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ON THE ϕ-ORDER OF GROWTH OF SOLUTIONS OF COMPLEX LINEAR DIFFERENTIAL
EQUATIONS NEAR AN ESSENTIAL SINGULAR POINT

MANSOUR KHEDIM AND BENHARRAT BELAÏDI∗

ABSTRACT. In this article, we will take care about an interesting topic which is the study of the ϕ-order of growth
of solutions of some given linear differential equations with analytic coefficients in C − {z0}, where z0 ∈ C
represents an essential singularity. What we’ll do in this paper is a generalization of the work of Long and Zeng
by introducing the concept of the ϕ–order of growth near an essential singularity.

1. INTRODUCTION AND MAIN RESULTS

For k ≥ 2 a positive integer, consider the following complex linear differential equation

(1.1) f (k) +Ak−1(z) f (k−1) + · · ·+A1(z)f ′ +A0(z)f = 0,

where the coefficients are analytic in some complex domain. Since it’s hard to find some general forms
for the solutions of (1.1), many searchers are interested on the study of the behavior of such solutions
and specially the notion of the growth. The strongest tool they used for establishing their results is the
Nevanlinna theory which can be found in [8], [10], [17] and [24].

In [12,13], Juneja, Kapoor and Bajpai have investigated some properties of entire functions of [p, q]-order
and obtained some results about their growth. In order to maintain accordance with general definitions of
the entire function f of iterated p-order [16], Liu-Tu-Shi in [19] gave a minor modification of the original
definition of the [p, q]-order given in [12,13]. With this new concept of [p, q]-order, Liu, Tu and Shi [19] have
considered equation (1.1) with entire coefficients and obtained different results concerning the growth of
their solutions. After that, several authors used this new concept to investigate the growth of solutions
in the complex plane, in the punctured plane C̄ − z0 (here z0 represent a singular point) and in the unit
disc [1, 2, 6, 18, 20].

In [5], Chyzhykov and Semochko showed that both definitions of iterated order and of [p, q]-order have
the disadvantage that they do not cover arbitrary growth, i.e., there exist entire or meromorphic functions
of infinite [p, q]-order and p−th iterated order for arbitrary p ∈ N, i.e., of infinite degree, see Example 1.4
in [5]. They used more general scale, called the ϕ-order (see [5, 23]). In recent times, the concept of ϕ-order
is used to study the growth of solutions of complex differential equations which extend and improve many
previous results (see [3, 4, 14, 21].
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As in [20] Long and Zeng gave a generalization for the work of Fettouch and Hamouda (see [7]) by
introducing the [p, q]− order near an essential singular point. So, we find it very interesting to generalize
the work done in [20] by introducing the concept of the ϕ-order near an essential singular point, that is the
coefficients of (1.1) are all analytic in C− {z0}.
In order to develop our study, we firstly recall some related notations. Let f be a meromorphic function in
C− {z0}, where C = C ∪ {∞} is the whole extended complex plane, z0 ∈ C is some essential singularity.
The Nevanlinna fundamentals are the most important step here. For that reason, we dedicated this section
to fully developing the theory for a function with singular point z0. Define the counting function of f near
z0 by the following formula

Nz0(r, f) = −
∫ r

∞

n(t, f)− n(∞, f)

t
dt− n(∞, f) log r,

where n (t, f) denote the number of poles of f in the region {z ∈ C : t ≤ |z − z0|} ∪ {∞} counting its
multiplicities, we also define the proximity function near z0 by

mz0(r, f) =
1

2π

∫ 2π

0

log+ |f(z0 − reiφ)|dφ.

Summing up together, the characteristic function of f near z0 will be

Tz0(r, f) = mz0(r, f) +Nz0(r, f).

Definition 1.1. Let f be a nonconstant meromorphic function in C − {z0}. The function f is called a tran-
scendental or admissible meromorphic function in C− {z0} provided that

lim
r→0

Tz0(r, f)

log 1
r

= +∞

and f is a rational function in C− {z0} provided that

lim inf
r→0

Tz0(r, f)

log 1
r

< +∞.

Recently, Chyzhykov and Semochko [5] have given general definition of growth for an entire function
in the complex plane by introducing a new class of functions. So, as in [5], let φ be the class of positive and
unbounded increasing functions ϕ on [1,+∞) such that ϕ(et) is slowly growing, i.e.,

∀c > 0 : lim
t→+∞

ϕ(ect)

ϕ(et)
= 1.

Here some useful properties of a function ϕ ∈ φ.

Proposition 1.2. ( [5]) If ϕ ∈ φ, then the following hold:

(i) ∀δ > 0 : lim
x→+∞

logϕ−1((1 + δ)x)

logϕ−1(x)
= +∞,

(ii) ∀m > 0, k ≥ 0 : lim
x→+∞

ϕ−1(log xm)

xk
= +∞,

(iii) ∀c > 0, ϕ(ct) ≤ ϕ(tc) ≤ (1 + o(1))ϕ(t), t −→ +∞.

Definition 1.3. ( [5]) Let ϕ be an increasing unbounded function on [1,+∞) . The ϕ–orders of a meromor-
phic function f are defined by

ρ0ϕ(f) := lim sup
r→+∞

ϕ
(
eT (r,f)

)
log r

, ρ1ϕ(f) := lim sup
r→+∞

ϕ(T (r, f))

log r
.
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If f is an entire function, then the ϕ–orders are defined by

ρ̃0ϕ(f) := lim sup
r→+∞

ϕ(M(r, f))

log r
, ρ̃1ϕ(f) := lim sup

r→+∞

ϕ(logM(r, f))

log r
.

Proposition 1.4. ( [5]) Let ϕ ∈ Φ and f be an entire function. Then

ρiϕ(f) = ρ̃iϕ(f), i = 0, 1.

Below, we will define the ϕ–order of growth for a meromorphic function of f near a singular point.

Definition 1.5. Let ϕ be an increasing and unbounded function on [1,+∞). Then, the ϕ–orders of the
growth of a meromorphic function in C− {z0} are given by

ρ0ϕ (f, z0) = lim sup
r→0

ϕ
(
eTz0 (r,f)

)
log 1

r

, ρ1ϕ (f, z0) = lim sup
r→0

ϕ (Tz0(r, f))

log 1
r

.

