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GENERALISED LOCAL FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES ON
FRACTAL SETS

PETER OLAMIDE OLANIPEKUN

ABSTRACT. Fractal geometry and analysis constitute a growing field, with numerous applications, based on the
principles of fractional calculus. Fractals sets are highly effective in improving convex inequalities and their
generalisations. In this paper, we establish a generalised notion of convexity. By defining generalised φh−s

convex functions, we extend the well known concepts of generalised convex functions, P -functions, Breckner
s-convex functions, h-convex functions amongst others. With this definition, we prove Hermite-Hadamard type
inequalities for generalised φh−s convex mappings onto fractal sets. Our results are then applied to probability
theory.

1. INTRODUCTION AND PRELIMINARY

Recent advancements have demonstrated the applications of fractional calculus in addressing real-life
problems and enhancing a better understanding of intricate situations across various scientific fields. These
applications span fields, including, but not limited to, probability models [25, 37], physical modeling and
experiments [6,7,46], control and dynamical systems [9,15,26], image processing [45,54], robotics and signal
processing [16, 58]. Fractional calculus has contributed significantly to medical and biomedical research
especially in neuroscience [19, 22, 42, 43, 47, 51, 59]. Recent investigations extend to economic risk analysis
[49], wind turbulence [17], and ongoing discussions across various disciplines. It has been used to improve
the accuracy of several models in science and technology, finance and economics, medicine and engineering
etc. Models of this nature have proven to exhibit greater efficiency compared to integer-order models. Most
research in this direction have considered generalising existing theories and results to fractional order via
fractional calculus. For instance, fractional Fourier transform [3], numerical and analytical fractional partial
differential equations [38, 48], Lp theory and fractional order estimates [31], operator theory [24], fractional
calculus of variations [2,56], generalised solutions to fractional div-curl systems [8] and more recently, their
application to address challenges related to COVID-19 [39]. For more details on fractional calculus, see the
books [28, 36].

On the other hand, fractal geometry and analysis constitute a burgeoning area of study grounded in
the principles of fractional calculus. Although the term “fractal" was introduced by Benoît Mandelbrot in
1975 in his memoir, later revised in 1982 [27], there is an extensive historical underpinning to fractals.
Its rich history goes back to the time when mathematicians thought about certain curves and surfaces
that differ conceptually from the classical ones in geometry. Fractals occur in nature in various forms and

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF AUCKLAND, AUCKLAND 1010, NEW ZEALAND

E-mail address: peter.olanipekun@auckland.ac.nz.
Submitted on June 16, 2024.
2020 Mathematics Subject Classification. Primary 26A33, 26A51, 26D07; Secondary 26D10, 26D15, 33B15, 39B62, 60E05.
Key words and phrases. Hermite-Hadamard inequalities, Fractal sets, h-Convex functions, Fractional calculus, Cummulative

dsitribution function, Generalised moments and expectations.
1

https://doi.org/10.28919/cpr-pajm/3-16


Pan-Amer. J. Math. 3 (2024), 16 2

scales, exhibiting self-similar patterns at different magnifications. The geometry and analysis of fractals
have been well fairly examined in literature. In a study on fractal dimension, Tricot [57] established some
remarkable properties for the complement of a fractal set by relating its Besicovitch-Taylor index to an
exterior dimension with specific applications in porous materials, blood network and the boundary of a
diffusion process. Although fractals appears in several areas in mathematics and statistics such as geometric
measure theory, topology, harmonic analysis, differential equations, numerical analysis, time series analysis
[24, 28, 30, 38, 40, 44], fractal mathematics is still yet to be fully explored.

Inequalities are basic building blocks in mathematics and other related fields. Several works focused on
integral inequalities aim to extend, refine, improve, and generalise known inequalities, while also introduc-
ing new ones. Fractional integral inequalities are useful tools in proving well-posedness and regularity of
solutions to fractional partial differential equations [60]. One of the most celebrated inequalities for convex
functions is the Hermite-Hadamard inequality named after Charles Hermite and Jacques Hadamard. Let
f : I ⊂ R→ R be a convex function defined on an interval I , then for a, b ∈ I ,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.

Let x ∈ [−π/2, 0) ∪ (0,−π/2], with the help of Hermite-Hadamard’s inequality, the well-known double
inequality cosx ≤ sin x

x ≤ 1 can be sharpened as

cos2 x

2
≤ sinx

x
≤ cos

x

2
.

Hermite-Hadamard inequality can also be used to obtain the elementary inequality

2x

2 + x
≤ ln(1 + x) ≤ x(2 + x)

2(1 + x)
for x ≥ 0.

We recall some definitions and results from Yang’s local fractional calculus, for more details interested
readers may consult the book [62]. Denote by Q the set of rational numbers, and let α ∈ (0, 1]. The α-type
set of real numbers is defined by Rα := {uα : u ∈ Q} ∪ {rα : r ∈ R\Q}which is the same as

Rα :=

{(
p

q

)α
: p ∈ Z, q ∈ Z\{0}

}
∪
{
rα 6=

(a
b

)α
: a ∈ Z, b ∈ Z\{0}

}
.

