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UNCERTAINTY PRINCIPLES AND CALDERÓN’S FORMULA FOR THE MULTIDIMENSIONAL
HANKEL-GABOR TRANSFORM

AHMED CHANA∗ AND ABDELLATIF AKHLIDJ

ABSTRACT. The main crux of this paper is to introduce a new integral transform called the multidimensional
Hankel-Gabor transform and to give some new results related to this transform as Plancherel’s, Parseval’s, in-
version and Calderón’s reproducing formulas. Next, we analyse the concentration of this transform on sets of
finite measure and we give uncertainty principle for orthonormal sequences. Last, we extend the Donoho-Stark’s
uncertainty principle to the multidimensional Hankel-Gabor setting.

1. INTRODUCTION

Time-frequency analysis [13] and uncertainty principles [9, 18] play a fundamental role in field of math-
ematics and physics, these principes appear in harmonic analysis and signal theory in a various different
forms involving not only the signal f and its Fourier transform f̂ , but also every representation of a signal
in the time-frequency space.

The uncertainty principles are mathematical results that gives limitations on the simultaneous concen-
tration of a signal and its Fourier transform and they have implications in signal analysis and quantum
physics. In signal analysis they tell us that if we observe a signal only for a finite period of time, we will
lose information about the frequencies of signal consists of.

Timelimited and bound limited functions are basic tools in signal analysis and imaging processing. In
quantum physics they tell us that a particule’s speed and position cannot both of them be measured with
infinite presicion, the mathematical formulation of this principle is given by the following Heisenberg-
Pauli-Weyl sharp inequality [22], which shows that for every integrable function f we have(∫

R
x2|f(x)|2 dx

)1/2(∫
R
λ2|f̂(λ)|2 dλ

)1/2

>
1

2

(∫
R
|f(x)|2 dx

)
,

with equality if and only if f(x) = de−bx
2

for some d ∈ C and b > 0; where

f̂(λ) = 1/
√

2π

∫
R
f(x)e−ixλdx,

is the Fourier transform of f . Other uncertainty relations have been investigated among them, we refer to
the papers of Benedick’s [1], Donoho-Stark’s [5], Jaming’s [13].
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The multidimensional Bessel operator is an elliptic partial differential operator denoted by ∆α,d defined
for x = (x1, . . . , xd) ∈ Rd+, α = (α1, . . . , αd) ∈ Rd, αk > − 1

2 ; k = 1, . . . , d, by

(1.1) ∆α,d =

d∑
k=1

∂2

∂x2
k

+
2αk + 1

xk

∂

∂xk
.

The multidimensional Bessel operator (1.1) has several applications in pure and applied mathematics, es-
pecially in fluid mechanics see [6, 21]. The eigenfunctions of the operator (1.1) are related to the Bessel
functions and they satisfies a product formula which permits to develop a new harmonic analysis associ-
ated to this operator for more information we refer the reader to [2, 7, 17].
Uncertainty principles play a fundamental role in the field of mathematics, physics and some area of engi-
neering such as signal processing, image processing, quantum theory and optics see [8,13,18], in this context
using the Gabor transform introduced by Gabor, using translation, modulation and convolution operators
of a single Gaussian, the authors in [4, 23] gives a new uncertainty principles for the Gabor transform. Un-
certainty principles associated with the Gabor was studied in the one dimensional Hankel setting [1,10,11],
Opdam-Cherednik setting [16] and in the two-sided quaternion setting [5], motivated by these works the
main purpose of this work is to introduce the Gabor transform associated with the multidimensional Bessel
operator (1.1) called the multidimensional Hankel-Gabor transform and to give some new results related to
this transform as Plancherel’s, Parseval’s, inversion and Calderon’s reproducing formulas. Next, we give
some new uncertainty principles associated with this transform.
The remainder of this paper is arranged as follows, in section 2 we recall the main results concerning the
harmonic analysis associated with the multidimensional Hankel transform, in section 3 we introduce the
multidimensional Hankel-Gabor transform and we give some new results related to this transform , the last
section is devoted to analyse the concentration of the multidimensional Hankel-Gabor transform on sets of
finite measure and to give some new uncertainty principles related to this transform.

2. HARMONIC ANALYSIS ASSOCIATED WITH THE MULTIDIMENSIONAL HANKEL TRANSFORM

In this section we set some notations and we recall some results in harmonic analysis related to the multi-
dimensional Hankel transform and the Schatten-von Neumann classes, for more details, we refer the reader
to [2, 7, 17].
In the following we denote by
• Rd+ =

{
x = (x1, . . . , xd) ∈ Rd, x1 > 0, x2 > 0, . . . , xn > 0

}
, equipped with the weighted Lebesgue mea-

sure µα given by

(2.1) dµα(x) =

d∏
k=1

x2αk+1
k

2|α|Γ(αk + 1)
dxk, αk > −1/2.