If f is an analytic function in C− {z0}, then the ϕ–orders are defined by

ρ̃0ϕ(f, z0) = lim sup
r→0

ϕ(Mz0(r, f))

log 1
r

, ρ̃1ϕ(f, z0) = lim sup
r→0

ϕ(logMz0(r, f))

log 1
r

,

here Mz0(r, f) = max{|f(z)| : |z − z0| = r}.

Remark 1.6. A motivational observation of the above definition is that ϕ (r) = log log r ∈ φ, it’s also obvious
that ρ̃iϕ (f, z0) = ρiϕ (f, z0) (i = 1, 2) for an analytic function in C− {z0}. In indeed, by Lemma 2.2 in [7], we
know that if f is an analytic function in C− {z0} and g(w) = f(z0 − 1

w ), then g(w) is an entire function in C
and we have T (R, g) = Tz0(r, f), where R = 1

r . So, by using Proposition 1.4, we get the conclusion.

Definition 1.7. Let ϕ be an increasing and unbounded function on [1,+∞). Then, the ϕ–types of the growth
of an analytic function in C− {z0}with ρ̃0ϕ(f, z0) ∈ (0,+∞) and ρ̃1ϕ(f, z0) ∈ (0,+∞) are defined by

τ̃0ϕ (f, z0) = lim sup
r→0

exp {ϕ (Mz0 (r, f))}
1

r
ρ̃0ϕ(f,z0)

,

τ̃1ϕ (f, z0) = lim sup
r→0

exp {ϕ (logMz0 (r, f))}
1

r
ρ̃1ϕ(f,z0)

.

Recently, Long and Zeng have investigated the [p, q]-order of growth of solutions of equation (1.1) and
obtained some estimations of [p, q]-order of growth of solutions of such equation which is a generalization
of previous results from Fettouch and Hamouda. Before stating the results of Long and Zeng, we give here
the definitions of the [p, q]-order and the [p, q]-type of a meromorphic function near a singular point.

Definition 1.8. ( [20]) Let p, q be two integers such that p ≥ q ≥ 1, and let f be a meromorphic function in
C− {z0}. Then, the [p, q]−order of growth is defined by

ρ[p,q],T (f, z0) = lim sup
r−→0

log+
p Tz0(r, f)

logq
1
r

.

If f is an analytic function in C− {z0}, then the [p, q]−order of growth is defined by

ρ[p,q],M (f, z0) = lim sup
r−→0

log+
p+1Mz0(r, f)

logq
1
r

,

where Mz0(r, f) = max {|f(z)| : |z − z0| = r}.

Remark 1.9. ( [20]) Suppose that f is an analytic function in C − {z0}. Then, by using Lemma 2.2 in [7],
we get ρ[p,q],M (f, z0) = ρ[p,q],T (f, z0). Therefore, in the sequel, we denote ρ[p,q](f, z0) = ρ[p,q],M (f, z0) =

ρ[p,q],T (f, z0).
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Definition 1.10. ( [20]) Let p,q be two integers such that p ≥ q ≥ 1, and let f be a meromorphic function in
C− {z0}with ρ = ρ[p,q](f, z0) ∈ (0,∞). Then, the [p, q]−type of f is defined by

τ[p,q](f, z0) = lim sup
r→0

log+
p−1 Tz0(r, f)

(logq−1
1
r )ρ

.

If f is an analytic function in C− {z0}with ρ = ρ[p,q](f, z0) ∈ (0,∞), then the [p, q]−type of f is defined by

τ[p,q],M (f, z0) = lim sup
r→0

log+
p Mz0(r, f)

(logq−1
1
r )ρ

.

Theorem 1.11. ( [20]) Let A0(z), A1(z), ..., Ak−1(z) be analytic functions in C − {z0} satisfying
max

{
ρ[p,q] (Aj , z0) : j 6= 0

}
< ρ[p,q] (A0, z0) < ∞. Then, every nontrivial solution f of (1.1) that is analytic

in C− {z0}, satisfies ρ[p+1,q](f, z0) = ρ[p,q](A0, z0).

Theorem 1.12. ( [20]) Let A0(z), A1(z), ..., Ak−1(z) be analytic functions in C − {z0} satisfying the following
conditions

max
{
ρ[p,q](Aj , z0) : j 6= 0

}
≤ ρ[p,q](A0, z0) <∞,

max
{
τ[p,q],M (Aj , z0) : ρ[p,q],M (Aj , z0) = ρ[p,q](A0, z0) > 0

}
< τ[p,q],M (A0, z0) <∞.

Then, every nontrivial solution f of (1.1) that is analytic in C− {z0}, satisfies

ρ[p+1,q](f, z0) = ρ[p,q](A0, z0).

Theorem 1.13. ( [20]) Let A0(z), A1(z), ..., Ak−1(z) be analytic functions in C− {z0} satisfying

max
{
ρ[p,q](Aj , z0) : j 6= s

}
< ρ[p,q] (As, z0) <∞.

Then, every nontrivial solution f of (1.1) that is analytic in C− {z0}, satisfies

ρ[p+1,q](f, z0) ≤ ρ[p,q] (As, z0) ≤ ρ[p,q](f, z0).

Here is the full generalization of the work of Long and Zeng given in [20] by using the concept of the
ϕ-order. The following theorem seems like to be a classical version that describes the impact of A0.

Theorem 1.14. Let A0(z), A1(z), ..., Ak−1(z) be analytic functions in C − {z0}, all together satisfying
max

{
ρ̃0ϕ (Aj , z0) : j 6= 0

}
< ρ̃0ϕ (A0, z0) < ∞. Then, every nontrivial solution f of (1.1) that is analytic in

C− {z0}, satisfies ρ̃1ϕ(f, z0) = ρ̃0ϕ(A0, z0).

The following theorem discusses the case when A0 still a dominant coefficient but not the only one.

Theorem 1.15. Let A0(z), A1(z), ..., Ak−1(z)be analytic functions in C− {z0} all together satisfying the following
conditions

max
{
ρ̃0ϕ(Aj , z0) : j 6= 0

}
≤ ρ̃0ϕ(A0, z0) <∞,

max
{
τ̃0ϕ(Aj , z0) : ρ̃0ϕ(Aj , z0) = ρ̃0ϕ(A0, z0) > 0

}
< τ̃0ϕ(A0, z0) <∞.

