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SPECTRAL THEOREMS IN THE LAGUERRE HYPERGROUP SETTING

HATEM MEJJAOLI1,∗ AND FIRDOUS A. SHAH2

ABSTRACT. We introduce the two-wavelet multiplier operator in the Laguerre hypergroup setting. Knowing
the fact that the study of this operator are both theoretically interesting and practically useful, we investigated
several subjects of spectral analysis for the new operator. Firstly, we present a comprehensive analysis of the
generalized two-wavelet multiplier operator. Next, we introduce and we study the generalized Landau-Pollak-
Slepian operator. As applications, some problems of the approximation theory and the uncertainty principles
are studied. Finally, we give many results on the boundedness and compactness of the Laguerre two-wavelet
multipliers on Lpα(K), 1 ≤ p ≤ ∞.

1. INTRODUCTION

Let Hd, be the 2d+ 1-dimensional Heisenberg group with the multiplication law

(z, t)(z′, t′) = (z + z′, t+ t′ − Im(zz′)).

Then T = ∂
∂t and

Zj =
∂

∂zj
− iz̄j

∂

∂t
, Zj =

∂

∂z̄j
+ iz̄j

∂

∂t
, j = 1, ..., d

forms a basis of the left invariant vector fields of hcd, the complexification of the Lie algebra hd of Hd, where

∂

∂zj
=

∂

∂xj
− i ∂

∂yj
,

∂

∂z̄j
=

∂

∂xj
+ i

∂

∂yj
.

Set

Xj =
∂

∂xj
− iyj

∂

∂t
, Yj =

∂

∂yj
+ ixj

∂

∂t
, j = 1, ..., d.

ThusX1, X2, ..., Xd, Y1, ..., Yd, T is a basis of hd. A function f on Hd is said to be radial if it is invariant under
the action of the unitary group U(d). Let

Lprad(Hd) :=
{
f ∈ Lp(Hd) : f(uz, t) = f(z, t) for all u ∈ U(d)

}
.

The theory of harmonic analysis on Lprad(Hd) were exploited by many authors (see [30, 37, 48]). When one
considers the problems of radial functions on the Heisenberg group Hd, the underlying manifold can be
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regarded as the Laguerre hypergroup K := [0,∞) × R. Stempak [49] introduced a generalized transla-
tion operator on K, and established the theory of harmonic analysis on L2(K, dνα), where the weighted
Lebesgue measure να on K is given by

dνα(x, t) :=
x2α+1dxdt

πΓ(α+ 1)
, α ≥ 0.

Furthermore, Nessibi and Trimèche [39] studied the theory of wavelet analysis. Using this type of wavelet,
they gave another inversion formula of the Radon transform on K.

In this paper we are interested in the Laguerre hypergroup K induced with the Haar measure dνα(x, t).
We recall that (K, ∗α) is a commutative hypergroup [39], on which the involution and the Haar measure
are respectively given by the homeomorphism (x, t) → (x, t)− = (x,−t) and the Radon positive measure
dνα(x, t). The unit element of (K, ∗α) is given by e = (0, 0).

The dual of a hypergroup is the space of all bounded continuous and multiplicative functions χ such that
χ̄ = χ. The dual of the Laguerre hypergroup K̂ can be topologically identified with the so-called Heisenberg
fan [15], i.e., the subset embedded in R2 given by

∪j∈N
{

(λ, µ) ∈ R2 : µ = |λ|(2j + α+ 1), λ 6= 0
}
∪
{

(0, µ) ∈ R2 : µ ≥ 0
}
.

Moreover, the subset
{

(0, µ) ∈ R2 : µ ≥ 0
}

has zero Plancherel measure, therefore it will be usually disre-
garded. Following [39], in this paper, we identify the dual of the Laguerre hypergroup by K̂ := R× N.

FIGURE 1. Heisenberg fan.

Very recently, the Fourier analysis on K have been extensively studied with respect to several problems
already studied for the Fourier transform; for instance, Hardy’s inequality [3], functional spaces [2, 24],
Littlewood-Paley g-functions [23], the generalized Wigner transform [10,35], the generalized wavelet trans-
form [36, 39], localization operators [35, 36], uncertainty principles [40], Titchmarsh’s theorems [38] and so
on.