• Lpα
(
Rd+
)
, 1 ≤ p ≤ ∞, the space of measurable functions f on Rd+ such that

‖f‖p,α =

(∫
Rd+
|f(x)|p dµα(x)

)1/p

<∞, p ∈ [1,∞),

‖f‖∞,α = ess sup
x∈Rd+

|f(x)| <∞

in particular for p = 2, L2
α

(
Rd+
)

is a Hilbert space with inner product defined for f, g ∈ L2
α

(
Rd+
)

by

〈f | g〉α =

∫
Rd+
f(x)g(x)dµα(x)
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• Aα
(
Rd+
)

=
{
f ∈ L1

α

(
Rd+
)

; Fα(f) ∈ L1
α

(
Rd+
)}

the Wiener algebra space, where Fα(f) is the multidi-
mensional Hankel transform of f given by (2.6).

2.1. The Eigenfunctions of the multidimensional Bessel operator. The main purpose of this subsection is
to define the eigenfunctions of the multidimensional Bessel operator ∆α,d which will be used to define the
multidimensional Hankel transform.

2.1.1. One dimensional case. For α > −1/2, the one dimensional Bessel operator is defined by

(2.2) Bα =
∂2

∂x2
+

2α+ 1

x

∂

∂x

For d ∈ N with d > 2 we have

B d−2
d

=
∂2

∂r2
+
d− 1

r

∂

∂r
,

is the radial part of the Laplace operator ∆α,d =
∑d
k=1

∂2

∂x2
k

on Rd.
We recall that the normalized Bessel function of the first kind and order α is defined on C as follows

(2.3) jα(z) = Γ(α+ 1)

+∞∑
k=0

(−1)k(z)2k

22kk!Γ(α+ k + 1)
,

we will use this function to define the eigenfunctions of the multidimensional Bessel operator.

2.1.2. The multidimensional case. Now, we consider the n-orders differential operator ∆α,d defined for x =

(x1, . . . , xd) ∈ Rd+, α = (α1, . . . , αd) ∈ Rd, αk > − 1
2 ; k = 1, . . . , d, by

∆α,d =

d∑
k=1

∂2

∂x2
k

+
2αk + 1

xk

∂

∂xk
=

d∑
k=1

Bαk ,

where Bαk is the one dimensional Bessel operator given by the relation (2.2).
One can remark that
- If αk = − 1

2 for i = 1, . . . , d then ∆α,d = ∆α =
∑d
k=1

∂2

∂x2
k

is the Laplace operator on Rd.

- If αk = − 1
2 for k = 1, . . . , d− 1 and αd > − 1

2 , then

∆α,d = ∆α =

d∑
k=1

∂2

∂x2
k

+
2αd + 1

xd

∂

∂xd
,

∆α coincides with the Weinstein operator defined on Rd+ see [6, 21].
For x, λ, we put

(2.4) ψα,d(λx) =

d∏
k=1

jαk (λkxk) ,

where jαk is the Bessel function given by (2.3), from [2, 7] we have the following results

Proposition 2.1. the function ψα(λ.) is the unique solution of the following Cauchy problem
∆αu = −‖λ‖2u,
u (0Rd) = 1,

∂
∂xi

u(x)
∣∣∣
xi=0

= 0; i = 1 . . . d,

furthermore it is infinitely differentiable on Rd+, even with respect to each variable and satisfies the following important
result, for all x, λ ∈ Rd+ we have

(2.5) |ψα,d(λx)| ≤ 1.

We will use this function to define the multidimensional Hankel transform.
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2.2. The multidimensional Hankel transform.

Definition 2.1. The multidimensional Hankel transform Fα is defined on L1
α

(
Rd+
)

by

(2.6) Fα(f)(λ) =

∫
Rd+
f(x)ψα,d(λx)dµα(x), λ ∈ Rd+1

+ ,

where µα is the measure on Rd+ given by the relation (2.1). Some basic properties of this transform are as follows, for
the proofs, we refer the reader to [2, 7].

Proposition 2.2. (1) For all f ∈ L1
α

(
Rd+
)
, the function we have

(2.7) ‖Fα(f)‖∞,α ≤ ‖f‖1,α.

(2) (Parseval’s formula) For all f, g ∈ L2
α

(
Rd+
)
, we have

(2.8)
∫
Rd+
f(x)g(x)dµα(x) =

∫
Rd+

Fα(f)(λ)Fα(g)(λ)dµα(λ)

(3) (Plancherel’s theorem) The Weinstein transform Fα extends uniquely to an isometric isomorphism on L2
α

(
Rd+
)

and we have

(2.9) ‖Fα(f)‖α,2 = ‖f‖α,2,

for all L2
α

(
Rd+
)
.

