techniques because each boundary
condition involving a derivative must be approximated by a difference quotient at the grid points. The re-
sult of this method is illustrated by the availability of high-quality numerical algorithms for the solution of
systems of ODEs. This study, illustrate the MOL approach for solving the two-dimensional Poisson equa-
tion with boundary condition. The numerical results confirmed the efficiency, reliability and accuracy of
this procedure and this auspicious performance is achieved with very little increased computational effort.
Therefore, it was concluded that the use of MOL along with CNM in the numerical solution for the Poisson
equation and other partial differential equations is a very efficacious and adequate procedure.
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