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NUMERICAL SOLUTION OF THE FRACTIONAL DYNAMICS OF A SURFACE ENERGY
BALANCE-MASS BALANCE MODEL OF CRYOSPHERE

MULUALEM AYCHLUH

Abstract. In the present task, the dynamics of Cryosphere is represented based on the modified Caputo-Fabrizio

fractional derivative. A numerical scheme based on the fifth-order fractional Adams-Bashforth approach is ap-

plied to the dynamical system of the proposed model. The nonlinear system of differential equations of arbitrary

order in the model is described by the modified Caputo-Fabrizio fractional operator, and the model has been

checked for non-zero outcomes under the non-singular fractional operator. Existence and uniqueness of the

given fractional model is discussed. The scheme’s stability analysis is checked. All model findings are sketched

with the application of MATLAB R2016a mathematical software. The novelty of this work lies in using fractional

order five-step Adams-Bashorth method in order to approximate the surface energy balance-mass balance frac-

tional model of the Cryosphere. We represent the system using Caputo-Fabrizio fractional differential equations.

1. Introduction

Scientific models have played an important role in addressing numerous challenges across various sci-
entific disciplines such as climate science, engineering, mathematics, and physics [1]. The models assist
policymakers in making excellent decisions by offering deeper insights and advice [2]. In recent time, cli-
mate change has become one of the biggest issue of our planet. In every single day, the influences of climate
change are now clearly seen by everyone all over the world.

With the help of mathematical models, more accurate future directions can be made about our planet
phenomena. Creating and solving mathematical models are the primary responsibility of different re-
searchers because of their massive importance. The representation of the full range of dynamical systems,
involving memory effects, is a significant obstacle for mathematical modeling approaches. In order to get
over this challenge, investigators have began using fractional operators [3, 4], which present a promising
mathematical tool for strengthening these dynamical models. Nowadays, arbitrary order calculus has at-
tracted the science community because of its huge significance in climate, biological, ecological, financial,
and physical sciences. The use of arbitrary-order derivative and integration in mathematical modeling is
relatively novel and has gained popularity in recent years. The non-integer order calculus is a generalized
form of the old integer order calculus. The prime feature of the mathematical models with non-integer
order differential equations is their non-local behavior, due to which they can represent physical processes
and dynamical systems more precisely than the integer-order models.
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Currently, systems of fractional differential equations are in use to represent many true life issues. The
nonlinear problems can be successfully modeled by a system of arbitrary order differential equations. Ob-
taining exact results of system of differential equations involving nonlinear terms can be highly difficult,
so we need to search approximation techniques for finding numerical values. A lot of numerical schemes
for obtaining approximate results of non-integer order differential equations have been created. Some
of the methods are the multi-step method [5], the collocation method [6], the Adomian decomposition
method [7], an exponential Galerkin method [8], an exponential collocation method [9], the Galerkin finite
element method [10], Laguerre spectral collocation method [11] and so on. The methods are based on dis-
cretization of the independent variables and include modifications of the integer order methods. Owolabi
and Atangana in [12], have presented a novel fractional third-order A-B scheme with the Caputo-Fabrizio
non-integer order derivative. In this task, we applied the five-step fractional Adams-Bashforth scheme to
solve Cryosphere model numerically.

Very recently, the mathematical models under non-integer order derivative operators were given big
attention because they are more accurate, precise and realistic as compared to the integer order mod-
els [13,14]. It is clearly known that a non-integer order calculus is a generalization of an integer-order calcu-
lus. The extremely significant question that led to the birth of non-integer-order calculus in 1695 came from
a letter that L’Hopital sent to Leibniz. The respected mathematicians Euler, Fourier, Riemann-Liouville,
Caputo, Caputo-Fabrizio, Atangana-Baleanu and Yang-Abdel-Cattani made excellent contributions to the
further progress of non-integer-order calculus. The first definition of a non-singular arbitrary order deriv-
ative by Caputo and Fabrizio made big contribution to the starting of the concept of non-singular kernel
fractional calculus. Nonlocal operators are one of the key reasons why noninteger-order calculus is be-
coming increasingly popular. Very recently, the idea of arbitrary-order non local operators has become the
main study subject in science and technology, attracting a huge number of authors. Few years ago, a lot of
attempts on target were made to find more interesting, and fresh non singular arbitrary order derivatives
based on kernels. A novel noninteger order Caputo–Fabrizio operator derived in 2015 [15] and this opera-
tor addressed several linear and nonlinear issues. In many branches of mathematics and engineering, the
Caputo-Fabrizio fractional operator is frequently used.