Using the properties of the generalized Fourier transform associated with the Laguerre hypergroup,
our main aim in this paper is to expose and study some spectral theorems in the time-frequency analysis
setting. More precisely, we will study the wavelet multipliers in the spirit of the Wong’s point of view. On
the other hand we will establish some uncertainty type principles and approximation theorems. The theory
of wavelet multipliers has been initiated by He and Wong in [21], developed in the paper [14] by Du and
Wong, and detailed in the book [51] by Wong.

The present paper is aimed at exploring contemporary trends in Laguerre hypergroup time-frequency
analysis with applications to approximation and spectral theories. Of particular interest shall be the for-
mulation of wavelet multipliers beyond the generalized Fourier domain. Besides, it is also of significant
interest to explore the wavelet multipliers in the realm of higher-dimensional signal analysis. Keeping in
view the fact that the theory of wavelet multipliers is quite adequate for an efficient time-frequency analysis
of signals and has also found numerous applications in several other aspects of science and engineering,



Pan-Amer. J. Math. 3 (2024), 13 3

including wave propagation, signal processing and quantum optics [41], it is quite lucrative to investi-
gate upon the generalized wavelet multipliers associated with the Laguerre hypergroup. With the advent
of time-frequency analysis, the theory of uncertainty principles has gained a considerable attention and
it’s been extended to a wide class of integral transforms ranging from the classical Fourier to the many
recent quadratic-phase Fourier transforms [20,41,42]. The pioneering Donoho-Stark type uncertainty prin-
ciple [13] asserts that a non-trivial function cannot be precisely concentrated in both the time and frequency
domains at the same time. In this paper we are concerned with the Donoho-Stark form of the UP of which
we present an improvement in the form of a new general bound for the constant which is involved in the
estimate, and a new type of estimation of the same constant in dependence on the signal.

Recently, the field of time-frequency analysis has attired many researchers. For examples, we note that
Ben Hamadi and all have studied the generalized Fourier multipliers in [4] and the uncertainty principles
associated with some integral transforms [5, 6], Ghobber and all in [17–19] have studied the wavelet mul-
tipliers in the Bessel setting and the theory of localization for some integral transforms, Lamouchi and all
have also studied some problems of time-frequency analysis in [27,28], for the spherical mean operator and
for the short time Fourier transform, Mejjaoli in [31–34] has studied the wavelet multipliers in the Dunkl
and the deformed Fourier settings, Sraeib in [44, 45] has studied the uncertainty principles in the quantum
theory and the applications of the deformed Wigner transform to the Localization operators theory, Tan-
tary and all in [43, 46] have studied the localization operators and uncertainty principles for the Ridgelet
transformation in the Clifford setting.

The main contributions of this article are as follows:

• To prove results on the Lp-boundedness and the Lp-compactness of the two-wavelet multipliers
associated with the generalized Fourier in the Laguerre hypergroup setting.

• To construct and study an example of generalized two-wavelet multipliers. Indeed, we have prove
that the generalized two-wavelet multiplier is unitary equivalent to a scalar multiple of the gener-
alized Landau-Pollak-Slepian Operator.

• To give some applications on the generalized two-wavelet multipliers.

The remainder of this paper is arranged as follows. The §2 contains some basic facts needed in the
sequel about the Laguerre hypergroup and Schatten-von Neumann classes. In §3 we introduce and we
study the two-wavelet multipliers in the setting of the Laguerre hypergroup. More precisely, the Schatten-
von Neumann properties of these two-wavelet multipliers are established, and for trace class Laguerre
two-wavelet multipliers, the traces and the trace class norm inequalities are presented. In §4, firstly we in-
troduce the generalized Landau-Pollak-Slepian operator. Next, we give the link between this operator and
the Laguerre two-wavelet multipliers. As applications, we prove the Donoho-Stark uncertainty principle
for the Fourier transformation in the Laguerre hypergroup setting, next we study some spectral problems
associated for the generalized Landau-Pollak-Slepian operator. In the last section, under suitable condi-
tions on the symbols and two admissible wavelets, we study the Lp boundedness and compactness of the
Laguerre two-wavelet multipliers.

2. PRELIMINARIES

In this section we set some notations and we recall some basic results in harmonic analysis related to
Laguerre hypergroups and Schatten-von Neumann classes. Main references are [39, 51].

2.1. Harmonic analysis on the Laguerre hypergroup.
We denote by
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• K := [0,∞)× R equipped with the weighted Lebesgue measure να on K given by

dνα(x, t) :=
x2α+1dxdt

πΓ(α+ 1)
, α ≥ 0.

