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ROTATIONAL SURFACES IN TERMS OF COORDINATE FINITE CHEN II-TYPE

HAMZA ALZAAREER AND HASSAN AL-ZOUBI∗

ABSTRACT. In this study, we first establish several formulae according to the first and second Beltrami operators.
We discuss the class of surfaces of revolution in the 3-dimensional Euclidean space E3 without parabolic points,
in which the position vector X satisfies ∆IIX = DX , with ∆II is the Laplace operator of the metric II of the
surface and D is a square matrix of order 3. We prove that surfaces satisfying the preceding relation are either
part of a sphere or catenoid.

1. INTRODUCTION

Surfaces of finite type are one of the main topics that attracted the interest of many differential geometers
from the moment that B. Y. Chen defined the notion of surfaces of finite I-type regarding the first funda-
mental form I about four decades ago. Many results concerning this subject have been collected in [15].

Let X : M2 → E3 be a parametric representation of a surface in E3. Denote by ∆I the Laplace operator
and by H the mean curvature field of M2. Then, it is well known that [14]

∆IX = −2H.

Furthermore, T. Takahashi mentioned in [25] that a surface M2 whose position vector z satisfies ∆IX =

λX is either a minimal with λ = 0 or M2 lies in an ordinary sphere S2 with a fixed nonzero eigenvalue.
In [19], O. Garay extended T. Takahashi’s condition. Specifically, he studied surfaces in E3 satisfying

∆IXi = µiri, i = 1, 2, 3, with different eigenvalues µi, and (r1, r2, r3) are the coordinate functions of z.
Another general problem was also presented in [17] for which surfaces inE3 satisfying ∆IX = KX+L(§),
where K ∈ M(3 × 3);L ∈ M(3 × 1). It was proved that minimal surfaces, spheres, and circular cylinders
are the only surfaces in E3 satisfying (§). Surfaces satisfying (§) are said to be of coordinate finite type.

In the framework of the theory of surfaces of finite I-type in E3, a general study of the Gauss map was
made within this context in [16]. On the other hand, it is also interesting to study surfaces of finite I-type in
E3 with the property ∆IG = DG, where D ∈M(3×3). Surfaces in E3 whose Gauss map is of a coordinate
finite I-type was investigated by many researchers as one can see in [4, 6–11, 18].

In 2003 authors in [24] followed the ideas of B. Y. Chen, by defining the concept of surfaces of finite type
regarding the second or third fundamental forms, and since then much work has been done in this context.

Similarly, one can further study surfaces in E3 with the position vector z satisfies

(1.1) ∆JX = DX,
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where J = II, III , and D ∈M(3× 3).
Regarding the third fundamental form, it was proved that helicoid is the only ruled surface that satisfies

(1.1). Meanwhile, for the quadric surfaces, spheres are the only ones with the given property [1]. In [2] it
was shown that Scherk’s surface is the only translation surface that satisfies (1.1).

In [23], Bendiheba and Bekkar studied the helicoidal surfaces in E3 satisfying ∆JX = DX, J = II, III .

2. FUNDAMENTALS

Let X := X(u1, u2) be a regular parametric representation of a surface Q in E3, and let

I = gkm dukdum, II = bkm dukdum, III = ekm dukdum, k,m = 1, 2.

For any two differentiable functions f and h on Q, the first and second differential parameters of Beltrami
are defined by [20]

(2.1) ∇J(f, h) := akmf/kh/m,

(2.2) 4Jh := −akm∇J
kh/m = − 1√

|a|
∂h

∂uk
(
√
|a|akm ∂h

∂um
),

where h/k := ∂h
∂uk , (akm) denotes the components of the inverse tensor of (gkm), (bkm) and (ekm) for J =

I, II , and III respectively, a = det(akm), and∇J
k is the covariant derivative in the uk direction.

The Gauss and the mean curvature of Q are respectively

(2.3) K =
1

R1R2
=

b

g
=

e

b
, 2H =

1

R1
+

1

R2
= gikbik = bikeik,

where g = det(gik), b = det(bik), e = det(eik) and R1, R2 are the principal radii of curvature. For simplicity,
we put

(2.4) R =
2H

K
= eikbik = bikgik, Z = 4H2 − 2K = gikeik.

The Weingarten equations are

Xk = −gkjbjrG/r = −bkjejrG/r,

(2.5) Gk = −ekjbjrX/r = −bkjgjrX/r.