In recent years, a lot of world issues have been studied with the use of arbitrary order calculus [16].
Motivated by the advancement of arbitrary order calculus, many authors have focused to study the results
of dynamical systems of nonlinear differential equations with the fractional operator by developing quite
a few exact or approximate techniques to produce numerical values [17]. The main reasons given for using
non-integer order derivative models are that many systems show history, memory, or non local effects,
which can be challenging to model using integer order derivatives. Because of the singularity in the kernel
of the Caputo fractional derivative [18] at the end point of the interval of integration, the Caputo fractional
derivative is not always a suitable kernel to effectively show the memory effect in a real system. Caputo and
Fabrizio have derived a novel fractional derivative with none singularity in its kernel. The kernel of the
new fractional derivative has the form of an exponential function. Losada and Nieto [19] have proposed the
fractional integral associated with the new fractional Caputo–Fabrizio fractional derivative. The number of
recent papers have been developed with the application of the new Caputo-Fabrizio fractional operator to
tackle the world issues. For instance, Moore et al. [20] have modeled HIV/AIDS model with treatment using
a Caputo-Fabrizio fractional differential equation. A third-order Adams–Bashforth predictor scheme was
used for their numerical investigation. Atangana et al. [21] have compared the CF arbitrary positive order
derivative and the ABC derivative for delay differential equations [22] and in model of chaotic systems [21].
The Caputo-Fabrizio fractional derivative in exponential decay kernel has high memory properties than the
power law kernel while the Atangana–Baleanu fractional derivative provides a nice description. There are
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many modified form of arbitrary order calculus; the reason why we choose the modified Caputo-Fabrizio
fractional operator is this operator is very suitable in the formulation of the fifth-step fractional Adams-
Bashforth scheme. The present work focuses on the dynamics of Cryosphere model in frame of the modified
Caputo-Fabrizio non-integer order derivative operator, which is a modified version of the Caputo-Fabrizio
fractional derivative operator by Losada and Nieto.

One of the biggest phenomenon that has attracted the attention of a lot of investigators in the recent
decades is a climate change. Every single activity in this planet depends on climate condition. Human
activities have a vital role in climate change. The Cryosphere, which refers to the frozen water part of
the earth system, includes ice sheets, glaciers, sea ice, and permafrost [23]. The connection between the
Cryosphere’s mass balance and surface energy balance in nonlinear model was suggested by the authors
in [24]. Due to a number of importance of Cryosphere model, it has taken big attention from investigators,
and many significant results on this popular model by taking into account various parameters have also
been obtained. For example; Chakraborty et al. in [25] considered the Caputo fractional order system of
Cryosphere model to observe the minute changes in the behavior of the system. They looked at the effect of
climate change on the dynamics of a modified surface energy balance-mass balance model of Cryosphere
under the frame of a non-local operator. In dimensionless excess variables, Nicolis in [26], expressed the
Cryosphere dynamical model by the following system of two equations:

(1.1)


ds
dt

= η,

dη

dt
= αη+ βs − s3 − s2η+ γ sin(δt) .

Authors of [25], have observed the effect of global warming on model (1.1). They reformulated the system
(1.1) by including the radiative forcing of CO2 to capture the impact of global warming and the model
equations are represented using Caputo fractional differential equations. The model is given next:

(1.2)


C
0D

℘
t s (t) = η,

C
0D

℘
t η (t) = αη+ βs − s3 − s2η+ γ sin(δt) +F.

Very recently, the fractional derivative has become popular for several researchers in mathematics and
technology areas. Due to excellent characteristics of non-singular fractional operator, a fractional class
of Cryosphere model Eq. (1.2) is considered by replacing the singular Caputo time fractional derivative
equations so that the Caputo-Fabrizio model takes the following form:

(1.3)


CF
0 D

℘
t S (t) = η,

CF
0 D

℘
t η (t) = αη+ βS − S3 − S2η+ γ sin(δt) +F.