For xα, yα ∈ Rα, one defines the binary operations

xα + yα := (x+ y)α and xα · yα := (xy)α

so that (Rα,+) and (Rα, ·) are abelian groups. Note that (Rα,+, ·) is a field. A non-differentiable function
f : R→ Rα is local fractional continuous at x0 if for every ε > 0, there exists δ > 0 such that |f(x)−f(x0)| < εα

whenever |x − x0| < δ. We denote by Cα(a, b) the space of all local fractional continuous functions on the
interval (a, b). The local fractional derivative of a function f of order α at x = x0 is defined by

f (α)(x0) = lim
x→x0

∆α(f(x)− f(x0))

(x− x0)α

where ∆α(f(x)− f(x0)) ∼= Γ(1 + α)(f(x)− f(x0)) and Γ is the well known Gamma function.

Definition 1.1. Let f ∈ Cα[a, b] and P = {x0, · · · , xN}, N ∈ N, be a partition of the interval [a, b] with
a = x0 < x1 < · · · < xN−1 < xN = b. Denote ∆x := max

0≤i≤N−1
∆xi where ∆xi := xi+1−xi for i = 0, · · · , N−1.

The local fractional integral of f on the interval [a, b] of order α is defined by

aJ αb f(x) =
1

Γ(α+ 1)

∫ b

a

f(x)(dx)α =
1

Γ(α+ 1)
lim

∆x→0

N−1∑
i=0

f(xi)(∆xi)
α.
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The fact that f lies in Ca[a, b] guarantees the existence of the above limit. One easily verifies that aJ αb f =

0 if a = b, and aJ αb f = −bJ αa f . Suppose that f(x) = g(α) ∈ Cα[a, b], then aJ αb f(x) = g(b) − g(a). The
following identity also holds. For k ∈ R,

1

Γ(α+ 1)

∫ b

a

xkα(dx)α =
Γ(αk + 1)

Γ(α(k + 1) + 1)

(
bα(k+1) − aα(k+1)

)
.

Note that Cα(I) is a fractal set of functions from the interval I ⊂ R to Rα. The remaining part of this article
is devoted to extending the notions of convexity on fractal sets and establishing Hermite-Hadamard type
estimates for certain functions belonging to Cα(I).

2. GENERALISED NOTION OF CONVEXITY ON FRACTAL SET

In [63], the author modified the concept of convex sets by introducing and developing the notion of E-
convex sets, which we will refer to as the φ-convex sets in order to align with our notation. The author also
defined φ-convex functions [63] and established some interesting results which have been applied to con-
vex programming problems [5, 13, 41, 53] with notable extensions on Riemannian manifolds [20, 23]. Since
then, several definitions extending the concept of convexity within various contexts have been provided in
literature. We recall the following definition from [34].

Definition 2.1. Let I be an interval of R and [a, b] ⊆ I . A function f : I → Rα is said to be φh−s convex if
for all x, y ∈ [a, b] and s, t ∈ [0, 1]

f(tφ(x) + (1− t)φ(y)) ≤
(

t

h(t)

)s
f(φ(x)) +

(
1− t

h(1− t)

)s
f(φ(y)).

In general, φh−s convex functions can be defined on φ-convex set in Rn [63]. We remark that with s = 1

and h(t) = 1 in Definition 2.1, for all s, t ∈ [0, 1], we recover Definition 3.1 in [63] and the results therein.
Some properties of φh−s convexity were established in [34] and several inequalities that generalise those
of Jensen and Schur were derived for some non-negative supermultiplicative functions. Later, the class of
harmonically φh−s convex functions was given in [35] and applied to the Hermite-Hadamard inequality
with several analytical implications for special means of real numbers. Also, in [35], the authors proved
some Hermite-Hadamard-type inequalities by applying the fractional integral operator to φh−s convex
functions. The relationship between φh−s convex functions and their harmonic counterparts was explored
in [32], where several Pachpatte-type inequalities were established under a ratio-bound condition for the
harmonically φh−s convex functions.

Variations of Definition 2.1 have been used to establish Hermite-Hadamard-type inequalities on time
scales [11, 12]. We adapt the above definition to fractal sets as follows.

Definition 2.2. Let I be an interval of R and let [a, b] ⊆ I . Let φ : [a, b] → R and h : [0, 1] → (0,∞). A
function f : I → Rα is said to be generalised φh−s convex if for all x, y ∈ [a, b] and s, t ∈ [0, 1]

f(tφ(x) + (1− t)φ(y)) ≤
(

t

h(t)

)αs
f(φ(x)) +

(
1− t

h(1− t)

)αs
f(φ(y)).(2.1)

If the inequality (2.1) is reversed, then f is said to be generalised φh−s concave, and of course f is gener-
alised φh−s convex if and only if−f is generalised φh−s concave. If the inequality in (2.1) is strict whenever
x and y are distinct and s, t ∈ [0, 1], then f is a strictly generalised φh−s convex.