Following are some useful relations that will be used later

(2.6) 4IX = −2HG,

(2.7) 4IG = 2gradIH +QG,

(2.8) 4IIX =
1

2
KgradIII

1

K
− 2G,

(2.9) 4IIG =
1

2K
gradIK + 2HG,

(2.10) 4IIIX = gradIIIR−RG,
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(2.11) 4IIIG = 2G.

Let TP (Q) denote the tangent plane to Q for any point P ∈ Q. Then the Weingarten map is defined to
be the linear transformation S : TP (Q) → TP (Q), where for z = ziX/i, then S(z) = viX/i, v

i := bjkg
kizj .

When b12 = g12 = 0, we get

S(z) =
1

R1
z1X/1 +

1

R2
z2X/2.

Firstly, we recall the following:

Theorem 2.1. For a sufficient differentiable function A(u1, u2) on Q, the following relations satisfied

(1) ∇II(A,G) + gradIA = 0,
(2) ∇II(A,X) + gradIIIA = 0,
(3) ∇III(A,X) + 1

K grad
IA = R∇II(A,X),

(4) S(gradIA) +∇I(A,G) = 0.

Proof. [3, 24]
(1) From (2.1), and using the Weingarten equations (2) we obtain

gradIA := ∇I(A,X) = gikA/iXk = −A/ig
ikgkjb

jrG/r = −birA/iG/r = −∇II(A,G),

which is (1).
(2) Similarly, from (2.1), and (2) we have

∇II(A,X) = bikA/kXi = −bikbijejrA/kG/r = −ekrA/kG/r = −∇III(A,G) = −gradIIIA.

(3) Taking into consideration the well-known relation

Keik − 2Hbik + gik = 0,

then
eik = Rbik − 1

K
gik.

From (2.1), and taking into account the last equation we obtain

∇III(A,X) = eikA/kXi = (Rbik − 1

K
gik)A/kXi = R∇II(A,X)− 1

K
gradIA.

Hence
∇III(A,X) +

1

K
gradIA = R∇II(A,X).

(4) Without loss of generality, we suppose that g12 = b12 = 0, then

S(gradIA) = S(gikA/kXi) =
b11
g11

g11A/1X/1 +
b22
g22

g22A/2X/2

=
b11

(g11)2
A/1X/1 +

b22
(g22)2

A/2X/2.

On the other hand
∇I(A,G) = gikA/kGi = g11A/1G/1 + g22A/2G/2.

On account of g12 = b12 = 0, then Weingarten equations (2.5) become G/1 = b11

g11
X/1 and G/2 = b22

g22
X/2,

so the last equation become

∇I(A,G) = − b11
(g11)2

A/1X/1 −
b22

(g22)2
A/2X/2 = −S(gradIA).

�
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Denote by <,> the Euclidean inner product and w = − < X,G > the support function of Q. We prove
the following theorem

Theorem 2.2. The support function w of Q, satisfies the following relations

(1) 4Iw = Zw − 2H− < gradIH,X >,
(2) 4IIw = 2Hw − 1

2K < gradIK,X > −2,
(3) 4IIIw = 2w −R.

Proof. (1) Using (2.2),we get

4Iw = −gin∇I
nw/i = gin∇I

n <X/i,G > +gin∇I
n <X,G/i >

= < gin∇I
nX/i,G > + <X, gin∇I

nG/i > +2gin <X/i,G/n >

= − < 4IX,G > − <X,4IG > +2gin <X/i,G/n > .

From (2.3), (2.5), (2.6) and (2.7), the last equation becomes

4Iw = < 2HG,G > − <X, 2gradIH +QG > +2gin <X/i,−enjbjrX/r >

= Zw − 2H− < gradIH,X > .

(2) From (2.2),we have

4IIw = −bik∇II
k w/i = bik∇II

k <X/i,G > +bik∇II
k <X,G/i >

= < bik∇II
k X/i,G > + <X, bik∇II

k G/i > +2bik <X/i,G/k >

= − < 4IIX,G > − <X,4IIG > +2bik <X/i,G/k > .

From (2.5), (2.8) and (2.9), the last equation becomes

4IIw = − <X,
1

2K
gradIK + 2HG > − < 1

2
KgradIII

1

K
− 2G,G >

+2bik <X/i,G/k >

= 2Hw− <X,
1

2K
gradIK > +2 + 2bik <X/i,−bkjgjrX/r >

= 2Hw− <X,
1

2K
gradIK > −2.