Authors of [25] stated that no significant work has yet been done on the Cryosphere model (1.1) and
they focused on modification and solving the system. They used the fractional seventh order Runge-Kutta
method to numerically solve their model. This motivated us to test the five-step fractional A-B numeri-
cal technique for the modified model. The primary goal of this manuscript is to discuss a fractional fifth
order A-B approach to know about the numerical and graphical behavior of the nonlinear fractional math-
ematical model. The novelty of this work lies in using fractional order five-step A-B scheme in order to
approximate the fractional model of the Cryosphere. We represent the system using Caputo-Fabrizio frac-
tional differential equations. To the best of the our knowledge, the proposed scheme have not been used
yet for the solution of the time-fractional Cryosphere model.
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The following is an outline of this paper: In Section 2, the definitions of Caputo-Fabrizio fractional de-

rivative and integration are written. Numerical approximation based on five-step Adams-Bashforth scheme

for fractional Cryosphere model including the radiative forcing of CO2 gas found in Section 3. Section 4

contains the discussion of the results. Finally, the paper ends in Section 5.

2. Preliminaries

In the 2015s, Caputo and Fabrizio introduced a fresh definition of non-singular fractional derivative and
integration called Caputo-Fabrizio fractional calculus of exponential decay law kernel. This definition was
able to overcome a prominent limitation of the singular kernel Caputo definition of fractional calculus [15].
Definition 1. For ℘ ∈ (0, 1), and m (t) ∈H1 (a, b), the C-F fractional derivative of order ℘ [15] is defined as:

(2.1) CFD
℘
t m (t) =

β (℘)
1−℘

∫ t

a
m′ (χ)exp

(
−℘ t −χ

1−℘

)
dχ.

where β (℘) is the normalization function satisfied β (0) = β (1) = 1. However, if m <H1 (a, b), then the derivative
is defined as [20]:

(2.2) CFD
℘
t m (t) =

℘β (℘)
1−℘

∫ t

a
{m (t)−m (χ)}exp

(
−℘ t −χ

1−℘

)
dχ.

Remark 1. ( [20]) If we let ς =
1−℘
℘
∈ (0, ∞), then ℘ =

1
1 + ς

∈ (0, 1). In consequence, Eq. (2.2) can be reduced

to:

(2.3) CFD ς
t m (t) =

ψ (ς)
ς

∫ t

a
m′ (χ)exp

(
− t −χ

ς

)
dχ.

where ψ (ς) is the normalization term corresponding to β (℘) such that ψ (0) = ψ (∞) = 1.

Remark 2. ( [20]) We have the following property:

(2.4) lim
ς→0

1
ς

exp
(
− t −χ

ς

)
= δ (χ − t) ,

where δ (χ − t) is the Dirac delta function.

The updated version of Caputo-Fabrizio fractional derivative and integration defined by Losada and Nieto
[19] are given next.

Definition 2. For 1 > ℘ > 0, and m (t) ∈H1 (a, b), the C–F fractional derivative of order ℘ modified by Losada
and Nieto is defined as

(2.5) CFD
℘
t m (t) =

(2−℘)β (℘)
2(1−℘)

∫ t

a
m′ (χ)exp

(
−℘ t −χ

1−℘

)
dχ.

The fractional integral corresponding to the derivative in Eq. (2.5) was defined by Losada and Nieto [19] as
follows.

Definition 3. Let 1 > ℘ > 0, The fractional integral of order ℘ of a function m (t) is defined by

(2.6) CFI℘t m (t) =
2(1−℘)

(2−℘)β (℘)
m (t) +

2℘
(2−℘)β (℘)

∫ t

0
m (χ)dχ.

where β (℘) =
2

2−℘
, ℘ ∈ (0, 1) ( see [20], page 4).
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Qualitative analysis. A very important part of mathematical analysis, that ensures that problems have
clearly defined results, appropriate computations, and enables futures, is demonstrating the existence and
oneness of a result. Here, with the help of Banach fixed-point theorem and Picard’s operator, we need to
show that the result of the system (1.3) exists and is one.