• For p ∈ [1,∞], p′ denotes as in all that follows, the conjugate exponent of p.
• Lpα(K), 1 ≤ p ≤ ∞, the space of measurable functions on K, satisfying

‖f‖Lpα(K) =

(∫
K
|f(x, t)|pdνα(x, t)

)1/p

<∞, 1 ≤ p <∞,

‖f‖L∞α (K) = ess sup
(x,t)∈K

|f(x, t)| <∞, p =∞.

• C∗(K) the space of continuous functions on R2, even with respect to the first variable.
• C∗,c(K) the subspace of C∗(K) formed by functions with compact support.
• L(α)

m the Laguerre function defined on [0,∞) by

L(α)
m (x) = e−

x
2L(α)

m (x)/L(α)
m (0),

L
(α)
m being the Laguerre polynomial of degree m and order α.

• K̂ := R× N equipped with the weighted Lebesgue measure γα on K̂ given by∫
K̂
g(λ,m)dγα(λ,m) =

∞∑
m=0

L(α)
m (0)

∫
R
g(λ,m)|λ|α+1dλ.

• Lpα(K̂), p ∈ [1,∞], the space of measurable functions g : K̂→ C, such that ‖g‖Lpα(K̂) <∞, where

‖g‖Lpα(K̂) =

(∫
K̂
|g(λ,m)|pdγα(λ,m)

) 1
p

<∞, 1 ≤ p <∞,

‖g‖L∞α (K̂) = ess sup
(λ,m)∈K̂

|g(λ,m)| <∞, p =∞.

It is well known [39] that for all (λ,m) ∈ K̂, the system
D1u(x, t) = iλu(x, t),

D2u(x, t) = −4|λ|(m+ α+1
2 )u(x, t)

u(0, 0) = 1, ∂u
∂r (0, t) = 0, ∀ t ∈ R,

admits a unique solution ϕλ,m, given by

ϕλ,m(x, t) = e
iλt

L(α)
m (|λ|x2),

where D1 and D2 be the singular partial differential operators, given by

(2.1)

{
D1 = ∂

∂t

D2 = ∂2

∂x2 + 2α+1
x

∂
∂x + x2 ∂2

∂t2 , (x, t) ∈ (0,∞)× R,

where α is a nonnegative number. For α = d − 1, d being a positive integer, the operator D2 is the
radial part of the sublaplacian on the Heisenberg group Hd.

The harmonic analysis on the Laguerre hypergroup K is generated by the singular operator

Lα :=
∂2

∂x2
+

2α+ 1

x

∂

∂x
+ x2 ∂

2

∂t2

and the norm
N(x, t) = (x4 + t2)

1
4 , (x, t) ∈ K,

while its dual K̂ is generated by the differential difference operator

Λ = Λ2
1 − (2Λ2 + 2

∂

∂λ
)2,
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and the function
N (λ,m) = |λ|(m+

α+ 1

2
), (λ,m) ∈ K̂,

The operators Λ1,Λ2 are given for a suitable function g on K̂, by

Λ1g(λ,m) =
1

|λ|

(
m∆+∆−g(λ,m) + (α+ 1)∆+g(λ,m)

)
Λ2g(λ,m) = − 1

2λ

(
(α+m+ 1)∆+g(λ,m) +m∆−g(λ,m)

)
,

where the difference operators ∆+,∆− are given for a suitable function g on K̂, by

4+g(λ,m) = g(λ,m+ 1)− g(λ,m),

4−g(λ,m) =

{
g(λ,m)− g(λ,m− 1), if m ≥ 1

g(λ, 0), if m = 0.

These operators satisfy some basic properties which can be found in [2, 39], namely one has

Lαϕλ,m(x, t) = −N (λ,m)ϕλ,m(x, t), Λϕλ,m(x, t) = N4(x, t)ϕλ,m(x, t).

Definition 2.1. Let f ∈ C∗,c(K). For all (x, t) and (y, s) in K, we put
(2.2)

τ
(α)
(x,t)f(y, s) =


1

2π

∫ 2π

0

f(
√
x2 + y2 + 2xy cos θ, s+ t+ xy sin θ)dθ, if α = 0

α
π

∫ 2π

0

∫ 1

0

f(
√
x2 + y2 + 2xyr cos θ, s+ t+ xyr sin θ)r(1− r2)α−1drdθ, if α > 0.