(4) (Inversion formula) Let f ∈ Aα
(
Rd+
)
, then we have

(2.10) f(λ) =

∫
Rd+

Fα(f)(x)ψα,d(λx)dµα(x), a.e. λ ∈ Rd+.

2.3. Generalized translation operator associated with the multidimensional Hankel transform.

Definition 2.2. The translation operator τxα , x ∈ Rd+ associated with the multidimensional Bessel operator ∆α,d, is
defined for a suitable function f by

τxαf(y) = c′α

∫
[0,π]d

f (X1, . . . , Xn)

d∏
i=1

(sin θi)
2αi dθ1 . . . dθd,

with c′α =
∏d
i=1

Γ(αi+1)
πd/2Γ(αi+1/2)

and Xi =
√
x2
i + y2

i − 2yixi cos θi, for i = 1, . . . , d. The following proposition
summarizes some properties of the generalized translation operator see [2, 7].

Proposition 2.3. . (1) For all x, y ∈ Rd+1
+ , we have

(1)

(2.11) τxαf(y) = τyαf(x)

(2)

(2.12)
∫
Rd+
τxα(f)(y)dµα(y) =

∫
Rd+
f(y)dµα(y).

(3) for f ∈ Lpα
(
Rd+
)

with p ∈ [1; +∞] τxα(f) ∈ Lpα
(
Rd+
)

and we have

(2.13) ‖τxα(f)‖p,α ≤ ‖f‖p,α

(4)

(2.14) Fα(τxα(f))(λ) = ψα,d(λx)Fα(f)(λ)
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By using the generalized translation, we define the generalized convolution product of f, g by

(f ∗α g) (x) =

∫
Rd+1

+

τxα(f)(y)g(y)dµα(y).

This convolution is commutative, associative and its satisfies the following properties.

Proposition 2.4. For f, g ∈ L2
α

(
Rd+
)

the function f∗αg belongs toL2
α

(
Rd+
)

if and only if the function Fα(f)Fα(g)

belongs to L2
α

(
Rd+
)

and in this case we have

(2.15) Fα (f ∗α g) = Fα(f)Fα(g)

and we have

(2.16)
∫
Rd+
|f ∗α g(x)|2 dµα(x) =

∫
Rd+
|Fα(f)(λ)|2 |Fα(g)(λ)|2 dµα(λ),

where both integrals are simultaneously finite or infinite.

3. GABOR TRANSFORM ASSOCIATED WITH THE MULTIDIMENSIONAL HANKEL TRANSFORM

The main purpose of this section is to introduce the multidimensional Hankel-Gabor transform and to give some
new results related to this transform, for one dimensional case one can see [1, 10, 11].
Notation : we denote by
• Lpα

(
R2d

+

)
, 1 ≤ p ≤ +∞ the space of measurable functions on Rd+ × Rd+ satisfying

‖f‖p,µα⊗µα :=


(∫

Rd+

∫
Rd+
|f(x, y)|p dµα(x)⊗ dµα(y)

) 1
p

, if p ∈ [1,+∞[;

ess sup |f(x, y)| if p = +∞.

(x, y) ∈ Rd+ × Rd+

Let u in L2
α

(
Rd+
)

and y ∈ Rd+, we recall that the modulation operator of u is given by

My(u) := uy := Fα

(√
τyα |Fα(u)|2

)
.

By using Plancherel’s formula (2.9) and the relation (2.12) we have uy ∈ L2
α

(
Rd+
)

and

(3.1) ‖uy‖2,α = ‖u‖2,α.

Furthermore by using inversion formula (2.10) we find the following important result

(3.2) Fα (uy) (λ) =

√
τyα
(
|Fα(u)|2

)
(λ).

Now, for every non-zero window function u in L2
α

(
Rd+
)
, we consider the family ux,y defined by

(3.3) ux,y(z) = τxα (uy) (z), ∀(x, y) ∈ Rd+ × Rd+.

Definition 3.1. For every f and u in L2
α

(
Rd+
)

we define the multidimensional Hankel-Gabor transform by

(3.4) Wu(f)(x, y) :=

∫
Rd+
f(z)ux,y(z)dµα(z),

Remark 3.1. the multidimensional Hankel-Gabor transform can be also expressed by

(3.5) Wu(f)(x, y) = (uy ∗α f) (x).