Theorem 2.1. In the region [0, T ]×S , where

S =
{
(s, η) ∈R2 : ‖s‖ < ρ1, ‖η‖ < ρ2

}
,

and T < +∞, the result of the system (1.3) exists and is one.

Proof. We consider S (t) =
{
s (t) , η (t)

}
and S1 (t) =

{
s1 (t) , η1 (t)

}
and C (t, S) = {C1 (t, S) , C2 (t, S)}, where

C1 (t, S) = η,

C2 (t, S) = αη+ βs − s3 − s2η+ γ sin(δt) +F.

Here, C is defined on [0, T ]×S .
Let K = supS ‖C (t, S)‖ and consider the norm as ‖S (t)‖ = supt∈[0, T ] |S (t) |. We show that there exists

some constant ϕ such that
‖C (t, S)−C (t, S1)‖ ≤ ϕ‖S − S1‖.

Now,
‖C (t, S)−C (t, S1)‖ = ‖η−η1 +α (η−η1) + β (s − s1) + s31 − s

3 + s21η1 − s2η‖.

Applying the triangular inequality, we have:

≤ ‖η−η1‖+α‖η−η1‖+ β‖s − s1‖+ ‖s3 − s31‖+ ‖s2η− s21η1‖

≤
(
β+ 3ρ2

1 + 2ρ1ρ2

)
‖s − s1‖+

(
1 +α+ ρ2

1

)
‖η−η1‖

= ϕ1‖s − s1‖+ϕ2‖η−η1‖,

where ϕ1 = β+ 3ρ2
1 + 2ρ1ρ2, ϕ2 = 1 +α+ ρ2

1.
Let ϕ = max {ϕ1, ϕ2}. Therefore, we can write

‖C (t, S)−C (t, S1)‖ ≤ ϕ‖S − S1‖.

Using the function C and the Caputo-Fabrizio fractional integral, we can construct Picard’s operator in the
following way:

(2.7) ∆S = S (0) +CF I℘t C (t, S) , ℘ ∈ (0, 1) .

Now, we need to show that this operator maps a non-empty complete metric space to itself and also it is a
contraction map. Let

‖S − S (0)‖ ≤ λ.

By taking norm on left and right sides of Eq. (2.7), we get

‖∆S − S (0)‖ = ‖C (t, S)‖CFI℘t (1)

(2.8) ≤ K
(

2(1− υ)
(2− υ)ψ (υ)

+
2υ

(2− υ)ψ (υ)
t

)
< λ

where the last inequality holds if
2(1− υ)

(2− υ)ψ (υ)
+

2υ
(2− υ)ψ (υ)

t <
λ

K
.

Now, we derive a condition for the operator ∆ to become a contraction map. For that, we start with

‖∆S −∆S1 ≤ ‖CFI
℘
t (C (t, S)−C (t, S1))
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≤CF I℘t ‖C (t, S)−C (t, S1)‖

(2.9) ≤ ‖C (t, S)−C (t, S1)‖CFI℘t (1)

≤
(

2(1− υ)
(2− υ)ψ (υ)

+
2υ

(2− υ)ψ (υ)
t

)
ϕ‖S − S1‖.

From inequality (2.9), we conclude that ∆ is a contraction if

2(1− υ)
(2− υ)ψ (υ)

+
2υ

(2− υ)ψ (υ)
t ≤ 1

ϕ
.

So, the above condition ensures that Picard’s operator ∆ is a contraction. Hence, using the Banach Fixed-
Point Theorem, we conclude that ∆ has a unique fixed point. Therefore, the system (1.3) has solution and
is unique when

2(1− υ)
(2− υ)ψ (υ)

+
2υ

(2− υ)ψ (υ)
t ≤min

{
λ

K
,

1
ϕ

}
.

This completes the proof of existence and oneness of result of the given system. �

3. Five-step Adams-Bashforth fractional approach

In recent times, there have been a lot of novel direct techniques developed for obtaining the wide range of
nonlinear arbitrary order derivative systems that have been used as models of actual world issues. The exact
approaches include the local fractional homotopy perturbation method coupled with Laplace transform
[27], the homotopy analysis transform technique [28] and the homotopy analysis method together with
Sumudu integral transform method. In contrast, different approximate schemes for calculating numerical
values of non-integer order differential equations have been formulated. These techniques are typically
depend on discretization of the independent variable and use modifications of the integer order approaches
such as, the finite volume schemes [29], the finite element schemes [30], finite difference schemes [31] and
the Moulton-Adams-Bashforth kind corrector-predictor techniques [32]. In this work, we will apply a five-
step non-integer order A-B method to find approximate values for a mass balance-surface energy balance
fractional dynamics of Cryosphere model (1.3) under the modified Caputo–Fabrizio fractional operator.
This method is quite accurate and easy to computer programming.