The operators τ (α)
(x,t), (x, t) ∈ K, are called generalized translation operators on K.

Proposition 2.1. For all (λ,m) ∈ K̂, the function ϕλ,m satisfies the product formula

(2.3) ∀(x, t), (y, s) ∈ K, ϕλ,m(x, t)ϕλ,m(y, s) = τ
(α)
(x,t)ϕλ,m(y, s).

Corollary 2.1. For all (λ,m) ∈ K̂, the function ϕλ,m is infinitely differentiable on R2, even with respect to the first
variable and satisfies

(2.4) sup
(x,t)∈K

|ϕλ,m(x, t)| = 1.

We denote by

• S∗(K) the space of functions f : R2 → C, even with respect to the first variable, C∞ on R2 and
rapidly decreasing together with their derivatives, i.e., for all k, p, q ∈ N we have

Nk,p,q(f) = sup
(x,t)∈K

{
(1 + x2 + t2)k| ∂

p+q

∂xp∂tq
f(x, t)|

}
<∞.

Equipped with the topology defined by the semi-norms Nk,p,q,S∗(K) is a Fréchet space.
• S(K̂) the space of functions g : K̂→ C, such that

(i) For all m, p, q, r, s ∈ N, the function

λ 7→ λp
(
|λ|(m+

α+ 1

2
)

)q
Λr1

(
Λ2 +

∂

∂λ

)s
g(λ,m)

is bounded and continuous on R, C∞ on R∗ such that the left and the right derivatives at zero exist.
(ii) For all k, p, q ∈ N we have

νk,p,q(g) = sup
(λ,m)∈R∗×N

{(
1 + λ2(1 +m2)

)k ∣∣∣∣Λp1 (Λ2 +
∂

∂λ

)q
g(λ,m)

∣∣∣∣} <∞.
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Equipped with the topology defined by the semi-norms νk,p,q,S(K̂) is a Fréchet space.

Definition 2.2. The generalized Fourier transform Fα is defined on L1
α(K) by

(2.5) Fα(f)(λ,m) =

∫
K
ϕ−λ,m(x, t)f(x, t)dνα(x, t), for all (λ,m) ∈ K̂.

Proposition 2.2. Let f be in L1
α(K). Then

(i) For all m ∈ N, the function λ 7→ Fα(f)(λ,m) is continuous on R.
(ii) The function Fα(f) is bounded on K̂ and satisfies

(2.6) ‖Fα(f)‖L∞α (K̂) ≤ ‖f‖L1
α(K).

Theorem 2.1. The generalized Fourier transform Fα is a topological isomorphism from S∗(K) onto S(K̂).

Theorem 2.2. (Plancherel’s Theorem for Fα)
i) Plancherel’s formula for Fα. For all f in S∗(K) we have

(2.7)
∫
K̂
|Fα(f)(λ,m)|2dγ(λ,m) =

∫
K
|f(x, t)|2dνα(x, t).

ii) The generalized Fourier transform Fα extends to an isometric isomorphism from L2
α(K) onto L2

α(K̂).

Corollary 2.2. For all f and g in L2
α(K) we have the following Parseval’s formula for the generalized Fourier trans-

form Fα

(2.8)
∫
K
f(x, t)g(x, t)dνα(x, t) =

∫
K̂
Fα(f)(λ,m)Fα(g)(λ,m)dγα(λ,m).

2.2. Schatten-von Neumann classes.
Notations. We denote by

• lp(N), 1 ≤ p ≤ ∞, the set of all infinite sequences of real (or complex) numbers u := (uj)j∈N, such
that

||u||p :=
( ∞∑
j=1

|uj |p
) 1
p

<∞, if 1 ≤ p <∞,

||u||∞ := sup
j∈N
|uj | <∞.

For p = 2, we provide this space l2(N) with the scalar product

〈u, v〉2 :=

∞∑
j=1

ujvj .

• B(Lpα(K)), 1 ≤ p ≤ ∞, the space of bounded operators from Lpα(K) into itself.

Definition 2.3. (i) The singular values (sn(A))n∈N of a compact operator A in B(L2
α(K)) are the eigenvalues of the

positive self-adjoint operator |A| =
√
A∗A.

(ii) For 1 ≤ p < ∞, the Schatten class Sp is the space of all compact operators whose singular values lie in
lp(N). The space Sp is equipped with the norm

(2.9) ||A||Sp :=
( ∞∑
n=1

(sn(A))p
) 1
p

.

