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STABILITY OF LEFT AND RIGHT WEYL ESSENTIAL SPECTRA

ALI ZITOUNI

ABSTRACT. In this work, we use the concept of demicompact linear operators to provide a characterization of
the left and right Weyl essential spectra. Additionally, we study the stability of these spectra in Banach space. We
illustrate our theoretical results by investigating this type of essential spectra in transport equations.

INTRODUCTION

Many papers, in the last years, were devoted to the study of demicompact operators. The Fredholm
theory of this operators attracted many authors. This concept was first introduced by Petryshyn in [15].
Initially, demicompact operators were defined in the context of fixed point theory of the operators on Ba-
nach spaces. Following this, Akashi in [2] and Jeribi A. in [8], [9] used demicompact operators to establish a
stability results of Fredholm operators. Building upon this research, our focus is on studying the right and
left essential spectra in this article.

Before proceeding, we introduve some definitions, theorems, and properties Fredholm operators.
C(X,Y ) denotes the collection of densely defined closed linear operators, L(X,Y ) represents the bounded
linear operators, and K(X,Y ) corresponds to the set of compact operators.
If X and Y are the same space, the pair (X,Y ) is replaced by X . For instance, C(X,Y ) becomes C(X). For
T ∈ C(X), we defined the resolvent and the spectrum set as follows:

ρ(T ) := {µ ∈ C, µ− T is invertible and (µ− T )−1is bounded},

σ(T ) := C \ ρ(T ).

Additionally, we denote R(T ) ⊆ Y as the range of T , N (T ) as the kernel of T , α(T ) as the dimension of
N (T ), and β(T ) as the codimension ofR(T ). The index of T , denoted as i(T ) = α(T )− β(T ). The set of left
invertible and right invertible operators is denoted as GL(Y,X) and GR(Y,X), respectively. We noted that
T is invertible if and only if T is both left and right invertible, meaning there exist operators Tr and Tl such
that TTr = I and TlT = I .
Let M be a subspace of X . We say that M to be complemented, if there exists N ⊂ X , a closed subspace,
such that X = M ⊕N . We will define the sets of left and right Fredholm operators, respectively:

Φl(X,Y ) = {T ∈ C(X,Y ), α(T )is finite,R(T ) is closed and complemented},
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and

Φr(X,Y ) = {T ∈ C(X,Y ), β(T ) is finite and N (T ) is complemented},

The sets Fredholm operators are defined by:

Φ(X,Y ) = Φ+(X,Y ) ∩ Φ−(X,Y ),

where, the upper semi-Fredholm and lower semi-Fredholm operators are defined respectively:

Φ+(X,Y ) = {T ∈ C(X,Y ), α(T )is finite andR(T ) is closed in Y },

and

Φ−(X,Y ) = {T ∈ C(X,Y ), β(T ) is finite andR(T ) is closed in Y },

Hence, we have the following relations:

Φ(X,Y ) ⊆ Φl(X,Y ) ⊆ Φ+(X,Y ),

and

Φ(X,Y ) ⊆ Φr(X,Y ) ⊆ Φ−(X,Y ).

The left Weyl operators, denoted asWL(X), is defined:

WL(X) = {T ∈ Φl(X), i(T ) is negative}.

Similarly, the right Weyl operators,WR(X), is defined as:

WR(X) = T ∈ Φr(X) such that i(T ) ≥ 0.

We say that µ ∈ C is in ΦlT (ΦrT ) if µ− T ∈ Φl(X) (Φr(X)).
An operator F is called a Fredholm perturbation if F ∈ L(X,Y ), and T + F ∈ Φ(X,Y ), for every

T ∈ Φ(X,Y ). The set of perturbations is denoted as F(X,Y ).
Now, consider T ∈ C(X). The left and right Weyl essential spectra, denoted, respectively, as σewl(T ) and

σewr(T ) and defined as follows:

σewl(T ) :=
⋂

K∈K(X)

σl(T +K),

σewr(T ) :=
⋂

K∈K(X)

σr(T +K),

where

σl(T ) := {µ ∈ C, µ− T is not left invertible}

σr(T ) := {µ ∈ C, µ− T is not right invertible}.