Remark 2.3. It is important to mention that the generalised class of φh−s convex function given in Definition
2.2 unifies several interesting generalised versions of convex functions [10, 29, 52, 55, 61] some of which are
highlighted below.

(1) If s = 0 and φ(x) = x, then f is a generalised P -function [10].
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(2) If s = 1, h(t) = 1 for all t ∈ [0, 1], and φ(x) = x, then f is a generalised convex function [55]
(3) If h(t) = 1 for all t ∈ [0, 1], φ(x) = x and ts + (1 − t)s = 1 with s ∈ (0, 1), then f is generalised

Breckner s-convex in the first sense [29].
(4) Let s ∈ (0, 1), if h(t) = 1 for all t ∈ [0, 1], and φ(x) = x, then f is generalised Breckner s-convex in

the second sense [29].
(5) Define h̃(t) := t

h(t) , if s = 1 and φ(x) = x then f is a generalised h̃-convex function [61].
(6) If h(t) = t2 for all t ∈ [0, 1] and φ(x) = x then f is generalised s-Godunova-Levin function.
(7) If h(t) = 2

√
t− t2 for all t ∈ [0, 1], then f is generalised s-MT convex. Additionally, if s = 1, then f

is generalised MT-convex.

All the classes of convex functions listed above are generalised in the sense that they map intervals of R
into fractal set. Throughout this work, we will use the function ρs : [0,∞) → [0,∞) defined by ρs(t) :=(

t
h(t)

)s
with h 6≡ 0, and the notation ραs(t) := (ρs(t))

α =
(

t
h(t)

)αs
. In most cases, we will restrict ρs on

the interval [0, 1]. There are several interesting properties of this new notion of generalised convex function
some of which we shall now mention. To this end, the following remarks are in place.

Remark 2.4.

(1) Let h : [0, 1] → (0,∞) satisfies ρs(t) ≥ t for all s, t ∈ [0, 1]. If f : I → Rα is generalised convex on I ,
then

f(tφ(x) + (1− t)φ(y)) ≤ tαf(φ(x)) + (1− t)αf(φ(y)) ≤ ραs(t)f(φ(x)) + ραs(1− t)f(φ(y)).

This implies that f is also generalised φh−s convex. An example is the function f : I → R defined
by f(x) = xα. It is not difficult to see that

f(tφ(x) + (1− t)φ(y)) = tα(φ(x))α + (1− t)α(φ(y))α

= tαf(φ(x)) + (1− t)αf(φ(y))

≤ ραs(t)f(φ(x)) + ραs(1− t)f(φ(y)).

The Mittag-Leffler function [61, 62] defined on Rα by

Eα(xα) =

∞∑
k=0

xαk

Γ(1 + kα)

for all x ∈ R is generalised convex [55], and hence by the remark above, a generalised φh−s convex
function provided ρs(t) ≥ t for all s, t ∈ [0, 1].

(2) Consider the functions h1, h2 : [0, 1] → (0,∞) with h2(t) ≤ h1(t) for all t ∈ [0, 1]. If f is generalised
φh1−s convex then f is generalised φh2−s convex. The converse is not true.

(3) Let f, g : I → Rα be two generalised φh−s convex functions and let λα ∈ Rα with λ > 0 in R. Then
the functions f + g and λαf are both generalised φh−s convex on I .

(4) Let f : I → Rα be a generalised φh−s convex function. If g : R → I is a linear map then the
composition f ◦ g : R→ Rα is also generalised φh−s convex.

(5) Let f : I → Rα be a generalised φh−s convex function. If f is increasing and g : R→ I is convex on
R, then the composition f ◦ g : R→ Rα is also generalised φh−s convex.

We state another property in the following Proposition whose proof is similar in spirit to that of Theorem
3.7 in [33] and Proposition 1 (and Corollary 1) in [35].

Proposition 2.5. Let f be a generalised φh1−s convex function and g be a generalised φh2−s convex function.
Let h(t) := max{h1(t), h2(t)}with h(t) + h(1− t) ≤ c for a fixed positive constant c. If f and g are similarly
ordered, then fg is a generalised φch−s convex function.
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Proof. Omitted. �

Proposition 2.6. Let fn : I → Rα, n ∈ N, be a sequence of generalised φh−s convex functions converging
pointwise to a function f : I → Rα. Then f is generalised convex on I .

Proof. Let x, y ∈ I and 0 ≤ t ≤ 1. It suffices to see that the generalised φh−s convexity of fn implies

f(tφ(x) + (1− t)φ(y)) ≤ lim
n→∞

(ραs(t)fn(φ(x) + ραsfn(φ(y)))

= ραs(t)f(φ(x)) + ραs(1− t)f(φ(y)).