(3) From (2.2),we have

4IIIw = −eik∇III
k w/i = eik∇III

k <X/i,G > +eik∇III
k <X,G/i >

= < eik∇III
k X/i,G > + <X, eik∇III

k G/i > +2eik <X/i,G/k >

= − < 4IIIX,G > − <X,4IIIG > +2eik <X/i,G/k > .

From (2.4), (2.5), (2.10) and (2.11), the last equation becomes

4IIIw = − < gradIIIR−RG,G > − <X, 2G > +2eik <X/i,G/k >

= R+ 2w + 2eik <X/i,−bkjgjrX/r >= 2w −R.

�

Remark 2.3. New results can be drawn by defining the first and second Beltrami operators using the defini-
tion of the fractional vector operators [22]. Some applications can be found in [12, 13].
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In the next paragraph, we mainly focus on surfaces of finite II-type by studying surfaces of revolution
in E3 of which their position vector z satisfies the relation

(2.12) ∆IIX = DX.

Our main result is the following:

Theorem 2.4. The only surfaces of revolution in E3 whose position vector z satisfies relation (2.12) are the spheres
and the catenoids.

Firstly, we show that the mentioned surfaces in the abstract indeed satisfy (2.12). Consider a sphere Q of
radius c centered at the origin. Then

K =
1

c2
, G = −1

c
X.

Hence, by (2.8) it is ∆IIX = 2
cX . Therefore, Q satisfies (2.12) with D = 2

c I3, where I3 is the identity
matrix. On a catenoid, a parametric representation is the following

S : X(u, v) = (c cosh
u

c
cos v, c cosh

u

c
sin v, u),

where u ∈ [−π, π), v ∈ R and c is a non-zero real constant. Let (X1, X2, X3) be the component functions of
X . Thus we have

X1 = c cosh
u

c
cosv, X2 = c cosh

u

c
sinv, X3 = u.

We also have

b11 =<Xuu,G >= −1

c
, b12 =<Xuv,G >= 0, b22 =<Xvv,G >= c,

It is well-known that

(2.13) ∆IIX = (∆IIX1,∆
IIX2,∆

IIX3).

Hence, by (2.2) and taking into account (2.13), we obtain

∆IIX1 = 2 cosh
u

c
cos v, ∆IIX2 = 2 cosh

u

c
sin v, ∆IIX3 = 0.

So Q satisfies (2.12) with corresponding matrix

D =


2
c 0 0

0 2
c 0

0 0 0

 .
3. PROOF OF MAIN RESULT

Let C be a smooth curve lies on the x1x3-plane parametrized by

r(u) = (p(u), 0, q(u)), u ∈ (a, b),

where p, q are smoothly defined and p > 0. A surface of revolution is the point set Q that results When C

is revolved about the x3-axis. So, the x3-axis is called the axis of revolution of Q and C is called the profile
curve of Q (see [5, 21]).

The position vector of Q is defined as follows

(3.1) X(u, v) =
(
p(u) cos v, p(u) sin v, q(u)

)
, u ∈ (a, b), 0 ≤ v < 2π.

Here, we may consider that C has the arc-length parametrization, i.e., it satisfies

(3.2) (p′)2 + (q′)2 = 1
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where ′ := d
du . On the other hand p′q′ 6= 0, because if p = const. or q = const., then Q is a circular cylinder or

a plane, respectively. Hence the Gaussian curvature of Q vanishes. A case that has been excluded.
We have

Xu = (p′(u) cos v, p′(u) sin v, q′(u))

and
rv = (−p(u) sin v, p(u) cos v, 0) .

Then the components gkm are computed as follows

g11 =<Xu,Xu >= 1, g12 =<Xu,Xv >= 0, g22 =<Xv,Xv >= p2.

The mean and the Gaussian curvature of Q are respectively

2H = κ+
q′
p
, K =

κq′
p

= −p′′
p
,

where κ denotes the curvature of the curve C.
The components bkm are given as follows

(3.3) b11 = κ, b12 = 0, b22 = pq′.

From (2.2) and (3.3) the Beltrami operator ∆II is

∆II = − 1

κ

∂2

∂u2
− 1

pq′
∂2

∂v2
+

1

2

(
κ′
κ2
− p′q′+ κpp′

κpq′

)
∂

∂u
.(3.4)

On account of (3.2) we can put
p′ = cos ξ, q′ = sin ξ,

where ξ = ξ(u). Then κ = ξ′ and relation (3.4) becomes

∆II = − 1

ξ′
∂2

∂u2
− 1

p sin ξ

∂2

∂v2
+

1

2

(
ξ′′

(ξ′)2
− cos ξ sin ξ + pξ′ cos ξ

pξ′ sin ξ

)
∂

∂u
,(3.5)

while the mean and the Gaussian curvature become

(3.6) 2H = ξ′+ sin ξ

p
,

(3.7) K =
ξ′ sin ξ
p

.