Now, we first consider the general fractional differential equation with the Caputo–Fabrizio fractional
derivative. That is,

(3.1) CFD
℘
t m (t) = A (t, m (t)) ,

or equivalently, we have

(3.2)
(2−℘)β (℘)

2(1−℘)

∫ t

0
m′ (χ)exp

(
−℘ t −χ

1−℘

)
dχ = A (t, m (t)) .

Using the fractional Caputo-Fabrizio fundamental theorem of calculus, we convert Eq. (3.2) to the next
form:

(3.3) m (t) =m (0) +
2(1−℘)

(2−℘)β (℘)
A (t, m (t)) +

2℘
(2−℘)β (℘)

∫ t

0
A (χ, m (χ))dχ.

so that

(3.4) m (ti+1) =m (0) +
2(1−℘)

(2−℘)β (℘)
A (ti , m (ti)) +

2℘
(2−℘)β (℘)

∫ ti+1

0
A (t, m (t))dt,
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and

(3.5) m (ti) =m (0) +
2(1−℘)

(2−℘)β (℘)
A (ti−1, m (ti−1)) +

2℘
(2−℘)β (℘)

∫ ti

0
A (t, m (t))dt.

Thus,

(3.6) m (ti+1)−m (ti) =
2(1−℘)

(2−℘)β (℘)
[A (ti , m (ti))−A (ti−1, m (ti−1))] +

2℘
(2−℘)β (℘)

∫ ti+1

ti

A (t, m (t))dt.

We now derive a fifth-order A–B type predictor formula, by approximating the integral
∫ ti+1

ti
A (t, m (t))dt

in the above equation by the approximation
∫ ti+1

ti
Q4 (t)dt where Q4 (t) is the Lagrange interpolating poly-

nomial of degree four passing through the following five points
(ti−4, A (ti−4, m (ti−4))), (ti−3, A (ti−3, m (ti−3))), (ti−2, A (ti−2, m (ti−2))), (ti−1, A (ti−1, m (ti−1))) and
(ti , A (ti , m (ti))). That is

(3.7) Q4 (t) =
4∑
k=0

A (ti−k , m (ti−k))Lk (t) .

where the Lk (t) are the Lagrange basis polynomials on the five points (ti−4, ti−3, ti−2, ti−1, ti). Make change

of variable u =
ti+1 − t
h

, substituting for the Lagrange basis polynomials and integrating, we obtain∫ ti+1

ti

A (t, m (t))dt =
∫ 1

0

(u − 2)(u − 3)(u − 4)(u − 5)
(1− 2)(1− 3)(1− 4)(1− 5)

hA (ti , m (ti))du

+
∫ 1

0

(u − 1)(u − 3)(u − 4)(u − 5)
(2− 1)(2− 3)(2− 4)(2− 5)

hA (ti−1, m (ti−1))du

+
∫ 1

0

(u − 1)(u − 2)(u − 4)(u − 5)
(3− 1)(3− 2)(3− 4)(3− 5)

hA (ti−2, m (ti−2))du

+
∫ 1

0

(u − 1)(u − 2)(u − 3)(u − 5)
(4− 1)(4− 2)(4− 3)(4− 5)

hA (ti−3, m (ti−3))du

+
∫ 1

0

(u − 1)(u − 2)(u − 3)(u − 4)
(5− 1)(5− 2)(5− 3)(5− 4)

hA (ti−4, m (ti−4))du

=
1901h

720
A (ti , m (ti))−

1387h
360

A (ti−1, m (ti−1)) +
109h

30
A (ti−2, m (ti−2))

(3.8) −637h
360

A (ti−3, m (ti−3)) +
251h
720

A (ti−4, m (ti−4)) .