�

Theorem 2.7. Suppose s ∈ (0, 1). Define Kα(λ, s) := ραs(λ
1
s ) + ραs((1− λ)

1
s ) where 0 ≤ λ ≤ 1.

If f is generalised φh−s convex, then for 0 < r1 ≤ r2 < ∞, we have f(r1) ≤ Kα(λ, s)f(r2). Moreover, if
Kα(λ, s) ≤ 1α, then f is non decreasing on (0,∞).

Proof. Let x ∈ R such that φ(x) > 0, then

f(λ
1
sφ(x) + (1− λ)

1
sφ(x)) ≤ Kα(λ, s)f(φ(x))

Clearly, the function ` : [0, 1] → R given by `(λ) = λ
1
s + (1 − λ)

1
s is continuous on [0, 1], decreasing on

[0, 1
2 ] and increasing on [ 1

2 , 1]. For all p1 ∈ [0, 1
2 ], there exists p2 ∈ [ 1

2 , 1] such that `(p1) = `(p2) = p3 where
21− 1

s ≤ p3 ≤ 1 and `( 1
2 ) ≤ `(p) ≤ `(1) for all p ∈ [0, 1]. Consequently, we have

f(tφ(x)) ≤ Kα(λ, s)f(φ(x)) for all t ∈ [21− 1
s , 1] and φ(x) > 0.(2.2)

If t ∈ [22(1− 1
s ), 1] then t

1
2 lies in the interval [21− 1

s , 1] with the estimate

f(tφ(x)) = f
(
t
1
2 (t

1
2φ(x))

)
≤ Kα(λ, s)f(t

1
2φ(x)) ≤ K2

α(λ, s)f(φ(x))

for all φ(x) > 0 where we have used estimate (2.2). By induction, if t ∈ [2n(1− 1
s ), 1] then t

1
n ∈ [21− 1

s , 1]

together with the estimate

f(tφ(x)) ≤ Kn
α(λ, s)f(φ(x)) for all φ(x) > 0 and 0 < t ≤ 1.(2.3)

Choose y ∈ R such that 0 < φ(x) ≤ φ(y) and apply the estimate (2.3) to have

f(φ(x)) = f

(
φ(x)

φ(y)
φ(y)

)
≤ Kn

α(λ, s)f(φ(y)).

By definition, Kα(λ, s) > 0α. Clearly, f is non decreasing on (0,∞) if Kα(λ, s) ≤ 1α. �

Example 2.8. Let 0 < s < 1 and β, γ, σ ∈ R. Suppose that ραs(t) + ραs(1− t) = 1α with tαs ≤ ραs(t) for all
t ∈ [0, 1]. Define f : I ⊆ [0,∞)→ Rα by

f(A) =

{
βα if A = 0

(γAs + σ)α if A > 0

The following statements hold.

(1) If γ ≥ 0 and σ ≤ β then f is generalised φh−s convex.
(2) If γ ≥ 0 and σ < β, then f is non decreasing on (0,∞).

There are only two non trivial cases of Example 2.8.
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Case 1: Let A > 0 and B > 0, then tA+ (1− t)B > 0 and

f(tA+ (1− t)B) = γα(tA+ (1− t)B)αs + σα

≤ γα(tsAs + (1− t)sBs)α + σα

≤ γα(ραs(t)A
αs + ραs(1− t)Bαs) + σα(ραs(t) + ραs(1− t))

= ραs(t)f(A) + ραs(1− t)f(B).

Case 2: Without loss of generality, let B > A = 0. Since t ∈ [0, 1], we have

f(t0 + (1− t)B) = f((1− t)B) = γα((1− t)B)αs + σα

≤ γαραs(1− t)Bαs + σα(ραs(t) + ραs(1− t))

≤ βαραs(t) + ραs(1− t)(σα + γαBαs)

= ραs(t)f(0) + ραs(1− t)f(B).

This proves the first statement. The proof of the second statement is obvious.

3. HERMITE-HADAMARD-TYPE INEQUALITIES ON FRACTAL SETS

We now establish some inequalities for generalised φh−s convex functions on fractal sets.

Theorem 3.1. (Generalised Hermite-Hadamard inequality). Let f : I ⊆ R → Rα. Suppose that f ∈ Cα(I) is a
generalised φh−s convex function. Then for all t ∈ [0, 1] and φ(a), φ(b) ∈ I ⊆ R, the inequality holds

1

2αΓ(1 + α)ραs
(

1
2

)f (φ(a) + φ(b)

2

)
≤

φ(a)J αφ(b)f(φ(x))

(φ(b)− φ(a))α

≤ (f(φ(a)) + f(φ(b))) 0J α1 ραs(t).(3.1)

Proof. Using the assumption of generalised φh−s convexity on f , one observes that for all t ∈ [0, 1] and
φ(a), φ(b) ∈ I ⊆ R

f

(
φ(a) + φ(b)