The sets σl(.) and σr(.) represent the left and right spectra respectively.

This article is organized as follows: The next Section, we introduce some definitions and results related
with Fredholm theory. In Section 3, we develop a new characterization of the left and right essential spectra
of closed linear operators defined on X . This characterization will be based on the essential spectrum of
each individual operator. In the last section, we investigate the results from Section 3 to obtain a description
of this type of spectra of transport equation in Lp-spaces.
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1. BASIC TOOLS

In this section, we will establish some preliminary results regarding the essential spectra of closed
densely defined linear operators. These results will be used in our results.

Theorem 1.1. [7, Theorem 5.1.1] Let T ∈ C(X). Then,
i) µ /∈ σewl(T ) if, and only if, µ− T ∈ Φl(X) and i(µ− T ) ≤ 0.
ii) µ /∈ σewr(T ) if, and only if, µ− T ∈ Φr(X) and i(µ− T ) ≥ 0.
iii) σew(T ) = σewl(T ) ∪ σewr(T ).

Lemma 1.2. [7, Lemma 5.1.1] Let T ∈ C(X) such that 0 ∈ ρ(T ). Then, for µ 6= 0 we have µ ∈ σei(T ) if, and only
if, 1

µ ∈ σei(T
−1), i = wl,wr.

Theorem 1.3. [6, Theorem 2.3] Let T ∈ C(X,Y ), then
i) T ∈ Φl(X,Y ) if, and only if, there exist S ∈ L(Y,X) et K ∈ K(X) such that

R(S) ∪R(K) ⊂ D(T )

and
ST = I −K on D(T ).

ii) T ∈ Φr(X,Y ) if, and only if, there exist S ∈ L(Y,X) et K ∈ K(Y ) such that R(S) ⊂ D(T ), ST and KT are
continuous, and

TS = I −K.

Theorem 1.4. [6, Theorem 2.5] Let A ∈ C(Y,Z), B ∈ C(X,Y ), then
i) If A ∈ Φl(Y,Z), B ∈ Φl(X,Y ) and D(AB) = X , then AB ∈ Φl(X,Z) and

i(AB) = i(A) + i(B).

ii) If A ∈ Φr(Y,Z), B ∈ Φr(X,Y ) and AB is closed, then AB ∈ Φr(X,Z) and

i(AB) = i(A) + i(B).

Theorem 1.5. [6, Theorem 2.7] If A ∈ Φl(X) (resp.Φr(X)) and K ∈ K(X), then A+K ∈ Φl(X) (resp. Φr(X))

and
i(A+K) = i(A).

Theorem 1.6. [16, Theorem 6] Let X,Y and Z be a Banach spaces, T ∈ L(X,Y ) and S ∈ L(Y, Z).

(i) If ST ∈ Φ+(X,Z), then T ∈ Φ+(X,Y ).
(ii) If ST ∈ Φ−(X,Z), then S ∈ Φ−(Y, Z).
(iii) If ST ∈ Φ(X,Z), then T ∈ Φ+(X,Y ) and S ∈ Φ−(Y,Z).

Definition 1.7. [15] An operator T ∈ C(X), is said to be demicompact if for every bounded sequence {ϕn}
in D(T ) such that ϕn − Tϕn → ϕ ∈ X , there exist a subsequence of {ϕn}which converge to x.

We denote DC(X) the concept of demicompact operators and we define the following sets:

ΛX = {T ∈ C(X) such that υT ∈ DC(X) whenever υ ∈ [0, 1]},

and
ΓX = {T ∈ C(X) such that AT ∈ ΛX for every A ∈ L(X)}.

Remark 1.8. It is clear that all the sets DC(X), ΛX and ΓX contain K(X).

Theorem 1.9. [5] Let T ∈ C(X), then T is demicompact if, and only if, I − T ∈ Φ+(X).



Pan-Amer. J. Math. 3 (2024), 19 4

Theorem 1.10. [4, Theorem 3.2] Let T ∈ C(X). If T ∈ ΛX then I − T ∈ Φ(X) of index zero.