Inserting Eq. (3.8) into Eq. (3.6) and further simplification, we have the iterative formula as below:

m (ti+1)−m (ti) =
1

(2−℘)β (℘)

[
2(1−℘) +

1901h℘
360

]
A (ti , m (ti))

− 1
(2−℘)β (℘)

[
2(1−℘) +

1387h℘
180

]
A (ti−1, m (ti−1))

(3.9) +
h℘

15(2−℘)β (℘)

[
109A (ti−2, m (ti−2))− 637

12
A (ti−3, m (ti−3)) +

251
24

A (ti−4, m (ti−4))
]
.

which is the fifth-step fractional A-B scheme for the modified Caputo-Fabrizio fractional derivative. The
truncation error for the five-step formula can be estimated by using the error estimate for the Lagrange
interpolating polynomial, namely,

A (t, m (t)) =Q4 (t) +E4 (t) ,
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(3.10) E4 (t) =
A(5) (ηi , m (ηi))

5!
(t − ti) (t − ti−1) (t − ti−2) (t − ti−3) (t − ti−4) , ηi ∈ (ti−4, ti) .

Then we have∫ ti+1

ti

E4 (t)dt =
∫ ti+1

ti

A(5) (ηi , m (ηi))
5!

(t − ti) (t − ti−1) (t − ti−2) (t − ti−3) (t − ti−4)dt.

Make change of variable u =
ti+1 − t
h

⇒−hdu = dt⇒ t = ti+1 −uh

=
∫ 1

0

A(5) (ηi , m (ηi))
5!

(h−uh) (2h−uh) (3h−uh) (4h−uh) (5h−uh)hdu

=
h6A(5) (γi , m (γi))

5!

∫ 1

0
(1−u) (2−u) (3−u) (4−u) (5−u)du

=
95h6A(5) (γi , m (γi))

12(4!)
.

where γi ∈ (ti−4, ti+1) and we have used a mean value theorem to evaluate the approximate integral value.

Denoting the entire right-hand side of Eq. (3.9) by m̃i , then we have mi+1 = m̃i +
95h6A(5) (γi , m (γi))

12(4!)
.

Therefore, the local truncation error of the use of formula (3.9) is determined by

(3.11)
mi+1 − m̃i

h
=

95℘h5A(5) (γi , m (γi))
12(4!) (2−℘)β (℘)

.

3.1. Stability analysis of the scheme. Next, we examine the stability analysis of the five-step fractional
order Adams–Bashforth scheme (3.15), by considering equation

(3.12) CFD
℘
t m (t) = A (t, m (t)) .

where CFD
℘
t is the modified Caputo-Fabrizio fractional derivative operator of order ℘ modified by Losada

and Nieto [19]. Recall that

m (ti+1) =m (ti) +Af (ti , m (ti))−Bf (ti−1, m (ti−1)) +Cf (ti−2, m (ti−2))

−Df (ti−3, m (ti−3)) +Ef (ti−4, m (ti−4)) .

By using Eq. (3.12), the above equation becomes

m (ti+1) = (1 +A)m (ti)−Bm (ti−1) +Cm (ti−2)−Dm (ti−3) +Em (ti−4) .

Next, we adopt the Von-Neumann stability analysis for the terms in above equation as

m (ti+1) = m̃ (ti+1)e(i+1)s∆t , m (ti) = m̃ (ti)e
(i)s∆t

m (ti−1) = m̃ (ti−1)e(i−1)s∆t , m (ti−2) = m̃ (ti−2)e(i−2)s∆t

m (ti−3) = m̃ (ti−3)e(i−3)s∆t , m (ti−4) = m̃ (ti−4)e(i−4)s∆t .

So that

m̃ (ti+1)e(i+1)s∆t = (1 +A)m̃ (ti)e
(i)s∆t −Bm̃ (ti−1)e(i−1)s∆t

+Cm̃ (ti−2)e(i−2)s∆t −Dm̃ (ti−3)e(i−3)s∆t +Em̃ (ti−4)e(i−4)s∆t .

which reduces to

m̃ (ti+1)es∆t = (1 +A)m̃ (ti)−Bm̃ (ti−1)e−s∆t

+Cm̃ (ti−2)e−2s∆t −Dm̃ (ti−3)e−3s∆t +Em̃ (ti−4)e−4s∆t
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Further simplification and following Von-Neumann stability analysis, we arrived to the required stability
condition.