2

)
= f

(
1

2
(tφ(a) + (1− t)φ(b) + (1− t)φ(a) + tφ(b))

)
≤ ραs(1/2)f(tφ(a) + (1− t)φ(b)) + ραs(1/2)f(tφ(b) + (1− t)φ(a)).(3.2)

Choosing x ∈ I such that φ(x) = tφ(a) + (1− t)φ(b) and noting that tφ(b) + (1− t)φ(a) = φ(a) +φ(b)−φ(x),
a local fractional integration of (3.2) with respect to t on [0, 1] yields the first inequality in (3.1). To prove
the second inequality, we use the generalised φh−s convexity of f to estimate the functional J αf(φ(x)) on
(φ(a), φ(b)) ⊆ I . Noting that 0J α1 (ραs(t)− ραs(1− t)) = 0, we have

φ(a)J αφ(b)f(φ(x)) = (φ(b)− φ(a))α 0J α1 f(tφ(a) + (1− t)φ(b))

≤ (φ(b)− φ(a))α 0J α1 [ραs(t)f(φ(a)) + ραs(1− t)f(φ(b))]

= (φ(b)− φ(a))α[f(φ(a)) + f(φ(b))] 0J α1 ραs(t).

This completes the proof. �

Per Remark 2.3, several estimates can be deduced from Theorem 3.1. For instance, by choosing the
functions φ(x) = x for all x ∈ I and h(t) = 1 for all t ∈ [0, 1], the following estimate involving Breckner
s-convex functions in the second sense holds.

Corollary 3.2. [29] Let f : I → Rα. Suppose f ∈ Cα(I) is a generalised s-convex function in the second
sense for s ∈ (0, 1). Then, for all t ∈ [0, 1] and a, b ∈ I ⊆ R with a 6= b, the following inequality holds

2(s−1)αf

(
a+ b

2

)
≤ Γ(1 + α)

(b− a)α
aJ αb f(x).
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Corollary 3.3. Let f : I → Rα. Suppose that f ∈ Cα(I) is a generalised convex function. Then, for all
t ∈ [0, 1] and a, b ∈ I ⊆ R with a 6= b, the following inequality holds

1

Γ(1 + α)
f

(
a+ b

2

)
≤ aJ αb f(x)

(b− a)α
≤ Γ(1 + α)

Γ(1 + 2α)
(f(a) + f(b)).

Corollary 3.4. Let f : I → Rα. Suppose that f ∈ Cα(I) is a generalised P -function. Then, for all t ∈ [0, 1]

and a, b ∈ I ⊆ R with a 6= b, the following inequality holds

2−α

Γ(1 + α)
f

(
a+ b

2

)
≤ aJ αb f(x)

(b− a)α
≤ 1

Γ(1 + α)
(f(a) + f(b)).

3.1. Extensions of the Hermite-Hadamard Inequalities on Fractal Sets. We now establish an important
representation lemma for functions belonging to the space Cα(I).

Lemma 3.5. Let φ : [a, b]→ (0,∞) and f : I ⊆ R→ Rα be such that f ∈ Cα(I). Then for 0 ≤ λ ≤ 1, we have

0J α1 f ((1− t)φ(a) + tφ(b)) = (1− λ)α0J α1 f ((1− t)((1− λ)φ(a) + λφ(b)) + tφ(b))

+λα0J α1 f ((1− t)φ(a) + t((1− λ)φ(a) + λφ(b)))(3.3)

Proof. It is easy to see that equality (3.3) holds for λ = 0 and λ = 1. Now, suppose λ ∈ (0, 1). The change of
variable u = λ(1− t) + t yields

0J α1 f ((1− t)((1− λ)φ(a) + λφ(b)) + tφ(b))

=
1

Γ(α+ 1)

1

(1− λ)α

∫ 1

λ

f ((1− u)φ(a) + uφ(b)) (du)α

=
1

(1− λ)α
0J αλ f ((1− u)φ(a) + uφ(b)) .(3.4)

On the other hand, the change of variable u = λt yields

0J α1 f ((1− t)φ(a) + t((1− λ)φ(a) + λφ(b)))

=
1

Γ(1 + α)

1

λα

∫ λ

0

f((1− u)φ(a) + uφ(b)) (du)α

=
1

λα
0J αλ f((1− u)φ(a) + uφ(b)).(3.5)

Combining (3.4) and (3.5) gives the identity (3.3). This completes the proof.
�

Theorem 3.6. Let f : I ⊆ R→ Rα. Suppose that f ∈ Cα(I) is a generalised φh−s convex function. If ραs(t) ≤ tα

for all t ∈ [0, 1] then for all φ(a), φ(b) ∈ I ⊆ R with φ(a) < φ(b) and any λ ∈ [0, 1], the following inequalities hold

f
(
φ(a)+φ(b)

2

)
Γ(α+ 1)

≤ ραs(1− λ)

Γ(α+ 1)
f

(
(1− λ)φ(a) + (λ+ 1)φ(b)