Then, every nontrivial solution f of (1.1) that is analytic in C− {z0}, satisfies

ρ̃1ϕ(f, z0) = ρ̃0ϕ(A0, z0).

For the last theorem, we suppose that the dominant coefficient runs over the set {0, 1, 2, ..., k − 1}.



Pan-Amer. J. Math. 3 (2024), 17 5

Theorem 1.16. Let A0(z), A1(z), ..., Ak−1(z) be analytic functions in C − {z0}. Suppose there exists an integer
s, 0 ≤ s ≤ k − 1 such that the following condition holds

max
{
ρ̃0ϕ(Aj , z0) : j 6= s

}
< ρ̃0ϕ (As, z0) <∞.

Then, every transcendental solution f of (1.1) that is analytic in C− {z0}, satisfies

ρ̃1ϕ(f, z0) ≤ ρ̃0ϕ (As, z0) ≤ ρ̃0ϕ(f, z0).

Remark 1.17. The condition that f is analytic in C − {z0} is necessary. The following example shows that
there exists a solution f of (1.1) such that f (z) is not analytic in C−{z0} provided that all coefficients Aj(z)
(j = 0, ..., k − 1) of (1.1) are analytic in C− {z0}. For instance, we consider the equation

(1.2) f ′′ + exp2

{
1

z0 − z

}
f ′ +

2

z0 − z

(
exp2

{
1

z0 − z

}
− 1

z0 − z

)
f = 0.

The function f (z) = (z0−z)2 solves (1.2), and f (z) is not analytic in C−{z0}. So, in our results, we suppose
always that f (z) is analytic in C− {z0}.

2. PRELIMINARY RESULTS

Now, we are going to focus on the main preliminaries needed for establishing the proofs of our results.
We firstly clarify some notations. Denote, the logarithmic measure of a set E ⊂ (0, 1) by

ml(E) =

∫
E

dt

t
.

We also denote by νg (r) the central index of an entire function g in C, for more properties, see ( [11], p.
33-35). Finally, denote the central index of an analytic function f in C− {z0} by νz0(r, f), reader may check
( [9], p. 996).

Lemma 2.1 ( [9], Theorem 8). Let f be nonconstant analytic function in C − {z0}. Then, there exists a set E0 ⊂
(0, 1) that has finite logarithmic measure, such that for all j = 0, 1, . . . , k, we have

f (j)(zr)

f(zr)
=

(
νz0(r, f)

z0 − zr

)j
(1 + o(1)) ,

as r −→ 0, r /∈ E0, where zr is a point in the circle |z − z0| = r that satisfies |f(zr)| = max{|f(z)| : |z − z0| = r}.

Lemma 2.2 ( [20], Lemma 2.5). Let g : (0, 1) → R, h : (0, 1) → R be monotone decreasing functions such that
g(r) ≥ h(r) possibly outside an exceptional set E1 ⊂ (0, 1) that has finite logarithmic measure. Then, for any given
β > 1, there exists a constant 0 < r0 < 1 such that for all r ∈ (0, r0), we have g(rβ) ≥ h(r).

Lemma 2.3 ( [14]). Let ϕ ∈ Φ and f be an entire function. Then, we have

ρ̃1ϕ(f) = lim sup
r→+∞

ϕ(νf (r))

log r
.

Lemma 2.4. Let f be a nonconstant analytic function in C− {z0}. For a function ϕ ∈ φ one has

ρ̃1ϕ(f, z0) = lim sup
r→0

ϕ(νz0(r, f))

log 1
r

.

Proof. Set g (w) = f
(
z0 − 1

w

)
. As the function g is entire ( [9], Remark 7), it turns out that

νz0(r, f) = νg(R), R =
1

r
.

By Lemma 2.3, we have

ρ̃1ϕ(g) = lim sup
R→+∞

ϕ(νg(R)))

logR
.
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That gives

ρ̃1ϕ(f, z0) = ρ̃1ϕ(g) = lim sup
r→0

ϕ(νz0 (r, f))

log 1
r

.

�

Lemma 2.5 ( [7]). Let f be a nonconstant meromorphic function in C−{z0}, let γ > 1, ε > 0 be given real constants
and k ∈ N. Then there exist a set E2 ⊂ (0, r1], r1 ∈ (0, 1) having finite logarithmic measure and a constant λ > 0

that depends on γ and k such that for all |z − z0| = r ∈ (0, r1] \ E2, we have∣∣∣∣f (k) (z)

f (z)

∣∣∣∣ ≤ λ [ 1

r2
Tz0(

r

γ
, f) log Tz0 (r, f)

]k
.

Lemma 2.6. Let f be a nonconstant analytic function in C − {z0} with ρ̃0ϕ(f, z0) = ρ. Then, there exists a set
E3 ⊂ (0, 1) with ml(E3) = +∞ such that for all |z − z0| = r ∈ E3, we have

lim
r→0

ϕ(Mz0(r, f))

log 1
r

= ρ.

Proof. By Definition 1.5, there exists a sequence {rn}∞n=1 tending to 0 satisfying rn+1 <
n
n+1rn and

lim
n→+∞

ϕ(Mz0(rn, f))

log 1
rn

= ρ.

Therefore, there exists n0 ∈ N such that for all n ≥ n0 and for every r ∈
[

n
n+1rn, rn

]
, we get

ϕ(Mz0(rn, f))

log 1
n
n+1 rn

≤ ϕ(Mz0(r, f))

log 1
r

≤
ϕ(Mz0( n

n+1rn, f))

log 1
rn

.

Therefore, since

lim
n→+∞

ϕ(Mz0(rn, f))

log 1
n
n+1 rn

= lim
n→+∞

ϕ(Mz0( n
n+1rn, f))

log 1
rn

= ρ,

then yielding

lim
r→0

ϕ(Mz0(r, f))

log 1
r

= ρ

for all r ∈
[

n
n+1rn, rn

]
. By setting E3 =

+∞⋃
n=n0

[
n
n+1rn, rn

]
, the conclusion follows since E3 fulfills

ml(E3) =

+∞∑
n=n0

rn∫
n
n+1 rn

dt

t
=

+∞∑
n=n0

log(1 +
1

n
) = +∞.