Proposition 1.1. [10, Proposition 2.1] Let A ∈ C(X), B ∈ C(Y,X), C ∈ C(X,Y ) and D ∈ C(Y ). We suppose
that A and D are demicompact, B is compact and C is bounded. Then,

(i) T =

(
A 0

0 D

)
∈ DC(X), and

(ii) A =

(
A B

C D

)
∈ DC(X).

Corollary 1.1. [10, Corollary 2.1] Let A ∈ C(X), B ∈ C(Y,X), C ∈ C(X,Y ) and D ∈ C(Y ). We suppose that
A and D are demicompact operators, B is bounded and C is compact, then A ∈ DC(X × Y ). In addition, if
A ∈ ΛX and D ∈ ΛY , then A ∈ ΛX×Y .

2. STABILITY OF LEFT AND RIGHT WEYL SPECTRUM

Now, we will investigate the Weyl essential spectra of unbounded linear operators by using the concept
of demicompactness.

Lemma 2.1. Let A ∈ C(X). Then,
i) if A ∈ Φl(X) and B ∈ ΓX , then A+B ∈ Φl(X) and,

i(A+B) = i(A).

ii) if A ∈ Φr(X) and B ∈ ΓX , then A+B ∈ Φr(X) and,

i(A+B) = i(A).

Proof 2.1. let A ∈ Φl(X), then by using Theorem 1.3, there exists Al ∈ L(X) and K ∈ K(X) such that

AlA = I −K, on D(A).

Hence,
Al(A+B) = I −K +AlB, on D(A).

Since B ∈ ΓX , it means that AlB ∈ ΛX , then by applying Theorem 1.10, we get I +AlB ∈ Φ(X) and

i(I +AlB) = 0.

Since K is compact, then Theorem 1.5 imply that Al(A+B) ∈ Φ(X), andR(Al)∪R(AlB −K) ⊂ D(A). By
referring to Theorem 1.3, we obtain (A+B) ∈ Φl(X).
Let XA = (D(A), ‖ · ‖) be a Banach space, where

‖x‖A = ‖x‖+ ‖Ax‖.

We consider A from XA into X . We denoted Â. Clearly Â + B̂ and B̂ are bounded operator from XA into
X . Accordingly, we obtain the following equalities :

R(B̂) = R(B),

andR(Â+ B̂) = R(A+B).

α(Â) = α(A),

β(B̂) = β(B),

α(Â+ Â) = α(A+B), β(Â+ B̂) = β(A+B),

Obviously, K̂ and Âl are bounded on XA.We can write

ÂlÂ = IXA
− K̂.
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ÂlÂ ∈ Φ(XA) and i(ÂlÂ) = 0. On the other hand,

i(Âl(Â+ B̂)) = i(Al(A+B)).

Hence, Âl is Fredholm if, and only if, Â is Fredholm if, and only if, Â+ B̂ is Fredholm. We conclude that

i(A+B) = i(Â+ B̂) = i(Â) = i(A).

(ii) This assertion is checked in the same way as in (i).

Theorem 2.2. Let A ∈ C(X). If B ∈ ΓX , then
(i) σewl(A+B) = σewl(A).

(ii) σewr(A+B) = σewr(A).

Proof 2.2. Let µ /∈ σewl(A), then by Theorem 1.1, we get µ − A ∈ Φl(X) and i(µ − A) ≤ 0. Since B ∈ ΓX ,
hence By Lemma 2.1, we obtain µ− A− B ∈ Φl(X) and i(µ− A− B) ≤ 0. The opposite inclusion follows
by symmetry and, we conclude that

σewl(A+B) = σewl(A).

(ii) The proof of (ii) may be checked in a similar way to that (i).

Theorem 2.3. Let A and B ∈ C(X) such that the resolvent of A and B are not empty. If, for every µ ∈ ρ(A)∩ρ(B),
(µ−A)−1 − (µ−B)−1 ∈ Γ(X), then

σewl(A) = σewl(B)

and

σewr(A) = σewr(B).