2

)
+

ραs(λ)

Γ(α+ 1)
f

(
(2− λ)φ(a) + λφ(b)

2

)
≤

φ(a)J αφ(b)f(x)

(φ(b)− φ(a))α

≤ [f((1− λ)φ(a) + λαf(φ(a)) + λφ(b)) + (1− λ)αf(φ(b))] 0J α1 ραs(x)

≤ [f(φ(a)) + f(φ(b))] 0J α1 ραs(x).
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Proof. Estimate (3.1) and the generalised φh−s convexity of f imply

1

Γ(α+ 1)
f

(
(1− λ)φ(a) + (1 + λ)φ(b)

2

)
=

1

Γ(α+ 1)
f

(
(1− λ)φ(a) + λφ(b)

2
+
φ(b)

2

)
≤ 2αραs(1/2)

Γ(α+ 1)

∫ 1

0

f
(

(1− t)[(1− λ)φ(a) + λφ(b)] + tφ(b)
)

(dt)α

≤
(
f [(1− λ)φ(a) + λφ(b)] + f(φ(b))

)
0J α1 ραs(t)(3.6)

where we have used the fact that 0α ≤ 2αραs(1/2) ≤ 1α. Using again estimate (3.1) and the generalised
φh−s convexity of f we have

1

Γ(α+ 1)
f

(
(2− λ)φ(a) + λφ(b)

2

)
=

1

Γ(α+ 1)
f

(
λφ(a)

2
+

(1− λ)φ(a) + λφ(b)

2

)
≤ 2αραs(1/2)

Γ(α+ 1)

∫ 1

0

f
(

(1− t)φ(a) + t[(1− λ)φ(a) + λφ(b)]
)

(dt)α

≤
(
f(φ(a)) + f [(1− λ)φ(a) + λφ(b)]

)
0J α1 ραs(t).(3.7)

Multiply estimate(3.6) by (1−λ)α and estimate (3.7) by λα, and add the resulting double estimates. Calling
upon Lemma 3.5, we find

(1− λ)α

Γ(α+ 1)
f

(
(1− λ)φ(a) + (λ+ 1)φ(b)

2

)
+

λα

Γ(α+ 1)
f

(
(2− λ)φ(a) + λφ(b)

2

)
≤ 2αραs(1/2) 0J α1 f

(
(1− t)φ(a) + tφ(a)

)
≤
(
f [(1− λ)φ(a) + λφ(b)] + (1− λ)αf(φ(b)) + λαf(φ(a))

)
0J1 ραs(t).(3.8)

We use the generalised φh−s convexity of f to obtain the estimates

(1− λ)αf

(
(1− λ)φ(a) + (λ+ 1)φ(b)

2

)
+ λαf

(
(2− λ)φ(a) + λφ(b)

2

)
≥ ραs(1− λ)f

(
(1− λ)φ(a) + (λ+ 1)φ(b)

2

)
+ ραs(λ)f

(
(2− λ)φ(a) + λφ(b)

2

)
≥ f

(
(1− λ)

(
(1− λ)φ(a) + (λ+ 1)φ(b)

2

)
+ λ

(
(2− λ)φ(a) + λφ(b)

2

))
= f

(
φ(a) + φ(b)

2

)
.(3.9)

Accordingly, the condition ρα(x) ≤ xα for all x, s ∈ [0, 1] yields(
f [(1− λ)φ(a) + λφ(b)] + (1− λ)αf(φ(b)) + λαf(φ(a))

)
0J α1 ραs(t)

≤
(
ραs(1− λ)f(φ(a)) + ραs(λ)f(φ(b)) + (1− λ)αf(φ(b)) + λαf(φ(a))

)
0J α1 ραs(t)

=
(
f(φ(a)) + f(φ(b))

)
0J α1 ραs(t).(3.10)

To complete the proof, we combine estimates (3.8), (3.9) and (3.10) and note that a suitable change of variable

yield 0J α1 f
(
(1− t)φ(a) + tφ(a)

)
=

φ(a)Jαφ(b)f(x)

(φ(b)−φ(a))α .
�
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Next, we obtain average refinements of Hermite-Hadamard inequalities by using the generalised notion
of convexity and assuming that ρs : [0, 1]→ (0,∞) is linear and multiplicative (c.f. [4, 14, 18, 50]). Note that
a multiplicative function ρ satisfies ρ(1) = 1. An example of a multiplicative, linear function is ρs(x) = x.