Let X = (X1, X2, X3). Then from (2.13) and (3.5), we get

(3.8) ∆IIX1 = ∆II(p cos v) =

(
sin ξ +

1

sin ξ
− H cos2 ξ

ξ′ sin ξ
+
ξ′′ cos ξ

2ξ′2

)
cos v,

(3.9) ∆IIX2 = ∆II(p sin v) =

(
sin ξ +

1

sin ξ
− H cos2 ξ

ξ′ sin ξ
+
ξ′′ cos ξ

2ξ′2

)
sin v,

(3.10) ∆IIX3 = ∆III(q) = −3

2
cos ξ +

ξ′′ sin ξ
2ξ′2

− sin ξ cos ξ

2pξ′
.

LetD = (dkm), k,m = 1, 2, 3, . By using (3.8), (3.9) and (3.10) then relation (2.12) analyzed to the following
system

(3.11)
(

sin ξ +
1

sin ξ
− H cos2 ξ

ξ′ sin ξ
+
ξ′′ cos ξ

2ξ′2

)
cos v = d11p cos v + d12p sin v + d13q,
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(3.12)
(

sin ξ +
1

sin ξ
− H cos2 ξ

ξ′ sin ξ
+
ξ′′ cos ξ

2ξ′2

)
sin v = d21p cos v + d22p sin v + d23q,

(3.13) −3

2
cos ξ +

ξ′′ sin ξ
2ξ′2

− sin ξ cos ξ

2pξ′
= d31p cos v + d32p sin v + d33q.

From (3.13) it can be easily verified that d31 = d32 = 0. Differentiating (3.11) and (3.12) twice with respect
to v we obtain (

sin ξ +
1

sin ξ
− H cos2 ξ

ξ′ sin ξ
+
ξ′′ cos ξ

2ξ′2

)
cos v = d11p cos v + d12p sin v,(

sin ξ +
1

sin ξ
− H cos2 ξ

ξ′ sin ξ
+
ξ′′ cos ξ

2ξ′2

)
sin v = d21p cos v + d22p sin v.

Thus d13q = d23q = 0, so that d13 and d23 vanish. Equations (3.11), (3.12) and (3.13) are equivalent to the
following

(3.14)
(

sin ξ +
1

sin ξ
+
ξ′′ cos ξ

2ξ′2
− H cos2 ξ

ξ′ sin ξ

)
cos v = d11p cos v + d12p sin v,

(3.15)
(

sin ξ +
1

sin ξ
+
ξ′′ cos ξ

2ξ′2
− H cos2 ξ

ξ′ sin ξ

)
sin v = d21p cos v + d22p sin v,

(3.16) −3

2
cos ξ +

ξ′′ sin ξ
2ξ′2

− sin ξ cos ξ

2pξ′
= d33q.

The functions sin v, cos v are linearly independent of the variable v, so finally we get d11 = d22 and
d12 = d21 = 0. Let d11 = d22 = λ and a33 = µ. Then the system of equations (3.14), (3.15) and (3.16) reduces
to the following two equations

(3.17) sin ξ +
1

sin ξ
+
ξ′′ cos ξ

2ξ′2
− H cos2 ξ

ξ′ sin ξ
= λp,

(3.18) −3

2
cos ξ +

ξ′′ sin ξ
2ξ′2

− sin ξ cos ξ

2pξ′
= µq.

Therefore the matrix D for which condition (2.12) is satisfied becomes

D =

 λ 0 0

0 λ 0

0 0 µ

 .
We distinguish the following cases:
Case I. λ = µ = 0. Equations (3.17) and (3.18) become

(3.19) sin ξ +
1

sin ξ
+
ξ′′ cos ξ

2ξ′2
− H cos2 ξ

ξ′ sin ξ
= 0,

(3.20) −3

2
cos ξ +

ξ′′ sin ξ
2ξ′2

− sin ξ cos ξ

2pξ′
= 0.

Multiplying (3.19) by sin ξ and (3.20) by− cos ξ and adding the resulting of these two equations it follows
cos2 ξ + sin2 ξ = −1, which is a contradiction.