By using Hölder’s inequality and the relations (2.13),(3.1),(3.3),(3.4) we find thatWu(f) ∈ L∞α
(
R2d

+

)
and we have

(3.6) ‖Wu(f)‖∞,µα⊗µα ≤ ‖f‖2,α‖u‖2,α
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Definition 3.2. Let u, v be non-zero functions in L2
α

(
Rd+
)
, we say that the pair (u, v) is admissible if for almost all

λ ∈ Rd+ we have

(3.7) Cu,v =

∫
Rd+

√
τλα

(
|Fα (u)|2

)
(y)τλα

(
|Fα (v)|2

)
(y)dµα(y) <∞.

We have the following generalized Parseval’s formula for the multidimensional Hankel-Gabor transform.

Theorem 3.1. Let (u, v) be an admissible pair then for all f, h ∈ L2
α

(
Rd+
)

we have

(3.8)
∫
Rd+

∫
Rd+
Wu(f)(x, y)Wv(h)(x, y)dµα(x)⊗ dµα(y) = Cu,v

∫
Rd+
f(x)h(x)dµα(x)

Proof. By using Fubini’s theorem and the relations (2.7)(2.10)(2.14)(3.2) (3.5) we find that∫
Rd+

∫
Rd+
Wu(f)(x, y)Wv(h)(x, y)dµα(x)dµα(y) =

∫
Rd+

[∫
Rd+

(uy ∗α f) (x)(vy ∗α h) (x)dµα(x)

]
dµα(y)

=

∫
Rd+

[∫
Rd+

Fα (uy) (λ)Fα(f)(λ)Fα (vy) (λ)Fα(h)(λ)dµα(λ)

]
dµα(y)

=

∫
Rd+

[∫
Rd+

√
τyα
(
|Fα (u)|2

)
(λ)

√
τyα
(
|Fα (v)|2

)
(λ)Fα(f)(λ)Fα(h)(λ)dµα(λ)

]
dµα(y)

= Cu,v

∫
Rd+
f(x)h(x)dµα(x).

and the proof is complete. �

corollary 3.1. (1) If Cu,v = 0 then the spacesWu

(
L2
α

(
Rd+
))

andWv

(
L2
α

(
Rd+
))

are orthogonal.
(2) (Parseval’s formula forWg )

If u = v then Cu,v = ‖u‖22,α, in this case we have∫
Rd+1

+

∫
Rd+
Wu(f)(x, y)Wv(h)(x, y)dµα(x)⊗ dµα(y) = ‖u‖22,α

∫
Rd+
f(x)h(x)dµα(x).

(3) (Plancherel’s formula forWu )
If u = v and f = h we find that

(3.9) ‖Wu(f)‖2,µα⊗µα = ‖f‖2,α‖u‖2,α.

Proposition 3.1. u be non-zero window function in L2
α

(
Rd+1

+

)
, for all f ∈ L2

α

(
Rd+
)
, the functionWu(f) belongs

to Lpα
(
R2d

+

)
for all p ∈ [2; +∞] and we have

‖Wu(f)‖p,µα⊗µα ≤ ‖f‖2,α ‖u‖2,α.

Proof. Is a consequence of the relations (3.6),(3.9) and the Riesz-Thorin’s interpolation theorem [20]. �

In the following, we establish an inversion formula for the multidimensional Hankel-Gabor transform.

Theorem 3.2. Let (u, v) be an admissible pair in L2
α

(
Rd+
)
,then for all

f ∈ L2
α

(
Rd+
)

we have

f(.) =
1

Cu,v

∫
Rd+

∫
Rd+
Wu(f)(x, y)vx,y(.)dµα(x)⊗ dµα(y),

weakly in L2
α

(
Rd+
)
.
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Proof. By using the relations (3.4),(3.8) and Fubini’s theorem we find that

∫
Rd+
f(z)h(z)dµα(z) =

1

Cu,v

∫
Rd+

∫
Rd+
Wu(f)(x, y)Wv(h)(x, y)dµα(x)⊗ dµα(y)

=
1

Cu,v

∫
Rd+1

+

(∫
Rd+

∫
Rd+
Wu(f)(x, y)vx,y(z)dµα(x)⊗ dµα(y)

)
h(z)dµα(z).

which gives the result. �

The reproducing kernels for Hilbert space play an important role in harmonic analysis [19]. In this context, we
have the following result.

Theorem 3.3. The spaceWu

(
L2
α

(
Rd+
))

is a reproducing kernel Hilbert space in L2
α

(
R2d

+

)
with kernel function Ku

defined by

Ku ((x′, y′) ; (x, y)) =
1

‖u‖22,α

(
ux,y ∗α uy′

)
(x′) .

Furthermore, the kernel is pointwise bounded

|Ku ((x′, y′) ; (x, y))| ≤ 1, ∀(x, y); (x′, y′) ∈ R2d
+ .