�

By analogous logic, we establish the same lemma with the following limit below.

Lemma 2.7. Let f be a nonconstant meromorphic function in C− {z0} with ρ0ϕ(f, z0) = ρ. Then, there exists a set
E4 ⊂ (0, 1) with ml(E4) = +∞ such that for all |z − z0| = r ∈ E4, we have

lim
r→0

ϕ(eTz0 (r,f))

log 1
r

= ρ.

Lemma 2.8. Let f be a nonconstant analytic function in C − {z0} with ρ̃0ϕ(f, z0) = ρ ∈ (0,∞) and τ̃0ϕ(f, z0) =

τ ∈ (0,∞). Then, for any given β ∈ (0, τ), there exists a set E5 ⊂ (0, 1) of infinite logarithmic measure such that
for |z − z0| = r ∈ E5, we have

ϕ (Mz0 (r, f)) > log

(
β

rρ

)
.
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Proof. By Definition 1.7, there exists a sequence {rm}∞m=1 tending to 0 satisfying rm+1 <
m
m+1rm and

lim
m→+∞

exp {ϕ(Mz0(rm, f))}
1
rρm

= τ.

So, there exists a positive integer m0 such that for all m ≥ m0 and for any given 0 < ε < τ − β, we have

(2.1) ϕ(Mz0(rm, f)) ≥ log

(
τ − ε
rρm

)
.

Since

lim
m→+∞

(
m

m+ 1

)ρ
= 1,

then for any given β < τ − ε, there exists a positive integer m1 such that for all m ≥ m1, we have

(2.2)
(

m

m+ 1

)ρ
>

β

τ − ε
.

Take m ≥ m2 = max{m1,m0}. By (2.1) and (2.2), for any r ∈
[

m
m+1rm, rm

]
ϕ(Mz0(r, f)) ≥ ϕ(Mz0(rm, f)) ≥ log

(
τ − ε
rρm

)

≥ log

(
τ − ε
rρ

(
m

m+ 1

)ρ)
> log

(
β

rρ

)
.

Set E5 =
+∞⋃
m=m2

[
m
m+1rm, rm

]
. Then there holds

ml(E5) =

+∞∑
m=m2

rm∫
m
m+1 rm

dt

t
=

+∞∑
m=m2

log(1 +
1

m
) = +∞.

�

Lemma 2.9. Let Aj(z) (j = 0, 1, ..., k − 1) be analytic functions in C− {z0} satisfying all together, the inequality

ρ̃0ϕ(Aj , z0) ≤ ρ <∞, j = 0, 1, ..., k − 1.

Then every nontrivial solution f of (1.1) that is analytic in C− {z0} satisfies ρ̃1ϕ(f, z0) ≤ ρ.

Proof. Suppose that f (6≡ 0) is a solution of equation (1.1) which is analytic in C − {z0}. The equation (1.1)
implies

(2.3)
∣∣∣∣f (k)f

∣∣∣∣ ≤ |Ak−1(z)|
∣∣∣∣f (k−1)f

∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣f ′f
∣∣∣∣+ |A0(z)| .

By Definition 1.5 and since one has the bound ρ̃0ϕ(Aj , z0) ≤ ρ (j = 0, 1, ..., k − 1), then for any given ε > 0,
there exists r2 ∈ (0, 1) such that for all |z − z0| = r ∈ (0, r2), we get

(2.4) |Aj(z)| ≤ ϕ−1
((

ρ+
ε

2

)
log

1

r

)
, ( j = 0, 1, ..., k − 1) .

By Lemma 2.1, there exists a setE0 ⊂ (0, 1) that has finite logarithmic measure, such that for all j ∈ {1, ..., k}
and r /∈ E0, we have

(2.5)
∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ = |1 + o(1)|
(
νz0(r, f)

r

)j
, r → 0,
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for z in the circle |z − z0| = r and |f(z)| = max|z−z0|=r |f(z)|. Together, combining the three estimations
(2.3), (2.4) and (2.5), we get for all |z − z0| = r ∈ (0, r2) \ E0 and |f(z)| = Mz0(r, f)

(2.6) νz0 (r, f) ≤ krϕ−1
((

ρ+
ε

2

)
log

1

r

)
|1 + o(1)| ≤ ϕ−1

(
(ρ+ ε) log

1

r

)
.

Finally by Lemma 2.2, Lemma 2.4 and (2.6), the desired conclusion follows. �

Then the following lemma helps to complete the proof of the third theorem.

Lemma 2.10 ( [20]). Let f be a nonconstant meromorphic function in C − {z0}. Then f enjoys the following two
properties: (i) Tz0(r, 1f ) = Tz0(r, f) +O(1),

(ii) Tz0(r, f ′) < O
(
Tz0(r, f) + log 1

r

)
, r ∈ (0, r3] \ E6, where E6 ⊂ (0, r3] with ml (E6) <∞.

Lemma 2.11. Let ϕ ∈ Φ and f, g be two analytic function in C− {z0}. Then
i)

ρ̃jϕ(f + g, z0) ≤ max
{
ρ̃jϕ(f, z0), ρ̃jϕ(g, z0)

}
for j = 0, 1,

ρ̃jϕ(fg, z0) ≤ max
{
ρ̃jϕ(f, z0), ρ̃jϕ(g, z0)

}
for j = 0, 1.

ii) If ρ̃jϕ(g, z0) < ρ̃jϕ(f, z0) , (j = 0, 1), then ρ̃jϕ(f + g, z0) = ρ̃jϕ(fg, z0) = ρ̃jϕ(f, z0) for j = 0, 1.

iii)

ρ̃jϕ(f ′, z0) = ρ̃jϕ(f, z0) for j = 0, 1.

Proof. By Lemma 2.2 in [7], we know that if f is an analytic function in C−{z0} and g(w) = f(z0− 1
w ), then

g(w) is an entire function in C and we have T (R, g) = Tz0(r, f), where R = 1
r . So, by using Theorem 2.1 and

Theorem 2.7 in [15], we get the conclusions of Lemma 2.11. �

The next lemma finishes the preliminaries.