Case II. λ = µ 6= 0. Equations (3.17) and (3.18) become

(3.21) sin ξ +
1

sin ξ
+
ξ′′ cos ξ

2ξ′2
− H cos2 ξ

ξ′ sin ξ
= λp,
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(3.22) −3

2
cos ξ +

ξ′′ sin ξ
2ξ′2

− sin ξ cos ξ

2pξ′
= λq.

Similarly, multiplying (3.21) by sin ξ and (3.22) by− cos ξ and adding the resulting of these two equations
whence it follows

λp sin ξ − λq cos ξ = 2.

On differentiating the last equation with respect to u we find

λξ′(pp′+ qq′) = 0.

λξ′ cannot be equal 0 otherwise, from (3.7) the Gauss curvature vanishes. Hence, pp′ + qq′ = 0, i.e.
(p2 + q2)′ = 0. Therefore (p2 + q2)′ = const.. Thus C is part of a circle and Q is obviously part of a sphere.

Case III. λ 6= 0, µ = 0. Following the same procedure as in Case I and Case II , we get

(3.23) 2− λp sin ξ = 0.

Differentiating (3.23) with respect to u we have

(3.24) (sin ξ + pξ′) cos ξ = 0.

Taking into account relation (3.6), equation (3.24) becomes

2Hp cos ξ = 0

which implies that the mean curvature H vanishes identically. Therefore, the surface is minimal, that is, it
is a catenoid. Furthermore, a catenoid satisfies the condition (2.12).

Case IV. λ = 0, µ 6= 0. In this case (3.17) and (3.18) are given respectively by

(3.25) sin ξ +
1

sin ξ
+
ξ′′ cos ξ

2ξ′2
− H cos2 ξ

ξ′ sin ξ
= 0,

−3

2
cos ξ +

ξ′′ sin ξ
2ξ′2

− sin ξ cos ξ

2pξ′
= µq.

Following the same procedure as in Case I and Case II , we find

(3.26) 2 + µq cos ξ = 0.

Differentiating this equation we have

(3.27) qξ′ − cos ξ = 0,

from which

(3.28) ξ′ = cos ξ

q
.

Another differentiation of (3.27), gives

(3.29) 2ξ′ sin ξ + qξ′′ = 0.

From (3.28) and (3.29), we have

(3.30) ξ′′ = −2 sin ξ cos ξ

q2
.

Equation (3.25) can be written

(3.31) 1 + sin2 ξ +
ξ′′ cos ξ sin ξ

2ξ′2
− 1

2
cos2 ξ − cos2 ξ sin ξ

2pξ′
= 0.
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Consequently, from (3.26), (3.28) and (3.30), equation (3.31) becomes

2− cos2 ξ +
2 sin ξ

µp
= 0,

from which

(3.32) µp =
2 sin ξ

cos2 ξ − 2
.

Differentiating (3.32), we get

µ =
2ξ′

cos2 ξ − 2
+

4ξ′ sin2 ξ

(cos2 ξ − 2)2
.

On using (3.28) and (3.26) after some computation, we can obtain that sin ξ = 0, that is, q = const.,
which implies that the Gauss curvature vanishes. A case that was excluded. Thus, there are no surfaces of
revolution satisfying this case.

Case V. λ 6= µ and λ 6= 0, µ 6= 0. Multiplying (3.21) by sin ξ, and (3.22) by − cos ξ and adding the resulting
equations, we obtain

(3.33) λp sin ξ − µq cos ξ = 2.

We put

(3.34) Ω := λp sin ξ + µq cos ξ.

By using (3.33), the derivative of Ω is the following

(3.35) Ω′ = λ cos2 ξ + µ sin2 ξ − 2ξ′.

On differentiating (3.33) and using (3.34) we find

(3.36) Ωξ′ = (µ− λ) cos ξ sin ξ.

It is easily verified that Ω 6= 0, hence (3.36) can be written

(3.37) ξ′ = (µ− λ) cos ξ sin ξ

Ω
.

Differentiating the last equation and using (3.35) and (3.36) we obtain

(3.38) ξ′′ =
(
(λ− 2µ) sin2 ξ + (µ− 2λ) cos2 ξ

)
ξ′+ 2ξ′2

Ω
.

In view of (3.37) and (3.38) relation (3.18) takes the following form

Ω cos ξ

p
+

2(λ− µ) cos ξ sin ξ

Ω
− 2µ(λ− µ)q cos ξ − (λ− 2µ) = 0,

which can be rewritten
Ω cos ξ

p
+

2(λ− µ) cos ξ sin ξ

Ω
− 2µ(λ− µ)q cos ξ − (λ− 2µ) = 0.