3.2. Application. Next, we use the five-step fractional A-B scheme in Eq. (3.15) to obtain numerical solu-
tions of the fractional model (1.3). For ℘ ∈ (0, 1), we can then write the system in the vector form:

(3.13) CFD
℘
t m (t) = A (t, m (t)) ,

where

(3.14) m (t) =
[
s (t) η (t)

]T
and A (t, m (t)) =

[
A1 (t, m (t)) A2 (t, m (t))

]T
.

The scalar functions A1 and A2 are defined from the right hand sides of system (1.3), that is,

A1 (t, m (t)) = η (t) ,

and
A2 (t, m (t)) = αη (t) + βs (t)− s3 (t)− s2 (t)η (t) +γ sin(δt) +F.

Applying the fractional integral in Eq. (3.2) to both sides of Eq. (3.13), we obtain

m (ti+1)−m (ti) =
1

(2−℘)β (℘)

[
2(1−℘) +

1901h℘
360

]
A (ti , m (ti))

− 1
(2−℘)β (℘)

[
2(1−℘) +

1387h℘
180

]
A (ti−1, m (ti−1))

(3.15) +
h℘

15(2−℘)β (℘)

[
109A (ti−2, m (ti−2))− 637

12
A (ti−3, m (ti−3)) +

251
24

A (ti−4, m (ti−4))
]
.

where m (t0) =
[
s (t0) η (t0)

]T
.

4. Results and Discussion

The following parameter values and initial conditions have been used for our simulations:
Starting guesses: s (0) = 1 & 2, η (0) = 2 & 4.
System parameters: α = 1.2, β = 0.4, γ = 1.4, δ = 0.7 and F = 0, 1.66, 1.89 and different values of
fractional order ℘ and h = 0.001.

1 1.1 1.2 1.3 1.4 1.5

α

-2

-1

0

1

2

3

s
(t
)

℘ = 1.00

1 1.1 1.2 1.3 1.4 1.5

α

-2

-1

0

1

2

3

s
(t
)

℘ = 0.98

Figure 1. The bifurcation diagrams about α for s (0) = 1, η (0) = 2 and β = 0.4, γ = 1.4,
δ = 0.7, F = 1.66
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For 1 ≤ α ≤ 1.5, Figure 1(a) reflects the bifurcation diagram in the α−s(t) plane when ℘ = 1.00, while Figure
1(b) shows the bifurcation diagram for ℘ = 0.98. We observe that the system (1.3) begins to exhibit chaotic
behavior at α = 1.2.

0 0.1 0.2 0.3 0.4 0.5

β

-1

-0.5

0

0.5

1

1.5

2

s(
t)

℘ = 0.90

0 0.1 0.2 0.3 0.4 0.5

β

-1

-0.5

0

0.5

1

1.5

2

2.5

3

s(
t)

℘ = 0.75

(a) (b)

Figure 2. The bifurcation diagrams about β for s (0) = 1, η (0) = 2 and α = 1.2, γ = 1.4,
δ = 0.7, F = 1.66

For 0.01 ≤ β ≤ 0.5, Figure 2(a) reflects the bifurcation diagram in the β − s(t) plane when ℘ = 0.75, while
Figure 2(b) shows the bifurcation diagram at ℘ = 0.90. As shown in Figure 3(a), the bifurcation for the
system (1.3) begins at γ = 1.4, while in Figure 3(b), the bifurcation starts at γ = 1.45.