Lemma 2.12. Let f1, f2 be analytic functions in C−{z0} satisfying ρ0ϕ(f1, z0) = ρ1 > 0, ρ0ϕ(f2, z0) = ρ2 <∞ and
ρ2 < ρ1. Then, there exists a set E7 ⊂ (0, 1) having infinite logarithmic measure such that for all |z − z0| = r ∈ E7

one has
lim
r→0

Tz0(r, f2)

Tz0(r, f1)
= 0.

Proof. By Definition 1.5, for any given ε with 0 < ε < ρ1−ρ2
2 , there exists r4 ∈ (0, 1) such that for all

|z − z0| = r ∈ (0, r4) the following holds

(2.7) Tz0(r, f2) ≤ logϕ−1
(

(ρ2 + ε) log
1

r

)
.

Concerning the Lemma 2.7, we deduce the existence of a set E4 that has infinite logarithmic measure such
that for all |z − z0| = r ∈ E4

(2.8) Tz0(r, f1) ≥ logϕ−1
(

(ρ1 − ε) log
1

r

)
.

Combining (2.7) and (2.8), it follows that for all |z − z0| = r ∈ E4 ∩ (0, r4) = E7, for sure E7 has infinite
logarithmic measure

0 ≤ Tz0(r, f2)

Tz0(r, f1)
≤

logϕ−1
(
(ρ2 + ε) log 1

r

)
logϕ−1

(
(ρ1 − ε) log 1

r

)
as ρ2 + ε < ρ1 − ε. By setting (ρ2 + ε) log 1

r = x, ρ1−ερ2+ε
= 1 + δ (δ > 0) and making use of Proposition 1.2 (i) ,

we get

lim
r→0

logϕ−1
(
(ρ2 + ε) log 1

r

)
logϕ−1

(
(ρ1 − ε) log 1

r

) = lim
r→0

logϕ−1
(
(ρ2 + ε) log 1

r

)
logϕ−1

(
ρ1−ε
ρ2+ε

(ρ2 + ε) log 1
r

)



Pan-Amer. J. Math. 3 (2024), 17 9

= lim
x→+∞

logϕ−1 (x)

logϕ−1 ((1 + δ)x)
= 0.

Therefore yielding

lim
r→0

Tz0(r, f2)

Tz0(r, f1)
= 0.

�

3. PROOF OF THE THEOREMS

Proof of Theorem 1.14.

Proof. Suppose that f (6≡ 0) is a solution of equation (1.1) which is analytic in C− {z0}. Set

α = max
{
ρ̃0ϕ(Aj , z0) : j 6= 0

}
< ρ = ρ̃0ϕ(A0, z0).

By Definition 1.5, for any given ε ∈
(
0, ρ−α2

)
, there exists r5 ∈ (0, 1) such that for all |z − z0| = r ∈ (0, r5) ,

we have

(3.1) |Aj(z)| ≤ ϕ−1
(

(α+ ε) log
1

r

)
, j = 1, 2, ..., k − 1.

By Lemma 2.6 for all ε given above, we conclude the existence a set E3 ⊂ (0, 1) with infinite logarithmic
measure such that for all |z − z0| = r ∈ E3 and |A0(z)| = Mz0(r,A0)

(3.2) |A0(z)| ≥ ϕ−1
(

(ρ− ε) log
1

r

)
.

By Lemma 2.5, there exist a set E2 ⊂ (0, r1] (r1 ∈ (0, 1)) that has finite logarithmic measure and a constant
λ > 0 that depends on γ > 1 such that for all |z − z0| = r ∈ (0, r1] \ E2 the following occurs

(3.3)
∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ ≤ λ( 1

r2
Tz0

(
r

γ
, f

)
log Tz0

(
r

γ
, f

))j
, j = 1, ..., k.

By (1.1), we get

(3.4) |A0(z)| ≤
∣∣∣∣f (k)f

∣∣∣∣+ · · ·+ |Aj(z)|
∣∣∣∣f (j)f

∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣f ′f
∣∣∣∣ .

As the last step, let E8 = (0, r1] ∩ (0, r5) ∩ E3 \ E2, obviously E8 has infinite logarithmic measure. Con-
sequently, the combination between (3.1), (3.2), (3.3) and (3.4) gives for any given ε ∈

(
0, ρ−α2

)
and for all

|z − z0| = r ∈ E8,

(3.5) ϕ−1
(

(ρ− ε) log
1

r

)
≤ λk

(
1

r
Tz0

(
r

γ
, f

))2k

ϕ−1
(

(α+ ε) log
1

r

)
.

Now, we prove that ρ1ϕ (f, z0) ≥ ρ. By contradiction, we suppose that

ρ1 = ρ1ϕ(f, z0) < ρ.

Then, for any given ε ∈
(
0,min

{
ρ−α
2 , ρ−ρ12

})
, there exists r6 ∈ (0, 1) such that for all |z − z0| = r ∈ (0, r6) ,

we have

(3.6) Tz0(r, f) ≤ ϕ−1
(

(ρ1 + ε) log
1

r

)
.

By (3.5) and (3.6), for any given ε ∈
(
0,min

{
ρ−α
2 , ρ−ρ12

})
and |z − z0| = r ∈ (0, r6) ∩ E8, we obtain

ϕ−1
(

(ρ− ε) log
1

r

)
≤ λk

r2k

(
ϕ−1

(
(ρ1 + ε) log

γ

r

))2k
ϕ−1

(
(α+ ε) log

1

r

)
.
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Since ρ− ε > max {ρ1 + ε, α+ ε} , we get

(3.7) ϕ−1
(

(ρ− ε) log
1

r

)
≤ λk

r2k

(
ϕ−1

(
max {ρ1 + ε, α+ ε} log

γ

r

))2k+1

.

Applying the logarithm on the both sides of (3.7), we find

2k log r

(2k + 1) logϕ−1
(
max {ρ1 + ε, α+ ε} log γ

r

)
+

logϕ−1
(
(ρ− ε) log 1

r

)
(2k + 1) logϕ−1

(
max {ρ1 + ε, α+ ε} log γ

r

)
(3.8) ≤ log λk

(2k + 1) logϕ−1
(
max {ρ1 + ε, α+ ε} log γ

r

) + 1.