Proof 2.3. Let µ ∈ ρ(A) ∩ ρ(B). For λ 6= 0, We have the following equality

λ− µ+A = −λ(λ−1 − (µ−A)−1)(µ−A).

Since (µ−A) is one to one, then

α(λ− µ+A) = α(λ−1 − (µ−A)−1)

and

R(λ− µ+A) = R(λ−1 − (µ−A)−1).

This show that λ− µ+A ∈ Φl(X) if, and only if, (λ−1 − (µ−A)−1) ∈ Φl(X). Then λ ∈ Φl(µ−A) if, and only
if, λ−1 ∈ Φl(µ−A)−1 , and i(λ− µ+A) = i(λ−1 − (µ−A)−1).
Let λ ∈ Φl(µ−A), it means that λ−1 ∈ Φl(µ−A)−1 . Since (µ − A)−1 − (µ − B)−1 ∈ Γ(X), then by combining
Lemma 2.2 with Lemma 1.2, we obtain λ−1 ∈ Φl(µ−B)−1 , which equivalent to λ ∈ Φl(µ−B), and i(λ−µ+A) =

i(λ− µ+B). Hence

σewl(A) = σewl(B).

(ii)The proof of (ii) may be checked in a similar way to that (i).

Definition 2.4. Let T ∈ C(X). T is called power demicompact if there exists n ∈ N∗ satisfying Tn ∈ DCX .

Theorem 2.5. Let λA ∈ C(X) be a power demicompact for every λ ∈ [0, 1], then I −A ∈ Φ(X) and i(I −A) = 0.
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Proof 2.4. Since λA is power demiompact for every λ ∈ [0, 1], then there is a n ∈ N∗ satisfying (λA)n ∈
DCX . It follows by Lemma 1.10, that I − (λA)n is Fredholm with index zero. On other hand, we have the
following equations:

I − (λA)n = (I − λA)(I + λA+ ...+ λn−1An−1)

= (I + λA+ ...+ λn−1An−1)(I − λA).

Hence, from Lemma 1.6, we obtain that I − (λA) is Fredholm and i(I − λA) = 0. Now, by stability results
of Kato [11] , the index of I − (λA) is continuous in λ. Since i(I − λA) ∈ N,then it is constant fore very
λ ∈ [0, 1]. Obviously, i(I − λA) = i((I −A) = i(I) = 0, hence i(I − λA) = 0.

Corollary 2.1. Let A ∈ C(X) be a power demicompact, then I −A ∈ Φ+(X).

Proof 2.5. We have

I −An = (I +A+ ...+An−1)(I −A).

then, by applying Theorem 1.6 (i), we conclude that I −A ∈ Φ+(X).

3. AN APPLICATION TO A TWO-GROUP TRANSPORT OPERATORS

Assume that D ⊂ RN , and let dµ be a measure on RN satisfying dµ(0) = 0. The support of dµ is denoted
as V and is referred to as the velocity space. For any (x, v) ∈ D × V , we examine the following neutron
transport equations:

(3.1)
∂f

∂t
+ v

∂f

∂x
+ σ(x, v)f(x, v, t) = Kf

subject to boundary and initial conditions

f(t, ·, ·)|Γ− = 0, f(0, x, v) = f0(x, v)

where
Γ− = {(x, v) ∈ ∂D × V, vn(x) < 0}

and n(x) is the outward normal at x ∈ ∂D.
The collision frequency at position x for neutrons traveling at velocity v is represented as σ(x, v). The
collision operator, referred to as K, is known for its property of being localized in relation to the spatial
variable x within the domain D. We can write eq. 3.1 as an abstract Cauchy problem

(3.2)
df

dt
= Tf +Kf, f(0) = f0

in the space
X = Lp(D × V ; dxdµ(v)) (1 ≤ p <∞)

The operator T is called streaming operator and defined by:

Tf = −v ∂f
∂x
− σ(x, v)f(x, v)

in domain
D(T ) = {f ∈ Lp(D × V ); v

∂f

∂x
∈ Lp(D × V ); f|Γ− = 0}.