Multiplying the last equation by Ωp cos ξ, we have

2(λ− µ)p cos2 ξ sin ξ − 2µ(λ− µ)pqΩ cos2 ξ

−(λ− 2µ)Ωp cos ξ + Ω2 cos2 ξ = 0.(3.39)

From (3.33) and (3.34), it can be is easily verified that

(3.40) Ω cos ξ = λp− 2 sin ξ.

Therefore, on using (3.33) and (3.40), relation (3.39) becomes

(3.41) a1p
3 + a2p

2 + a3p+ a4 = 0,
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where here we put

a1 = λ2(µ− λ) sin ξ, a2 = λ[(2λ− µ)− 2(µ− λ) sin2 ξ],

a3 = [(µ− λ) sin2 ξ − (µ− 4λ)] sin ξ, a4 = 2 sin2 ξ.

Taking the derivative of (3.41) and then by using (3.34), (3.37) and (3.40), we obtain

(3.42) b1p
3 + b2p

2 + b3p+ b4 = 0,

where

b1 = λ2(µ− λ) sin ξ[(2λ+ µ)− (µ− λ) sin2 ξ],

b2 = 2λ[λ(2λ− µ)− (µ− λ)(3λ+ 2µ) sin2 ξ + 2(µ− λ)2 sin4 ξ],

b3 = [(8λµ− 8λ2 − µ2) + 2(µ− λ)(2µ+ λ) sin2 ξ − 3(µ− λ)2 sin4 ξ] sin ξ,

b4 = 6(µ− 2λ) sin2 ξ − 6(µ− λ) sin4 ξ.

Combining (3.41) and (3.42) we conclude that

(3.43) c1p
2 + c2p+ c3 = 0,

where

c1 = a1b2 − a2b1 = λ[2(µ− λ)2 sin4 ξ − 3µ(µ− λ) sin2 ξ − µ(2λ− µ)],

c2 = a1b3 − a3b1 = 2[−(µ− λ)2 sin4 ξ

+(µ+ 2λ)(µ− λ) sin2 ξ + λ(3µ− 8λ)] sin ξ,

c3 = a1b4 − a4b1 = [−4(µ− λ) sin4 ξ + 4(µ− 4λ) sin2 ξ].

Taking the derivative of (3.43) and then by using (3.34), (3.37) and (3.40), we obtain

(3.44) d1p
2 + d2p+ d3 = 0,

where

d1 = −4λ(µ− λ)3 sin6 ξ +

2∑
i=0

D1i(λ, µ) sin2i ξ,

d2 = 5(µ− λ)3 sin7 ξ +

2∑
i=0

D2i(λ, µ) sin2i+1 ξ,

d3 = 10(µ− λ)2 sin6 ξ +

2∑
i=1

D3i(λ, µ) sin2i ξ,

and Dji(λ, µ), (j = 1, 2, 3) are polynomials in λ and µ. Combining (3.43) and (3.44) we find that

(3.45) e1p+ e2 = 0,

where

e1 = c1d2 − c2d1 = 2(µ− λ)5 sin10 ξ +

4∑
i=0

E1i(λ, µ) sin2i ξ,

e2 = c1d3 − c3d1 = 20(µ− λ)4 sin9 ξ +

3∑
i=0

E2i(λ, µ) sin2i+1 ξ,

and Eji(λ, µ), (j = 1, 2) are some polynomials in λ and µ. Following the same procedure by taking the
derivative of (3.45) and taking into account (3.34), (3.37) and (3.40), we find

(3.46) h1p+ h2 = 0,
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where

h1 = −20(µ− λ)6 sin12 ξ +

5∑
i=0

H1i(λ, µ) sin2i ξ,

h2 = −184(µ− λ)5 sin11 ξ +

4∑
i=0

H2i(λ, µ) sin2i+1 ξ,

and Hji(λ, µ), (j = 1, 2) are polynomials in λ and µ. Combining (3.45) and (3.46) we finally find

(3.47) 32(µ− λ)10 sin20 ξ +

9∑
i=0

Pi(λ, µ) sin2i ξ = 0.

where Pi(λ, µ), (i = 1, 2, ..., 9) are polynomials in λ and µ. Equation (3.47) is equal to zero for every ξ, hence
all its coefficients must be zero. A contradiction, since we must have µ− λ = 0. Consequently, there are no
surfaces of revolution in this case. Thus our proof is completed.
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