Set ϕ−1
(
max {ρ1 + ε, α+ ε} log γ

r

)
= x. Then log r = − ϕ(x)

max{ρ1+ε,α+ε} + log γ and by using Karamata’s
theorem ([22]), ϕ(et) = to(1), t −→ +∞, we immediately get

lim
r→0

log r

logϕ−1
(
max {ρ1 + ε, α+ ε} log γ

r

)
= lim
x→+∞

(
− ϕ (x)

max {ρ1 + ε, α+ ε} log x
+

log γ

log x

)

(3.9) = lim
x→+∞

(
− (log x)

o(1)

max {ρ1 + ε, α+ ε} log x

)
= 0.

As we did earlier in Lemma 2.12, we have

(3.10) lim
r→0

logϕ−1
(
(ρ− ε) log 1

r

)
logϕ−1

(
max {ρ1 + ε, α+ ε} log γ

r

) = +∞.

The right hand side in (3.8) is finite, while the left hand side is infinite, thus a contradiction holds, i.e.,

ρ1ϕ (f, z0) ≥ ρ.

Thus, by Remark 1.6 and as ϕ ∈ φ, we obtain

ρ̃1ϕ (f, z0) ≥ ρ.

Finally, by using Lemma 2.9, we get
ρ̃1ϕ(f, z0) = ρ̃0ϕ(A0, z0).

�

Proof of Theorem 1.15.

Proof. Suppose that f ( 6≡ 0) is a solution of equation (1.1) which is analytic in C − {z0}. By an analogous
progress, set ρ̃0ϕ(A0, z0) = ρ, τ̃0ϕ(A0, z0) = τ . If max{ρ̃0ϕ (Aj , z0) : j = 1, ..., k − 1} < ρ̃0ϕ (A0, z0) = ρ, then
by Theorem 1.14, we obtain ρ̃1ϕ (f, z0) = ρ̃0ϕ (A0, z0). Suppose that max{ρ̃0ϕ (Aj , z0) : j = 1, 2, ..., k − 1} =

ρ̃0ϕ (A0, z0) = ρ (0 < ρ < +∞) and max{τ̃0ϕ (Aj , z0) : ρ̃0ϕ (Aj , z0) = ρ̃0ϕ (A0, z0) > 0} < τ̃0ϕ (A0, z0) = τ

(0 < τ < +∞). Then, there exists a set I ⊆ {1, 2, ..., k − 1} such that ρ̃0ϕ (Aj , z0) = ρ̃0ϕ (A0, z0) = ρ (j ∈ I)

and τ̃0ϕ (Aj , z0) < τ̃0ϕ (A0, z0) (j ∈ I) . Thus, we choose β1, β2 satisfying

max{τ̃0ϕ (Aj , z0) : (j ∈ I)} < β1 < β2 < τ̃0ϕ (A0, z0) = τ.

From Definition 1.7, there exists r7 ∈ (0, 1) such that for all |z − z0| = r ∈ (0, r7)

(3.11) |Aj (z)| ≤ ϕ−1
(

log
β1
rρ

)
(j ∈ I)
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and

(3.12) |Aj (z)| ≤ ϕ−1
(

log
1

rρ1

)
≤ ϕ−1

(
log

β1
rρ

)
(j ∈ {1, ..., k − 1} \ I) ,

where 0 < ρ1 < ρ. We now turns to Lemma 2.5, it claims the existence of a set E2 ⊂ (0, r1] (r1 ∈ (0, 1))

having finite logarithmic measure and a constant λ > 0 that depends on some given γ > 1 such that for all
|z − z0| = r ∈ (0, r1] \ E2, we have

(3.13)
∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ ≤ λ( 1

r2
Tz0

(
r

γ
, f

)
log Tz0

(
r

γ
, f

))j
, j = 1, ..., k.

By Lemma 2.8, there exists a setE5 ⊂ (0, 1) of infinite logarithmic measure such that for all |z − z0| = r ∈ E5

ϕ (Mz0(r,A0)) > log
β2
rρ

equivalently

(3.14) Mz0(r,A0) > ϕ−1
(

log
β2
rρ

)
.

Set E9 = E5 ∩ (0, r7) ∩ (0, r1] \ E2, for sure E9 has infinite logarithmic measure. Combining (3.11), (3.12),
(3.13) and (3.14) with (3.4) we get for all |z − z0| = r ∈ E9,

(3.15) ϕ−1
(

log
β2
rρ

)
≤ λk

(
1

r
Tz0(

r

γ
, f)

)2k

ϕ−1
(

log
β1
rρ

)
.

The last inequality implies ρ1ϕ(f, z0) ≥ ρ. To see why, we assume that ρ1ϕ(f, z0) < ρ. Then, there exists
r8 ∈ (0, 1) such that for all |z − z0| = r ∈ (0, r8) , we have

(3.16) Tz0(r, f) ≤ ϕ−1
(
ρ2 log

1

r

)
for some ρ2 < ρ. Consequently, by (3.15) and (3.16), for all |z − z0| = r ∈ E9 ∩ (0, r8) , we get

ϕ−1
(

log
β2
rρ

)
≤ λk

r2k

(
ϕ−1

(
log

γρ2

rρ2

))2k

ϕ−1
(

log
β1
rρ

)

≤ λk

r2k

(
ϕ−1

(
log

β1
rρ

))2k+1

.

Applying the logarithm on both sides, we find

2k log r

(2k + 1) logϕ−1
(

log β1

rρ

)

(3.17) +
logϕ−1

(
log β2

rρ

)
(2k + 1) logϕ−1

(
log β1

rρ

) ≤ log (λk)

(2k + 1) logϕ−1
(

log β1

rρ

) + 1.

As we did before
lim
r→0

log r

logϕ−1
(

log β1

rp

) = 0

and

lim
r→0

logϕ−1
(

log β2

rρ

)
(2k + 1) logϕ−1

(
log β1

rρ

) = +∞

because β2 > β1. Since the right hand side of the inequality (3.17) is bounded by 1, thus taking limits yield-
ing +∞ ≤ 1 which is a contradiction. Hence, by Remark 1.6 and as ϕ ∈ φ, we get ρ1ϕ(f, z0) = ρ̃1ϕ(f, z0) ≥ ρ.
Finally, by applying Lemma 2.9, the desired conclusion of Theorem 1.15 will be proved. �
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Proof of Theorem 1.16.