We will suppose that the collision frequency is positive and bounded

σ(·, ·) ∈ L∞+ (D × V )

It is known that T generates an explicit c0-semigroup

θ(t)ϕ = e−
∫ t
0
σ(x−τv,v)ϕ(x− tv, v)χ(t < s(x, v)).
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Where

s(x, v) = inf{s > 0;x− sv /∈ D}.

We recall that the essential type of θ(t); t > 0) is given by

η = − lim
t→∞

ess. inf
t<s(x,v

t−1

∫ t

0

σ(x− sv, v)ds.

If D is bounded, σ(θ(t)) = {µ; |µ| ≤ eηt}

σ(θ(t)) = {µ;Reµ ≤ η}.

We observe that if 0 /∈ D (i.e. the velocities are bounded away from zero) and if D is bounded, then
U(t); t ≥ 0 is nilpotent (it vanishes for t > d

vmin
where d is the diameter of D and vmin is the minimwn

speed) and therefore η = −∞. If 0 ∈ D, D is bounded, and if the collision frequency is homogeneous, then

η = − lim inf
v→0

σ(v).

For more explication concerning the following two-group transport operators, the reader may refer to [7].
Let 1 < p <∞, we introduce the space

Xp := Lp[(−a, a)× (−1, 1); dxdv] (0 ≤ a <∞).

Let the following two-group transport operator defined on Xp ×Xp,

AH = T H +K,

where

T H
(
ψ1

ψ2

)
=

 −v ∂ψ1(x, v)

∂x
− σ1(v)ψ1(x, v) 0

0 −v ∂ψ2(x, v)

∂x
− σ2(v)ψ2(x, v)


=

(
TH1 0

0 TH2

)(
ψ1

ψ2

)
and

K =

(
K11 K12

K21 K22

)
,

where Kij are bounded on Xp and defined by:

(3.3)


Kij : Xp −→ Xp

ψ −→
∫ 1

−1

kij(x, v, v
′)ψ(x, v′)dv′.

We define the streaming operator THj , j = 1, 2, by:THj ψ(x, v) = −v ∂ψj(x, v)

∂x
− σj(v)ψ(x, v)

D(THj ) = {ψ ∈Wp such that ψi = H(ψo)},

The scattering kernels kij : (−a, a) × (−1, 1) × (−1, 1) −→ R are assumed to be measurable. We have the
following definition.

Definition 3.1. Let Kij be the integral operator defined by (3.3). Then, Kij is said to be regular if
{kij(x, ·, v′) such that (x, v′) ∈ (−a, a)× (−1, 1)} is a relatively compact subset of Lp(−1, 1), p > 1.
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Theorem 3.2. [13, Theorem 4.1] Let 1 < p < ∞ and let D be bounded. We assume that dµ is such
that the hyperplanes have zero dµ-measure and that the collision operator is regular. Then Kij(λ − THi )−1 and
(λ− THi )−1Kij , i, j ∈ {1, 2}, are compact in Lp(D × V ; dxdµ(v)).

We introduce the following spaces:

Xo
p = Lp[{−a} × (−1, 0); |v|dv]× Lp[{a} × (0, 1); |v|dv] = Xo

1,p ×Xo
2,p,

Xi
p = Lp[{−a} × (0, 1); |v|dv]× Lp[{a} × (−1, 0); |v|dv] = Xi

1,p ×Xi
2,p,

and

Wp =

{
ψ ∈ Xp such that − v ∂ψ

∂x
∈ Xp

}
.

The boundary operator H is defined by:
H : Xo

1,p ×Xo
2,p −→ Xi

1,p ×Xi
2,p

H

 u1

u2

 =

 H11 H12

H21 H22

 ψ1

ψ2


with k, l ∈ {1, 2}, and Hkl ∈ L(Xi

l,p, X
o
k,p).