Remark 2.1. We note that the space S2 is the space of Hilbert-Schmidt operators, and S1 is the space of trace class
operators.
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Definition 2.4. The trace of an operator A in S1 is defined by

(2.10) tr(A) =

∞∑
n=1

〈Avn, vn〉L2
α(K)

where (vn)n is any orthonormal basis of L2
α(K).

Remark 2.2. If A is positive, then

(2.11) tr(A) = ||A||S1
.

Moreover, a compact operator A on the Hilbert space L2
α(K) is Hilbert-Schmidt, if the positive operator A∗A is in the

space of trace class S1. Then

(2.12) ||A||2HS := ||A||2S2
= ||A∗A||S1

= tr(A∗A) =

∞∑
n=1

||Avn||2L2
α(K)

for any orthonormal basis (vn)n of L2
α(K).

Definition 2.5. We define S∞ := B(L2
α(K)), equipped with the norm,

(2.13) ||A||S∞ := sup
v∈L2

α(K):||v||L2
α(K)=1

||Av||L2
α(K).

Remark 2.3. It is obvious that Sp ⊂ Sq , 1 ≤ p ≤ q ≤ ∞.

3. LAGUERRE TWO-WAVELET MULTIPLIERS

3.1. Introduction. Let σ ∈ L∞α (K̂), we define the linear operator Mσ : L2
α(K)→ L2

α(K) by

(3.1) Mσ(f) = F−1
α (σFα(f)).

This operator is called the generalized multiplier. Moreover, from Plancherel’s formula (2.7), it is clair that
Mσ is bounded with

||Mσ||S∞ ≤ ||σ||L∞α (K̂).

Definition 3.1. Let u, v be measurable functions on K and σ measurable function on K̂, we define the Laguerre
two-wavelet multiplier operator noted by Pu,v(σ), on Lpα(K), 1 ≤ p ≤ ∞, by

(3.2) Pu,v(σ)(f)(x, t) =

∫
K̂
σ(λ,m)Fα(uf)(λ,m)ϕλ,m(x, t)v(x, t)dγα(λ,m), (x, t) ∈ K.

In accordance with the different choices of the symbols σ and the different continuities required, we
need to impose different conditions on u and v. And then we obtain an operator on Lpα(K).

It is often more convenient to interpret the definition of Pu,v(σ) in a weak sense, that is, for f in Lpα(K),
p ∈ [1,∞], and g in Lp

′

α (K),

(3.3) 〈Pu,v(σ)(f), g〉L2
α(K) =

∫
K̂
σ(λ,m)Fα(uf)(λ,m)Fα(vg)(λ,m)dγα(λ,m).

Proposition 3.1. Let p ∈ [1,∞). The adjoint of the linear operator

Pu,v(σ) : Lpα(K)→ Lpα(K)

is Pv,u(σ) : Lp
′

α (K)→ Lp
′

α (K).
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Proof. For all f in Lpα(K) and g in Lp
′

α (K) it follows immediately from (3.3)

〈Pu,v(σ)(f), g〉L2
α(K) =

∫
K̂
σ(λ,m)Fα(uf)(λ,m)Fα(vg)(λ,m)dγα(λ,m)

=

∫
K̂
σ(λ,m)Fα(uf)(λ,m)Fα(vg)(λ,m)dγα(λ,m)

= 〈Pv,u(σ)(g), f〉L2
α(K) = 〈f,Pv,u(σ)(g)〉L2

α(K).

Thus we get

(3.4) P∗u,v(σ) = Pv,u(σ).

�

Proposition 3.2. Let σ ∈ L1
α(K̂) ∪ L∞α (K̂) and let u, v ∈ L2

α(K) ∩ L∞α (K). Then

(3.5) 〈Pu,v(σ)(f), g〉L2
α(K) = 〈v̄Mσ(uf), g〉L2

α(K).

Proof. For all f, g in L2
α(K) it follows immediately from (3.3), (3.1) and Parseval’s formula (2.8)

〈Pu,v(σ)(f), g〉L2
α(K) =

∫
K̂
σ(λ,m)Fα(uf)(λ,m)Fα(vg)(λ,m)dγα(λ,m)

=

∫
K̂
Fα(Mσ(uf))(λ,m)Fα(vg)(λ,m)dγα(λ,m)

=

∫
K
Mσ(uf)(x, t)(vg)(x, t)dνα(x, t) = 〈v̄Mσ(uf), g〉L2

α(K).