Proof. Let that the dominant coefficient is unique and runs over the set {0, 1, ..., k−1}. In other words, there
exists s ∈ {0, 1, ..., k − 1} such that

max
{
ρ̃0ϕ(Aj , z0) : j 6= s

}
< ρ̃0ϕ(As, z0).

Assume that f(z) 6≡ 0 is a rational solution of (1.1) which is analytic in C − {z0}. Then f (s)(z) 6≡ 0 and by
(1.1), we have

As (z) f (s) (z) = −f (k) (z)−
k−1∑
j=0
j 6=s

Aj (z) f (j) (z) .

By Lemma 2.11, it follows that

ρ̃0ϕ(As, z0) = ρ̃0ϕ(Asf
(s), z0) = ρ̃0ϕ

−f (k) − k−1∑
j=0, j 6=s

Ajf
(j), z0


≤ max
j=0,1,··· ,k−1, j 6=s

{
ρ̃0ϕ(Aj , z0)

}
,

which is a contradiction. Hence, f must be a transcendental.
Suppose that f is a transcendental solution of equation (1.1) which is analytic in C − {z0}. The equation
(1.1) yields

(3.18) mz0(r,As) ≤
k∑

j=0, j 6=s

mz0

(
r,
f (j)

f (s)

)
+

k−1∑
j=0, j 6=s

mz0(r,Aj) + log k.

By Lemma 2.10, there exists a set E6 ⊂ (0, r3] for fixed r3 ∈ (0, 1) which has finite logarithmic measure such
that for all |z − z0| = r ∈ (0, r3] \ E6, we have

Tz0(r, f ′) < O

(
Tz0(r, f) + log

1

r

)
.

Consequently

Tz0(r, f (j)) < O

(
Tz0(r, f) + log

1

r

)
.

Then, it follows

(3.19)
k∑

j=0, j 6=s

mz0

(
r,
f (j)

f (s)

)
≤ O

(
Tz0(r, f) + log

1

r

)
.

By Lemma 2.12, there exists a set E7 ⊂ (0, 1) with infinite logarithmic measure such that for all |z − z0| =

r ∈ E7

lim
r→0

Tz0(r,Aj)

Tz0(r,As)
= 0, j 6= s,

so for any given ε ∈
(

0, 1
2(k−1)

)
(3.20) mz0(r,Aj) ≤ εmz0(r,As), j 6= s.

By (3.18), (3.19) and (3.20), we conclude that for all |z − z0| = r ∈ E7 ∩ (0, r3] \ E6,

mz0(r,As) ≤ O
(
Tz0(r, f) + log

1

r

)
+ (k − 1) εmz0(r,As) + log k.

So

(3.21) (1− (k − 1) ε)mz0(r,As) ≤ O
(
Tz0(r, f) + log

1

r

)
.
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Since ε ∈
(

0, 1
2(k−1)

)
, then 1− (k − 1) ε > 1− (k − 1) 1

2(k−1) = 1
2 . From (3.21), we get

1

2
mz0(r,As) ≤ O

(
Tz0(r, f) + log

1

r

)
,

that is by f is a transcendental

mz0(r,As) ≤ O
(
Tz0(r, f) + log

1

r

)
≤ O (Tz0(r, f)) .

Using this, we get

lim sup
r→0

ϕ(exp(mz0(r,As)))

log 1
r

≤ lim sup
r→0

ϕ(exp(cTz0(r, f))

log 1
r

,

where c > 0 is some constant. By using Proposition 1.2 case (iii), we obtain

lim sup
r→0

ϕ(exp(mz0(r,As)))

log 1
r

≤ lim sup
r→0

(1 + o (1))ϕ(eTz0 (r,f))

log 1
r

= ρ0ϕ(f, z0).

Therefore,
ρ0ϕ(As, z0) ≤ ρ0ϕ(f, z0).

It remains to show that ρ1ϕ(f, z0) ≤ ρ0ϕ(As, z0). By Lemma 2.9, it follows

ρ1ϕ(f, z0) ≤ ρ0ϕ(As, z0).

So we have the double inequality

ρ1ϕ(f, z0) ≤ ρ0ϕ(As, z0) ≤ ρ0ϕ(f, z0)

and by Remark 1.6 this leads
ρ̃1ϕ(f, z0) ≤ ρ̃0ϕ(As, z0) ≤ ρ̃0ϕ(f, z0).

�

4. EXAMPLES

Here, we provide some examples that illustrate all what we did before.

Example 4.1. Consider the equation

(4.1) f ′′ +

(
1

(z − z0)2
+

2

z − z0

)
f ′ − 1

(z − z0)4
e

2
z−z0 f = 0.

It is not hard to see that f(z) = exp
(

exp 1
z−z0

)
which is analytic in C − {z0} is a solution for (4.1). Notice

that, the function ϕ(t) = log log t = log2 t is a function of φ, that is ϕ is unbounded, increasing and ψ(t) =

ϕ(et) = log t is clearly slowly growing. A hand wavy calculations give

ρ̃0ϕ(A1, z0) = 0 < ρ̃0ϕ(A0, z0) = 1.

Loosely speaking A0 is a dominant coefficient so by Theorem 1.14, we conclude that

ρ̃1ϕ(f, z0) = ρ̃0ϕ(A0, z0) = 1.

On the other hand, a simple computation gives

Mz0(r, f) = ee
1
r .

Therefore

ρ̃1ϕ(f, z0) = lim sup
r→0

ϕ(logMz0(r, f))

log 1
r

= lim sup
r→0

log log log
(
ee

1
r

)
log 1

r

= 1.

This emphasizes the conclusion of Theorem 1.14.
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Example 4.2. Consider the equation

(4.2) f ′′ +

((
1 +

1

z2

)
e

1
z +

2z + 1

z2

)
f ′ +

e
2
z

z2
f = 0.