Proof. From the relations (3.5) and (3.8) we find that

Wu(f)(x, y) =
1

‖u‖22,α

∫
Rd+

∫
Rd+
Wu(f) (x′, y′)Wu (ux,y) (x′, y′)dµα (x′) dµα (y′)

= 〈Wu(f) | Ku((.); (x, y))〉µα⊗µα ,

where
Ku ((x′, y′) ; (x, y)) =

1

‖u‖22,α

(
ux,y ∗α uy′

)
(x′) .

On the other hand, for every (x, y); (x′, y′) ∈ R2d
+ and by a direct computation, we obtain

‖Ku((.); (x, y))‖2,µα⊗µα ≤ 1.

Finally by the Cauchy-Schwarz inequality, we get

|Ku ((x′, y′) ; (x, y))| ≤ 1

‖u‖22,α

∫
Rd+
|ux,y(z)|

∣∣∣ux′,y′(z)∣∣∣ dµα(z) ≤ 1.

This shows that the kernel Ku belongs to L2
α

(
R2d

+

)
and is bounded. �

The rest of this section is devoted to give Calderón’s type reproducing formula for the multidimensional Hankel-
Gabor transform, to do this we need the help of the following result.

Proposition 3.2. Let 0 < γ < δ < +∞ and (u, v) be an admissible pair such that Fα(u) and Fα(v) belongs to
L∞α

(
Rd+
)
. We put

(3.10) Gγ,δ(x) :=
1

Cu,v

∫
D(γ,δ)

(uy ∗α vy) (x) dµα(y)

and

(3.11) Kγ,δ(λ) :=
1

Cu,v

∫
D(γ,δ)

√
τλα

(
|Fα (u)|2

)
(y)τλα

(
|Fα (v)|2

)
(y)dµα(y)

where
D(γ, δ) =

{
x ∈ Rd+ : γ ≤ xk ≤ δ, 1 ≤ k ≤ d

}
.
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Then we have Gγ,δ belongs to L2
α

(
Rd+
)

and

(3.12) Fα(Gγ,δ)(λ) = Kγ,δ(λ)

Proof. By using Hölder’s inequality and the relations (2.8),(2.16),(3.1) we find that

|Gγ,δ(x)|2 ≤ µα(D(γ, δ))

C2
u,v

∫
D(γ,δ)

|(uy ∗α vy) (x)|2 dµα(y)

So

‖Gγ,δ‖22,α ≤
µα(D(γ, δ))

C2
u,v

∫
D(γ,δ)

(∫
Rd+
|Fα(uy)(λ)|2 |Fα(vy)(λ)|2 dµα(λ)

)
dµα(y)

≤
(
µα(D(γ, δ))

Cu,v

)2

‖Fα(f)‖2∞,α ‖v‖
2
2,α <∞.

Which proves that Gγ,δ belongs to L2
α

(
Rd+
)
, furthermore by using Parseval’s relation (2.8), (2.14) we find

that
(uy ∗α vy) (x) =

∫
Rd+
τxα(uy)(z)vy(z)dµα(z)

=

∫
Rd+

Fα(uy)(λ)ψα,d(λx)Fα(vy)(λ)dµα(λ)

=

∫
Rd+
ψα,d(λx)

√
τyα
(
|Fα (u)|2

)
(λ)τyα

(
|Fα (v)|2

)
(λ)dµα(λ)

now, by using Fubini’s theorem and the relation (2.11) we find that

Gγ,δ(x) =
1

Cu,v

∫
Rd+
ψα,d(λx)

(∫
D(γ,δ)

√
τλα

(
|Fα (u)|2

)
(y)τλα

(
|Fα (v)|2

)
(y)dµα(y)

)
dµα(λ)

=

∫
Rd+
ψα,d(λx)Kγ,δ(λ)dµα(λ)

inversion formula (2.10) gives the relation (3.11). �

In the following we establish reproducing inversion formula of Calderón’s type for the multidimensional Hankel-
Gabor transformWu.

Theorem 3.4. Let 0 < γ < δ < +∞ and (u, v) be an admissible pair such that Fα(u) and Fα(v) belongs to
L∞α

(
Rd+
)
. For all f ∈ L2

α

(
Rd+
)
, the function fγ,δ defined for all z ∈ Rd+ by:

(3.13) fγ,δ(z) =
1

Cu,v

∫
D(γ,δ)

∫
Rd+
Wu(f)(x, y)τxα(vy)(z)dµα(x)⊗ dµα(y),

belongs to L2
α

(
Rd+
)

and satisfies

(3.14) lim
(γ,δ)→(0,+∞)

‖fγ,δ − f‖2,α = 0.