Thus the proof is complete. �

In this section, u and v will be any functions in L2
α(K) ∩ L∞α (K) such that

‖u‖L2
α(K) = ‖v‖L2

α(K) = 1.

3.2. Boundedness forPu,v(σ) on S∞. The main result of this subsection is to prove that the linear operators

Pu,v(σ) : L2
α(K)→ L2

α(K)

are bounded for all symbol σ ∈ Lpα(K̂), 1 ≤ p ≤ ∞. We first consider this problem for σ in L∞α (K̂) and next
in L1

α(K̂) and then we conclude by using interpolation theory.

Proposition 3.3. Let σ be in L∞α (K̂), then the Laguerre two-wavelet multiplier operator Pu,v(σ) is in S∞ and we
have

||Pu,v(σ)||S∞ 6 ‖u‖L∞α (K)‖v‖L∞α (K)‖σ‖L∞α (K̂).

Proof. For all functions f and g in L2
α(K), we have from Cauchy-Schwarz’s inequality

|〈Pu,v(σ)(f), g〉L2
α(K)| 6

∫
K̂
|σ(λ,m)||Fα(uf)(λ,m)||Fα(vg)(λ,m)|dγα(λ,m)

6 ‖σ‖L∞α (K̂)‖Fα(uf)‖L2
α(K̂)‖Fα(vg)‖L2

α(K̂).

Using Plancherel’s formula (2.7) we get

|〈Pu,v(σ)(f), g〉L2
α(K)| 6 ‖u‖L∞α (K)‖v‖L∞α (K)‖σ‖L∞α (K̂)‖f‖L2

α(K)‖g‖L2
α(K).

Thus,
||Pu,v(σ)||S∞ 6 ‖u‖L∞α (K)‖v‖L∞α (K)‖σ‖L∞α (K̂).

�

Proposition 3.4. Let σ be in L1
α(K̂), then the Laguerre two-wavelet multiplier Pu,v(σ) is in S∞ and we have

(3.6) ||Pu,v(σ)||S∞ 6 ‖σ‖L1
α(K̂).
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Proof. For every functions f and g in L2
α(K), from (3.3) we have,

|〈Pu,v(σ)(f), g〉L2
α(K)| 6

∫
K̂
|σ(λ,m)| |Fα(uf)(λ,m)Fα(vg)(λ,m)|dγα(λ,m)

6 ‖Fα(uf)‖L∞α (K̂)‖Fα(vg)‖L∞α (K̂)‖σ‖L1
α(K̂).

Using relation (2.4) and the Cauchy-Schwarz inequality, we get

‖Fα(uf)‖L∞α (K̂) ≤ ‖u‖L2
α(K)‖f‖L2

α(K), ‖Fα(vg)‖L∞α (K̂) ≤ ‖v‖L2
α(K)‖g‖L2

α(K).

Hence we deduce that

|〈Pu,v(σ)(f), g〉L2
α(K)| 6 ‖f‖L2

α(K)‖g‖L2
α(K)‖σ‖L1

α(K̂).

Thus,

||Pu,v(σ)||S∞ 6 ‖σ‖L1
α(K̂).

�

We can now associate the Laguerre two-wavelet multiplier

Pu,v(σ) : L2
α(K)→ L2

α(K)

to every symbol σ in Lpα(K̂), 1 ≤ p ≤ ∞ and prove that Pu,v(σ) is in S∞. The precise result is the following
theorem.

Theorem 3.1. Let σ be in Lpα(K̂), 1 ≤ p ≤ ∞. Then there exists a unique bounded linear operator Pu,v(σ) :

L2
α(K)→ L2

α(K), such that

||Pu,v(σ)||S∞ 6 (‖u‖L∞α (K)‖v‖L∞α (K))
p−1
p ‖σ‖Lpα(K̂).

Proof. Let f be in L2
α(K). We consider the following operator

T : L1
α(K̂)

⋂
L∞α (K̂) → L2

α(K),

given by

T (σ) := Pu,v(σ)(f).

Then by Proposition 3.3 and Proposition 3.4

(3.7) ||T (σ)||L2
α(K) 6 ||f ||L2

α(K)‖σ‖L1
α(K̂)

and

(3.8) ||T (σ)||L2
α(K) ≤ ‖u‖L∞α (K)‖v‖L∞α (K)||f ||L2

α(K)‖σ‖L∞α (K̂).