It is not hard to see that f(z) = exp
(
exp 1

z

)
which is analytic in C\{0} is a solution for (4.2). Notice that, the

function ϕ(t) = log log t = log2 t is a function of φ, that is ϕ is unbounded, increasing and ψ(t) = ϕ(et) =

log t is clearly slowly growing. A hand wavy calculations give

ρ̃0ϕ(A1, 0) = ρ̃0ϕ(A0, 0) = 1,

and

τ̃0ϕ(A1, 0) = 1 < τ̃0ϕ(A0, 0) = 2.

Lossly speaking A0 is a dominant coefficient so by Theorem 1.15, we conclude that

ρ̃1ϕ(f, 0) = ρ̃0ϕ(A0, 0) = 1.

This confirm the conclusion of Theorem 1.15.

Example 4.3. Consider the equation

f ′′′ − e− 1
z f ′′ +

(
2

z
− 5

z2
− 6

z3
− 1

z4

)
f ′ +

(
2

z3
+

1

z4

)
f = 0.

This equation accepts the analytic function f in C \ {0} given by f(z) = e
1
z + 1. By letting ϕ = log2 ∈ φ and

setting

A0(z) =
2

z3
+

1

z4
,

A1(z) =
2

z
− 5

z2
− 6

z3
− 1

z4
,

A2(z) = − exp

(
−1

z

)
.

We see that ρ̃0ϕ(A0, 0) = ρ̃0ϕ(A1, 0) = 0 and ρ̃0ϕ (A2, 0) = 1. So, the coefficient A2 is the dominant. Therefore,
by Theorem 1.16, one gets

ρ̃1ϕ(f, 0) ≤ 1 ≤ ρ̃0ϕ(f, 0).

While simple calculations give

ρ̃0ϕ(f, 0) = lim sup
r→0

log log
(
e

1
r + 1

)
log 1

r

= 1,

ρ̃1ϕ(f, 0) = lim sup
r→0

log log log
(
e

1
r + 1

)
log 1

r

= 0.

Consequently the conclusion of Theorem 1.16 holds.

Competing interests. The authors declare no competing interests.



Pan-Amer. J. Math. 3 (2024), 17 15

REFERENCES

[1] B. Belaïdi, Growth of solutions to linear equations with analytic coefficients of [p, q]-order in the unit disc, Elec. J. Diff. Equ. 2011
(2011), 156.

[2] B. Belaïdi, On the [p, q]-order of meromorphic solutions of linear differential equations, Acta Univ. Matth. Belii Ser. Math. 2015
(2015), 37–49.

[3] B. Belaïdi, Growth of ρϕ-order solutions of linear differential equations with entire coefficients, Panam. Math. J. 27 (2017), 26–42.
[4] B. Belaïdi, Fast growing solutions to linear differential equations with entire coefficients having the same ρϕ-order, J. Math. Appl.

42 (2019), 63–77.
[5] I. Chyzhykov, N. Semochko, Fast growing entire solutions of linear differential equations, Math. Bull. Shevchenko Sci. Soc. 13

(2016), 68–83.
[6] A. Dahmani, B. Belaïdi, Growth of solutions to complex linear differential equations in which the coefficients are analytic func-

tions except at a finite singular point, Int. J. Nonlinear Anal. Appl. 14 (2023), 473–483.
[7] H. Fettouch, S. Hamouda, Growth of local solutions to linear differential equations around an isolated essential singularity, Elec.

J. Diff. Equ. 2016 (2016), 226.
[8] A.A. Goldberg, I.V. Ostrovskii, Value distribution of meromorphic functions, Translations of Mathematical Monographs, vol. 236.

American Mathematical Society, Providence, 2008.
[9] S. Hamouda, The possible orders of growth of solutions to certain linear differential equations near a singular point, J. Math.

Anal. Appl. 458 (2018), 992–1008.
[10] W.K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[11] G. Jank, L. Volkmann, Einführung in die Theorie der ganzen und Meromorphen Funktionen mit Anwendungen auf Differential-

gleichungen, Birkhäuser Verlag, Basel, 1985.
[12] O.P. Juneja, G.P. Kapoor, S.K. Bajpai, On the (p, q)-order and lower (p, q)-order of an entire function, J. Reine Angew. Math. 282

(1976), 53–67.
[13] O.P. Juneja, G.P. Kapoor, S.K. Bajpai, On the (p, q)-type and lower (p, q)-type of an entire function, J. Reine Angew. Math. 290

(1977), 180–190.
[14] M.A. Kara, B. Belaïdi, Fast growth of the logarithmic derivative with applications to complex differential equations, Sarajevo J.

Math. 19 (2023), 63–77.
[15] M.A. Kara, B. Belaïdi, Some estimates of the ϕ-order and the ϕ-type of entire and meromorphic functions, Int. J. Open Probl.

Complex Anal. 10 (2019), 42–58.
[16] L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22 (1998), 385–405.
[17] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter & Co.,

Berlin, 1993.
[18] L.M. Li, T.B. Cao, Solutions for linear differential equations with meromorphic coefficients of [p, q]-order in the plane, Elec. J. Diff.

Equ. 2012 (2012), 195.
[19] J. Liu, J. Tu, L.Z. Shi, Linear differential equations with entire coefficients of [p, q]-order in the complex plane, J. Math. Anal. Appl.

372 (2010), 55–67.
[20] J. Long, S. Zeng, On [p, q]-order of growth of solutions of complex linear differential equations near a singular point, Filomat 33

(2019), 4013–4020.
[21] N.S. Semochko, On solutions of linear differential equations of arbitrary fast growth in the unit disc, Mat. Stud. 45 (2016), 3–11.
[22] E. Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin, 1976.
[23] M.N. Sheremeta, Connection between the growth of the maximum of the modulus of an entire function and the moduli of the

coefficients of its power series expansion, Izv. Vyssh. Uchebn. Zaved. Mat. 57 (1967), 100–108.
[24] C.C. Yang, H.X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic

Publishers Group, Dordrecht, 2003.


	1. Introduction and main results
	2. Preliminary results
	3. Proof of the theorems
	Proof of Theorem 1.14
	Proof of Theorem 1.15
	Proof of Theorem 1.16

	4. Examples
	Competing interests

	References