Proof. It is easy to see that for all f ∈ L2
α

(
Rd+
)

we have fγ,δ = f ∗α Gγ,δ , where Gγ,δ is the function given
by the relation (3.10), by using the relations (3.7),(3.11) we find that

‖fγ,δ − f‖22,α =

∫
Rd+
|Fα(f)(λ)|2 (1−Kγ,δ(λ))

2
dµα(λ)

by using the relations (3.7),(3.11), the relation (3.14) follows from the dominated convergence theorem. �
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4. UNCERTAINTY PRINCIPLES ASSOCIATED WITH THE MULTIDIMENSIONAL HANKEL-GABOR

TRANSFORM

4.1. Uncertainty principle for orthonormal sequences. In this subsection, we estimate the concentration of
Wu on subset of Rd+ × Rd+ of finite measure, similar results have been checked in [11, 16, 23] and we establish the
uncertainty principle for orthonormal sequences associated with the multidimensional Hankel-Gabor transform, first
we consider the following orthogonal projections

(1) Let Pu be the orthogonal projection from L2
α

(
R2d

+

)
ontoWu

(
L2
α

(
Rd+
))

and ImPu denotes the range of Pu.
(2) Let PE be the orthogonal projection on L2

α

(
R2d

+

)
defined by

(4.1) PEF = χEF, F ∈ L2
α

(
R2d

+

)
,

where E ⊂ Rd+ × Rd+ and ImPE is the range of PE . Also, we define

‖PEPu‖ = sup
{
‖PEPu(F )‖2,µα⊗µα : F ∈ L2

α

(
R2d

+

)
, ‖F‖2,µα⊗µα = 1

}
.

We first need the following result.

Theorem 4.1. Let u ∈ L2
α(Rd+) be a non-zero window function. Then for any E ⊂ Rd+ × Rd+ of finite measure

µα ⊗ µα(E) <∞, the operator PEPu is a Hilbert-Schmidt operator. Moreover, we have the following estimation

(4.2) ‖PEPu‖2 ≤ µα ⊗ µα(E).

Proof. since Pu is a projection onto a reproducing karnel Hilbert space, for any function F ∈ L2
α(R2d

+ ), the
orthogonal projection Pu can be expressed as

Pu(F )(x, ξ) =

∫∫
R2d

+

F (x′, ξ′)Ku ((x′, ξ′) ; (x, ξ)) dµα(x′)⊗ dµα(ξ′),

where Ku ((x′, ξ′) ; (x, ξ)) is given in theorem 3.3, using the relation (4.1), we find that

PEPu(F )(x, ξ) =

∫∫
R2d

+

χE(x, ξ)F (x′, ξ′)Ku ((x′, ξ′) ; (x, ξ)) dµα(x′)⊗ dµα(ξ′).

This shows that the operator PEPu is an integral operator with kernel K ((x′, ξ′) ; (x, ξ)) =

χE(x, ξ)Ku ((x′, ξ′) ; (x, ξ)). Using the relation (3.6) and Fubini’s theorem, we find that

‖PΣPg‖2HS =

∫∫
R2d

+

∫∫
R2d

+

|K ((x′, ξ′) ; (x, ξ))|2 dµα(x′)⊗ dµα(ξ′)dµα(x)⊗ dµα(ξ)

=

∫∫
R2d

+

∫∫
R2d

+

|χΣ(x, ξ)|2 |Ku ((x′, ξ′) ; (x, ξ))|2 dµα(x′)⊗ dµα(ξ′)dµα(x)⊗ dµα(ξ)

(4.3) ≤
‖u‖42,µα
‖u‖42,µα

∫∫
E

dµα(x)⊗ dµα(ξ) = µα ⊗ µα(E) <∞.

Thus, the operator PEPu is a Hilbert-Schmidt operator. Now, the proof follows from the fact that ‖PEPu‖ ≤
‖PEPu‖HS . �

In the following, we obtain the uncertainty principle for orthonormal sequences associated with the multidimen-
sional Hankel-Gabor transform.

Theorem 4.2. Let u ∈ L2
α(Rd+) be a non-zero window function and {φn}n∈N be an orthonormal sequence inL2

α(Rd+).
Then for any subset E ⊂ Rd+ × Rd+ of finite measure µα ⊗ µα(E) <∞, we have

N∑
n=1

(
1− ‖χEcWu (φn)‖2,µα⊗µα

)
≤ µα ⊗ µα(E),

for every N ∈ N.
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Proof. Proof. Let {en}n∈N be an orthonormal basis for L2
α

(
R2d

+

)
. Since PEPu is a Hilbert-Schmidt operator,

and satisfied the relation (4.3) and we have∑
n∈N
〈PuPEPuen, en〉µα⊗µα = ‖PEPu‖2HS ≤ µα ⊗ µα(E) <∞.