Therefore, by (3.7), (3.8) and the Riesz-Thorin interpolation theorem (see [ [47], Theorem 2] and [ [51],
Theorem 2.11]), T may be uniquely extended to a linear operator on Lpα(K̂), 1 ≤ p ≤ ∞ and we have

(3.9) ||Pu,v(σ)(f)||L2
α(K) = ||T (σ)||L2

α(K) ≤ (‖u‖L∞α (K)‖v‖L∞α (K))
p−1
p ||f ||L2

α(K)‖σ‖Lpα(K̂).

Since (3.9) is true for arbitrary functions f in L2
α(K), then we obtain the desired result. �
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3.3. Traces of the Laguerre two-wavelet multipliers. The main result of this subsection is to prove that,
the Laguerre two-wavelet multiplier

Pu,v(σ) : L2
α(K)→ L2

α(K)

is in the Schatten class Sp.

Proposition 3.5. Let σ be in L1
α(K̂), then the Laguerre two-wavelet multiplier Pu,v(σ) is in S2 and we have

‖Pu,v(σ)‖S2
6 ‖σ‖L1

α(K̂).

Proof. Let {φj , j = 1, 2...} be an orthonormal basis for L2
α(K). Then by (3.3), Fubini’s theorem, Parseval’s

identity and (3.4), we have

∞∑
j=1

||Pu,v(σ)(φj)||2L2
α(K) =

∞∑
j=1

〈Pu,v(σ)(φj),Pu,v(σ)(φj)〉L2
α(K)

=

∞∑
j=1

∫
K̂
σ(λ,m)〈φj , uϕλ,m〉L2

α(K)〈Pu,v(σ)(φj), vϕλ,m〉L2
α(K)dγα(λ,m)

=

∫
K̂
σ(λ,m)

∞∑
j=1

〈P∗u,v(σ)(vϕλ,m), φj〉L2
α(K)〈φj , uϕλ,m〉L2

α(K)dγα(λ,m)

=

∫
K̂
σ(λ,m)〈P∗u,v(σ)(vϕλ,m), uϕλ,m〉L2

α(K)dγα(λ,m).

Thus from (3.6), Proposition 3.1 and (2.4), we get

(3.10)
∞∑
j=1

||Pu,v(σ)(φj)||2L2
α(K) ≤

∫
K̂
|σ(λ,m)| ||P∗u,v(σ)||S∞dγα(λ,m) ≤ ‖σ‖2

L1
α(K̂)

<∞.

So, by (3.10) and the Proposition 2.8 in the book [51], by Wong,

Pu,v(σ) : L2
α(K)→ L2

α(K)

is in the Hilbert-Schmidt class S2 and hence compact. �

Proposition 3.6. Let σ be a symbol in Lpα(K̂), 1 6 p < ∞. Then the Laguerre two-wavelet multiplier Pu,v(σ) is
compact.

Proof. Let σ be in Lpα(K̂) and let (σn)n∈N be a sequence of functions in L1
α(K̂)

⋂
L∞α (K̂) such that σn → σ in

Lpα(K̂) as n→∞. Then by Theorem 3.1

||Pu,v(σn)− Pu,v(σ)||S∞ ≤ (‖u‖L∞α (K)‖v‖L∞α (K))
p−1
p ||σn − σ||Lpα(K̂).

Hence Pu,v(σn)→ Pu,v(σ) in S∞ as n→∞. On the other hand as by Proposition 3.5 Pu,v(σn) is in S2 hence
compact, it follows that Pu,v(σ) is compact. �

Theorem 3.2. Let σ be in L1
α(K̂). Then Pu,v(σ) : L2

α(K)→ L2
α(K) is in S1 and we have

(3.11)
2

‖u‖2L∞α (K) + ‖v‖2L∞α (K)

‖σ̃‖L1
α(K̂) 6 ‖Pu,v(σ)‖S1 6 ‖σ‖L1

α(K̂),

where σ̃ is given by

σ̃(λ,m) = 〈Pu,v(σ)ϕλ,mu, ϕλ,mv〉L2
α(K), (λ,m) ∈ K.
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Proof. Since σ is in L1
α(K̂), by Proposition 3.5, Pu,v(σ) is in S2. Using [51, Theorem 2.2], there exists an

orthonormal basis {φj , j = 1, 2...} for the orthogonal complement of the kernel of the operator Pu,v(σ),
consisting of eigenvectors of |Pu,v(σ)| and {ψj , j = 1, 2...} an orthonormal set in L2

α(K), such that

Pu,v(σ)(f) =

∞∑
j=1

sj〈f, φj〉L2
α(K)ψj ,(3.12)

where sj , j = 1, 2... are the positive singular values of Pu,v(σ) corresponding to φj . Then, we get

‖Pu,v(σ)‖S1
=

∞∑
j=1

sj =

∞∑
j=1

〈Pu,v(σ)(φj), ψj〉L2
α(K).