The function ψ(x, v) with position x and the cosine of direction of propagation v represents the density of
gas particles; that is, the x-direction of the particle and v is the cosine of the angle between the velocity
vector. The collision frequency satisfies

σj(·) ∈ L∞(−1, 1),

and ψo, ψi represent the outgoing and the incoming fluxes related by the boundary operator H ( ′o′ for the
outgoing and ′i′ for the incoming). By Remark 4.1 in [12], we determine the expression of the resolvent of
the operator TH1

. Let

λ∗j = lim inf
v→0

σj(v), j = 1, 2,

and

ηj =

−λ
∗
j , if ‖H‖ ≤ 1

−λ∗j +
1

2a
log(‖H‖) if ‖H‖ > 1.

Remark 3.3. If the operator H 6= 0 is strictly singular on Xp, that is for every infinite-dimensional subspace
F , the restriction of H to F is not an homeomorphism, then by using Theorem 3.3 in [1] we obtain:

σei(T
H
j ) = {λ ∈ C such that Re λ ≤ −λ∗j}, for every i ∈ {l, r, wl, wr}.

We will suppose that the operator H 6= 0 is strictly singular on Xp.

Theorem 3.4. If K11,K22 ∈ Γ(Xp), and K21 or K12 ∈ K(Xp), then

σi(AH) = {λ ∈ C such that Re λ ≤ min(−λ∗1,−λ∗2)}, for every i = {ewl, ewr}.

Proof 3.1. let λ /∈ σewl(T H), then λ−T H ∈ φl(Xp×Xp), it means that λ−TH1 ∈ φl(Xp) and λ−TH2 ∈ φl(Xp).
Using Theorem 1.3, there exist T l1, T l2 ∈ L(Xp), and K1,K2 ∈ K(Xp), respectively, such that

T l1(TH1 − λ) = I −K1, on D(TH1 ),

and

T l2(TH2 − λ) = I −K2, on D(TH2 ).
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Now, we can define Tl, and K, respectively, on the following form:

Tl =

(
T l1 0

0 T l2

)
, K =

(
K1 0

0 K2

)
.

Hence, we have the relation
Tl(λ− T H) = I −K on D(T H).

We calculate

TlK =

(
T l1K11 T l2K12

T l1K21 T l2K22

)
.

Since K11,K22 ∈ Γ(Xp), then T l1K11, T
l
2K22 ∈ Λ(Xp). In addition, K21 or K12 ∈ K(Xp), then

T l1K21 or T l2K12 ∈ K(Xp). It follows from Corollary 1.1, that

TlK ∈ Λ(Xp ×Xp),

which imply that K ∈ Γ(Xp ×Xp). Now, by applying Theorem 2.2, we obtain

σi(AH) = σi(T H) = {λ ∈ C such that Re λ ≤ min(−λ∗1,−λ∗2)}.

Theorem 3.5. If K21 and K12 are regular, then

σei(AH) ⊆ {λ ∈ C such that Re λ ≤ min(−λ∗1,−λ∗2)}, for every i = {ewl, ewr}.

Proof 3.2. let λ /∈ σl(T H), then λ−T H ∈ GL(Xp×Xp), it means that λ−TH1 ∈ GL(Xp) and λ−TH2 ∈ GL(Xp).
Now, We can define Tl on the following form:

Tl =

(
(λ− T l1)−1 0

0 (λ− T l2)−1

)
.

Hence, we have the relation Tl(λ− T H) = I . Now, we calculate

TlK =

(
λ− T l1)−1K11 (λ− T l1)−1K12

(λ− T 2
1 )−1K21 (λ− T 2

1 )−1K22

)
.

SinceK21 andK12 are regular, then by using Theorem 3.2 we obtain that ThenK21(λ−T )−l andK12(λ−T )−l

are compact in Lp(D × V ; dxdµ(v)) which imply that K ∈ Γ(Xp ×Xp). In the rest of the proof, we continue
by the same way as Theorem 3.4, and we get the relation

σewl(AH) ⊆ σl(T H) = {λ ∈ C such that Re λ ≤ min(−λ∗1,−λ∗2)}.

ii) By the same manner we prove

σewr(AH) ⊆ σr(T H) = {λ ∈ C such that Re λ ≤ min(−λ∗1,−λ∗2)}.
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