According to the paper [12], the positive operator PuPEPu is a trace class operator and we have

tr (PuPEPu) = ‖PEPu‖2HS ≤ µα ⊗ µα(E) <∞

where tr (PuPEPu) denotes the trace of the operator PuPEPu. Since {φn}n∈N be an orthonormal sequence in
L2
α(Rd+), from the orthogonality relation (3.9), we obtain that {Wu (φn)}n∈N is also an orthonormal sequence

in L2
α

(
R2d

+

)
thus

N∑
n=1

〈PEWu (φn) ,Wu (φn)〉µα⊗µα =

N∑
n=1

〈
PgPΣPgW(α,β)

g (φn) ,W(α,β)
g (φn)

〉
µα⊗µα

≤ tr (PuPEPu)

Hence, we find that
N∑
n=1

〈PEWu (φn) ,Wu (φn)〉µα⊗µα ≤ µα ⊗ µα(E) <∞

Moreover, for any n with 1 ≤ n ≤ N , using the Cauchy-Schwarz inequality, we get

〈PEWu (φn) ,Wu (φn)〉µα⊗µα = 1− 〈PEcWu (φn) ,Wu (φn)〉µα⊗µα ≥ 1− ‖χEcWu (φn)‖2,µα⊗µα .

Thus, we obtain
N∑
n=1

(
1− ‖χEcWu (φn)‖2,µα⊗µα

)
≤

N∑
n=1

〈PEWu (φn) ,Wu (φn)〉µα⊗µα ≤ µα ⊗ µα(E).

This completes the proof of the theorem. �

4.2. Donoho-Stark’s Uncertainty Principle for the multidimensional Hankel-Gabor transform. The main
purpose of this subsection is to give an analogue of Donoho-Stark’s uncertainty principle [8] for the multidimensional
windowed Hankel transform. In particular, we investigate the case where f and Wu(f) are close to zero outside
measurable sets.
We start with the following result

Theorem 4.3. Let u ∈ L2
α(Rd+) be a non-zero window function and f ∈ L2

α(Rd+) such that f 6= 0. Then for any
subset E ⊂ Rd+ × Rd+ of finite measure µα ⊗ µα(E) <∞, and ε ≥ 0 such that∫∫

E

|Wu(f)(x, ξ)|2 dµα(x)⊗ dµα(ξ) ≥ (1− ε)‖f‖22,α‖u‖22,α

then we have
µα ⊗ µα(E) ≥ (1− ε)

Proof. by using the relation (3.6) we find that

(1− ε)‖f‖22,µα‖u‖
2
2,µα ≤

∫∫
E

|Wu(f)(x, ξ)|2 dµα(x)⊗ dµα(ξ) ≤ ‖f‖22,α‖u‖22,αµα ⊗ µα(E).

Therefore we find that
µα ⊗ µα(E) ≥ (1− ε).

�

The following proposition shows that the multidimensional Hankel-Gabor transform cannot be concentrated in any
small set
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Proposition 4.1. Let u ∈ L2
α(Rd+) be a non-zero window function .Then for any function f ∈ L2

α(Rd+1
+ ) and for

any subset E ⊂ Rd+ × Rd+ such that µα ⊗ µα(E) < 1, we have

‖χEcWu(f)‖2,µα⊗µα ≥
√

1− µα ⊗ µα(E)‖f‖2,µα‖g‖2,µα .

Proof. For any function f ∈ L2
α(Rd+), by using the relation (3.6), we find that

‖Wu(f)‖22,µα⊗µα = ‖χEWu(f) + χEcWu(f)‖22,µα⊗µα
= ‖χEWu(f)‖22,µα⊗µα + ‖χEcWu(f)‖22,µα⊗µα

≤ µα ⊗ µα(E) ‖Wu(f)‖2∞,µα⊗µα +
∥∥∥χEcW(α,β)

g (f)
∥∥∥2

2,µα⊗µα

≤ µα ⊗ µα(E)‖f‖2L2(R,Aα,β)‖g‖
2
2,µα⊗µα +

∥∥∥χEcW(α,β)
g (f)

∥∥∥2

2,µα⊗µα
.

Thus, using Plancherel’s formula (3.9), we obtain

‖χEcWu(f)‖2,µα⊗µα ≥
√

1− µα ⊗ µα(E)‖f‖2,µα‖g‖2,µα .

�

Definition 4.1. Let S be a measurable subset of Rd+and 0 ≤ εS < 1. Then we say that a function f ∈ Lpα(Rd+1
+ ), 1 ≤

p ≤ 2, is εS-concentrated on S in Lpα(Rd+)-norm, if

‖χScf‖p,α ≤ εS‖f‖p,α.