Theorem 3.7. Let f : I → Rα. Suppose that f ∈ Cα(I) is a generalised φh−s convex function and ρs : [0, 1] →
(0,∞) is linear and multiplicative. Then for all t ∈ [0, 1], the following inequalities hold

X[1−t,t,C] ≤ f((1− t)φ(a) + tφ(b)) ≤ X[1−t,t,c](3.11)

where c= min{t, 1-t} , C=max{t, 1-t} and

X[u,v,%] := ραs(u)f(φ(a)) + ραs(v)f(φ(b))

− ραs(2%)

(
f(φ(a)) + f(φ(b))

2
− f

(
φ(a) + φ(b)

2

))
(3.12)

with 0 ≤ u, v, % ≤ 1. Furthermore, the double inequality hold

X[1,1,2C] − f(φ(x)) ≤ f(φ(a) + φ(b)− φ(x)) ≤ X[1,1,2c] − f(φ(x))(3.13)

where, in particular,

c = min
{
φ(b)− φ(x)

φ(b)− φ(a)
,
φ(x)− φ(a)

φ(b)− φ(a)

}
and C = max

{
φ(b)− φ(x)

φ(b)− φ(a)
,
φ(x)− φ(a)

φ(b)− φ(a)

}
.

Moreover, the refined Hermite-Hadamard inequality also holds

1

Γ(α+ 1)

∫ 1

0

X[1, 1, 2C1+2C2](dt)
α

≤ f
(
φ(a) + φ(b)− 1

2
(φ(u) + φ(v))

)
+

φ(v)Jφ(u)f

(φ(v)− φ(u))α

≤ 1

Γ(α+ 1)

∫ 1

0

X[1, 1, 2c1+2c2](dt)
α

where C1 := C1(t) = (1 − t)max {t, 1− t}, C2 := C2(t) = tmax {t, 1− t}, c1 := c1(t) = (1 − t)min {t, 1− t}
and c2 := c2(t) = tmin {t, 1− t}.

Proof. Let t ∈ [0, 1
2 ], then c = t. The linearity of ρs guarantees that

X[1−t,t,c] = ραs(1− 2t)f(φ(a)) + ραs(2t)f

(
φ(a) + φ(b)

2

)
≥ f

(
(1− 2t)φ(a) + 2t

(
φ(a) + φ(b)

2

))
= f((1− t)φ(a) + tφ(b)).(3.14)

The case t ∈ [ 1
2 , 1] is proved by replacing t by 1 − t in the argument above. Next, we use the generalised

φh−s convexity of f to estimate

f(φ(a)) = f

[
1

t+ 1
((t+ 1)φ(a)− tφ(b)) +

t

t+ 1
φ(b)

]
≤ ραs

(
1

t+ 1

)
f((t+ 1)φ(a)− tφ(b)) + ραs

(
t

t+ 1

)
f(φ(b)).

The latter together with the multiplicative property of ρs imply the estimate

ραs(t+ 1)f(φ(a))− ραs(t)f(φ(b)) ≤ f((t+ 1)φ(a)− tφ(b)).(3.15)
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On the other hand, if t ∈ [0, 1
2 ] (the case t ∈ [ 1

2 , 1] follows by a similar argument) then C = 1 − t. Calling
upon estimate (3.15), we have

f((1− t)φ(a) + tφ(b)) = f

(
(2− 2t)

φ(a) + φ(b)

2
− (1− 2t)f(φ(b))

)
≥ ραs(1 + (1− 2t))f

(
φ(a) + φ(b)

2

)
− ραs(1− 2t)f(φ(b))

= ραs(1− t)f(φ(a)) + ραs(t)f(φ(b))

− ραs(2C)

(
f(φ(a)) + f(φ(b))

2
− f

(
φ(a) + φ(b)

2

))
.(3.16)

Combining estimates (3.16) and (3.14) proves the double inequality (3.11).
Choose x ∈ [a, b] such that φ(a) ≤ φ(x) ≤ φ(b) and φ(x) = tφ(a) + (1− t)φ(b) where t = φ(b)−φ(x)

φ(b)−φ(a) . Note

that c = min
{
φ(b)−φ(x)
φ(b)−φ(a) ,

φ(x)−φ(a)
φ(b)−φ(a)

}
. Applying estimate (3.14) twice, we have

f(φ(a) + φ(b)− φ(x)) = f((1− t)φ(a) + tφ(b))

≤ X[1−t,t,c] = X[1−t,1−(1−t),c]

= X[1,1,c] − ραs(t)f(φ(a))− ραs(1− t)f(φ(b))

≤ X[1,1,2c] − f(φ(x)).(3.17)

Note that by using (3.16) instead of (3.14), the following reverse estimate of (3.17) holds

X[1,1,2C] − f(φ(x)) ≤ f(φ(a) + φ(b)− φ(x)).

Combining the latter with (3.17) proves estimate (3.13).
We extend (3.17) to estimates with two parameters. The generalised φh−s convexity of f implies

f (φ(a) + φ(b)− ((1− t)φ(x) + tφ(y)))

= f ((1− t)(φ(a) + φ(b)− φ(x)) + t(φ(a) + φ(b)− φ(y)))

≤ ραs(1− t)f(φ(a) + φ(b)− φ(x)) + ραs(t)f(φ(a) + φ(b)− φ(y)).