1.3 1.35 1.4 1.45 1.5

γ

0.8

1

1.2

1.4

1.6

1.8

s(
t)

℘ = 0.90

1.3 1.35 1.4 1.45 1.5

γ

0.5

1

1.5

2

2.5

s(
t)

℘ = 1.00

(a) (b)

Figure 3. The bifurcation diagrams about γ for s (0) = 1, η (0) = 2 and α = 1.2, β = 0.4,
δ = 0.7, F = 1.66

In our fractional system (1.3), the existence of oscillatory behavior of the cryosphere chaotic system for
the above set of parametric values is observed in the following figures. The effects of changing the fractional
order ℘ on each state variable can be observed more clearly in all figures of the system.
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-3 -2 -1 0 1 2 3

s(t)

-4

-2

0

2

4

η
(t
)

℘ = 0.90

-3 -2 -1 0 1 2 3

s(t)

-4

-2

0

2

4

η
(t
)

℘ = 0.95

(a) (b)

Figure 4. Solution of (1.3) for s (0) = 1, η (0) = 2 and α = 1.2, β = 0.4, γ = 1.4, δ = 0.7, F = 0

Figure 4 and 5 are plotted for different values of fractional order ℘ = 0.95, 0.9, 0.80, 0.70.
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4

η
(t
)
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s(t)

-4

-2

0

2

4

η
(t
)

℘ = 0.80

(a) (b)

Figure 5. Solution of (1.3) for s (0) = 1, η (0) = 2 and α = 1.2 β = 0.4, γ = 1.4, δ = 0.7, F = 0

Figures (6) and (7) show graphical relations between s (t) and η (t) of the system (1.3) for different frac-
tional orders ℘ = 1.00, 0.95, 0.85, 0.80, respectively. We can confirm from these curves that the plots of
each state variable have a significance effect when a fractional order ℘ value is changed.
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Figure 6. Solution of (1.3) for s (0) = 1, η (0) = 2 and α = 1.2, β = 0.4, γ = 1.4, δ = 0.7, F =
1.66
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Figure 7. Solution of (1.3) for s (0) = 1, η (0) = 2 and α = 1.2, β = 0.4, γ = 1.4, δ = 0.7, F =
1.66

Figure 8(a) and (b) show that the three dimensional view of the system solutions and the positive time
series with respect to ℘ = 0.97 and ℘ = 0.95.
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Figure 8. 3D view of (1.3) for s (0) = 1, η (0) = 2 and α = 1.2, β = 0.4, γ = 1.4, δ = 0.7, F =
1.66
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Figure 9. Time series plots of (1.3) for s (0) = 1, η (0) = 2 and α = 1.2, β = 0.4, γ = 1.4,
δ = 0.7, F = 1.66
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Figure 10. Solution of (1.3) for s (0) = 1, η (0) = 2 and α = 1.2, β = 0.4, γ = 1.4, δ = 0.7, F =
1.89
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The effect of changing the fractional order ℘ on each state variable can be observed more clearly in all
Figures. The numerical simulations of the system in Eq. (1.3) for the radiative forcing constant F = 1.89 [33]
are shown in Figures (10)-(12).
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Figure 11. Solution of (1.3) for s (0) = 2, η (0) = 4 and α = 1.01, β = 0.1, γ = 1.4, δ = 0.9, F =
1.89
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Figure 12. Solution of (1.3) for s (0) = 2, η (0) = 4 and α = 1.01, β = 0.1, γ = 1.4, δ = 0.9, F =
1.89

5. Conclusion

This article considers a nonlinear system of the Caputo-Fabrizio fractional dynamics model of
Cryosphere with initial guesses. In the modified form of Caputo-Fabrizio fractional derivative sense, the
Cryosphere model including the radiative forcing of CO2 gas is presented as a system of differential equa-
tions, with the approximate results achieved using the fifth-order fractional Adams-Bashforth method. All
computations in this paper are done using MATLAB R2016a version of mathematical software. From the
above graphical results, the proposed scheme is highly effective and can be used to several dynamical math-
ematical models like climate system, biotherapy, HIV AIDS models, smoking models and drug targeting
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systems. In relation to the paper objectives set at the beginning of the paper, the study had successfully
provide the following conclusions:

• The previously modified model of Cryosphere is represented using non-singular kernel fractional
operator and we solved it using fractional five-step Adams-Bashforth scheme.

• The recommended method is easy to understand, and the numerical results obtained indicate that
it is very effective for solving the aforementioned mathematical models approximately as well as
for solving additional systems of differential equations.

• The scheme’s stability analysis is successfully discussed.
• The graphical solutions support our theoretical procedures.

The future work will focus on modification of this model by including different parameters to investigate
the effects of these parameters on climate change and investigating the model with the most recent frac-
tional operators and approximating by the new numerical approaches.
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