If εS = 0, then S contains the support of f .

Definition 4.2. Let E be a measurable subset of Rd+ × Rd+ and 0 ≤ εE < 1. Let f, u ∈ L2
α(Rd+) be two non-zero

functions. We say thatWu(f) is εE-time-frequency concentrated on E, if

‖χEcWu(f)‖2,µα⊗µα ≤ εE ‖Wu(f)‖2,µα⊗µα .

IfWu(f) is εE-time-frequency concentrated on E, then in the following, we obtain an estimate for the size of the
essential support of the multidimensional Hankel-Gabor transform.

Theorem 4.4. Let u ∈ L2
α(Rd+) be a non-zero window function and f ∈ L2

α(Rd+) such that f 6= 0. E ⊂ Rd+ × Rd+
such that µα ⊗ µα(E) <∞ and εE ≥ 0. IfWu(f) is εE− timefrequency concentrated on E, then

µα ⊗ µα(E) ≥
(
1− ε2

E

)
.

Proof. Since Wu(f) is εE-time-frequency concentrated on E, using Plancherel’s formula (3.9), we deduce
that

‖f‖22,µα‖u‖
2
2,µα = ‖Wu(f)‖22,µα⊗µα

= ‖χEcWu(f)‖22,µα⊗µα + ‖χEWu(f)‖22,µα⊗µα
≤ ε2

E ‖Wu(f)‖22,µα⊗µα + ‖χEWu(f)‖22,µα⊗µα .
by using the relation (3.5) we find that

(4.4)
(
1− ε2

E

)
‖f‖22,µα‖u‖

2
2,µα ≤ ‖χEWu(f)‖22,µα⊗µα

≤ µα ⊗ µα(E) ‖Wu(f)‖2∞,µα⊗µα ≤ ‖f‖
2
2,µα‖u‖

2
2,µαµα ⊗ µα(E)

which completes the proof. �
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corollary 4.1. Let E ⊂ Rd+×Rd+ such that µα⊗µα(E) <∞, εE ≥ 0, u ∈ L2
α(Rd+) be a nonzero window function,

and f ∈ L2
α(Rd+) such that f 6= 0. IfWu(f) is εE-time-frequency concentrated on E, then for every p > 2, we have

µα ⊗ µα(E) ≥
(
1− ε2

E

) p
p−2 .

Proof. Is a consequence of (4.4) and Hölder’s inequality for the conjugate exponent p2 and p
p−2 �

Theorem 4.5. Let E ⊂ Rd+ ×Rd+ such that µα ⊗ µα(E) <∞, u ∈ L2
α(Rd+) and f ∈ L1

α(Rd+) ∩ L2
α(Rd+) such that

‖Wu(f)‖2,µα⊗µα = 1 Let S be a measurable subset of Rd+ such that µα(S) < ∞, if f is εS-concentrated on S in
L1
α(Rd+)-norm andWu(f) is εE-time-frequency concentrated on E then we have

µα(S) ≥ (1− εS)
2 ‖f‖21,µα‖u‖

2
2,µα ,

and
‖f‖22,µα‖u‖

2
2,µαµα ⊗ µα(E) ≥

(
1− ε2

E

)
in partucular we have

µα(S)‖f‖22,αµα ⊗ µα(E) ≥
(
1− ε2

E

)
(1− εS)

2 ‖f‖21,α

Proof. SinceWu(f) is is εE-time-frequency concentrated on E by using the relation (4.4), we find that(
1− ε2

E

)
‖f‖22,α‖u‖22,α ≤ ‖χEWu(f)‖22,µα⊗µα

since ‖Wu(f)‖2,µα⊗µα = 1, using the relations (3.5),(3.8) we find that

(4.5)
(
1− ε2

E

)
≤ ‖χEWu(f)‖22,µα⊗µα ≤ µα ⊗ µα(E) ‖Wu(f)‖2∞,µα⊗µα ≤ ‖f‖

2
2,µα‖u‖

2
2,µαµα ⊗ µα(E)

similarly, since f is is εS-concentrated on S in L1
α(Rd+)-norm, using the Cauchy-Schwartz inequality and

the fact that ‖f‖2,µα‖u‖2,µα = 1 we get

(4.6) (1− εS)‖f‖1,µα ≤ ‖χSf‖1,µα ≤ ‖f‖2,µα(µα(S))
1
2 =

(µα(S))
1
2

‖u‖2,µα
by using the relations (4.5),(4.6) we find that

µα(S)‖f‖22,µαµα ⊗ µα(E) ≥
(
1− ε2

E

)
(1− εS)

2 ‖f‖22,α
this completes the proof of the theorem.

�
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