The latter together with (3.17) yield

f (φ(a) + φ(b)− ((1− t)φ(x) + tφ(y)))

≤ ραs(1− t)
(
X[1,1,2c] − f(φ(x))

)
+ ραs(t)

(
X[1,1,2c] − f(φ(y))

)
= X[1−t,t,2c1] +X[t,1−t,2c2] − ραs(1− t)f(φ(x))− ραs(t)f(φ(y))(3.18)

where c1 := c1(t) = (1− t)min {t, 1− t} and c2 := c2(t) = tmin {t, 1− t}.

The generalised φh−s convexity of f implies

f

(
φ(a) + φ(b)− 1

2
(φ(x) + φ(y))

)
= f

(
1

2
(φ(a) + φ(b)− ((1− t)φ(x) + tφ(y))) +

1

2
(φ(a) + φ(b)− (tφ(x) + (1− t)φ(y)))

)
≤ ραs

(
1

2

)
f (φ(a) + φ(b)− ((1− t)φ(x) + tφ(y)))

+ ραs

(
1

2

)
f (φ(a) + φ(b)− (tφ(x) + (1− t)φ(y)))



Pan-Amer. J. Math. 3 (2024), 16 11

Combining the latter with (3.18) and using the multiplicative property of ρs, we have

f

(
φ(a) + φ(b)− 1

2
(φ(x) + φ(y))

)
≤ X[1−t,t,2c1] +X[t,1−t,2c2] − ραs

(
1

2

)
(f(φ(x)) + f(φ(y)))

= f(φ(a)) + f(φ(b))− 1

2
[f(φ(x)) + f(φ(y))]

− 4ραs(c1 + c2)

(
f(φ(a)) + f(φ(b))

2
− f

(
φ(a) + φ(b)

2

))
(3.19)

Similarly, the following reverse estimate holds

f

(
φ(a) + φ(b)− 1

2
(φ(x) + φ(y))

)
≥ f(φ(a)) + f(φ(b))− 1

2
[f(φ(x)) + f(φ(y))]

− 4ραs(C1 + C2)

(
f(φ(a)) + f(φ(b))

2
− f

(
φ(a) + φ(b)

2

))
(3.20)

where C1 := C1(t) = (1 − t)max {t, 1− t} and C2 := C2(t) = tmax {t, 1− t}. Combining estimates (3.19)
and (3.20) and applying a local fractional integration with respect to t on [0, 1] yield

1

Γ(α+ 1)

∫ 1

0

X[1, 1, 2C1+2C2](dt)
α − φ(v)Jφ(u)f

(φ(v)− φ(u))α

≤ f
(
φ(a) + φ(b)− 1

2
(φ(u) + φ(v))

)
≤ 1

Γ(α+ 1)

∫ 1

0

X[1, 1, 2c1+2c2](dt)
α − φ(v)Jφ(u)f

(φ(v)− φ(u))α

where we have used the change of variables φ(x) = tφ(u) + (1− t)φ(v) and φ(y) = (1− t)φ(u) + tφ(v) with
u, v ∈ I . This completes the proof. �

3.2. Application to Probability Theory. Let χ be a random variable whose probability density function
p : [t1, t2]→ [0, 1]α is generalised φh−s convex with a cummulative distribution function given by

Pα(χ ≤ x) = Fα(x) :=
1

Γ(α+ 1)

∫ x

t1

p(θ) (dθ)α

and the fractional normalising condition 1
Γ(α+1)

∫ t2
t1

p(θ) (dθ)α = 1. Define the functional

Eαs(χ) :=
1

Γ(α+ 1)

∫ t2

t1

ραs(θ) p(θ) (dθ)α

where ραs : [0,∞) → [0,∞)α is as in the previous sections. With ραs(θ) = θα and ραs(θ) = θαs, the
functional Eαs(χ) reduces to generalised expectation and s-moments of fractional order respectively. In
particular, Eαs(χ) satisfies

Eαs(χ ≤ x) =
1

Γ(α+ 1)

∫ x

t1

θα dFα(θ) = tα2 −
1

Γ(α+ 1)

∫ t2

t1

Fα(θ) (dθ)α.

Interested readers may see [1, 21] for more information on probability theory using fractional calculus.
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Theorem 3.8. Under the assumptions of Theorem 3.1, the following inequalities hold

2α(s−1)

Γ(α+ 1)
Pα

(
χ ≤ φ(a) + φ(b)

2

)
≤ (φ(b))α − Eαs(χ ≤ φ(x))

(φ(b)− φ(a))α

≤ Γ(αs+ 1)

Γ(1 + α(s+ 1))

(
Pα(χ ≤ φ(a)) + Pα(χ ≤ φ(b))

)
.

Proof. Choose x ∈ [a, b] such that φ(a) ≤ φ(x) ≤ φ(b). The proof follows easily from Theorem 3.1 and the
identity 1

Γ(α+1)

∫ 1

0
tαs (dt)α − Γ(αs+1)

Γ(α(s+1)+1) = 0α. �
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