Thus, by Fubini’s theorem, Parseval’s identity, Bessel’s inequality, Cauchy-Schwarz’s inequality, relation
(2.4), and the fact ||u||L2

α(K) = ||v||L2
α(K) = 1, we get

‖Pu,v(σ)‖S1
=

∞∑
j=1

〈Pu,v(σ)(φj), ψj〉L2
α(K)

=

∞∑
j=1

∫
K̂
σ(λ,m)Fα(uφj)(λ,m)Fα(vψj)(λ,m)dγα(λ,m)

=

∫
K̂
σ(λ,m)

∞∑
j=1

〈φj , uϕλ,m〉L2
α(K)〈vϕλ,m, ψj〉L2

α(K)dγα(λ,m)

≤
∫
K̂
|σ(λ,m)|

( ∞∑
j=1

|〈φj , uϕλ,m〉L2
α(K)|2

) 1
2
( ∞∑
j=1

|〈vϕλ,m, ψj〉L2
α(K)|2

) 1
2

dγα(λ,m)

≤
∫
K̂
|σ(λ,m)| ||uϕλ,m||L2

α(K)||vϕλ,m||L2
α(K)dγα(λ,m)

6 ‖σ‖L1
α(K̂).

Thus

‖Pu,v(σ)‖S1 6 ‖σ‖L1
α(K̂).

We now prove that Pu,v(σ) satisfies the first member of (3.11). It is easy to see that σ̃ belongs to L1
α(K̂), and

using formula (3.12), we get

|σ̃(λ,m)| =
∣∣∣〈Pu,v(σ)( ϕλ,mu), ϕλ,mv〉L2

α(K)

∣∣∣
=
∣∣∣ ∞∑
j=1

sj〈 ϕλ,mu, φj〉L2
α(K)〈ψj , ϕλ,mv〉L2

α(K)

∣∣∣
6 1

2

∞∑
j=1

sj

(∣∣∣〈 ϕλ,mu, φj〉L2
α(K)

∣∣∣2 +
∣∣∣〈 ϕλ,mv, ψj〉L2

α(K)

∣∣∣2).
By Fubini’s theorem, we obtain∫

K̂
|σ̃(λ,m)|dγα(λ,m) ≤ 1

2

∞∑
j=1

sj

(∫
K̂
|〈 ϕλ,mu, φj〉L2

α(K)|2dγα(λ,m)

+

∫
K̂
|〈 ϕλ,mv, ψj〉L2

α(K)|2dγα(λ,m)
)
.
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Then using Plancherel’s formula given by relation (2.7), we get∫
K̂
|σ̃(λ,m)|dγα(λ,m) ≤

‖u‖2L∞α (K) + ‖v‖2L∞α (K)

2

∞∑
j=1

sj =
‖u‖2L∞α (K) + ‖v‖2L∞α (K)

2
‖Pu,v(σ)‖S1

.

The proof is complete. �

Corollary 3.1. For σ in L1
α(K̂), we have the following trace formula

(3.13) tr(Pu,v(σ)) =

∫
K̂
σ(λ,m)〈vϕλ,m, uϕλ,m〉L2

α(K)dγα(λ,m).

Proof. Let {φj , j = 1, 2...} be an orthonormal basis for L2
α(K). From Theorem 3.2, the Laguerre two-wavelet

multiplier Pu,v(σ) belongs to S1, then by the definition of the trace given by the relation (2.10), Fubini’s
theorem and Parseval’s identity, we have

tr(Pu,v(σ)) =

∞∑
j=1

〈Pu,v(σ)(φj), φj〉L2
α(K)

=

∞∑
j=1

∫
K̂
σ(λ,m)〈φj , uϕλ,m〉L2

α(K)〈φj , vϕλ,m〉L2
α(K)dγα(λ,m)

=

∫
K̂
σ(λ,m)

∞∑
j=1

〈φj , uϕλ,m〉L2
α(K)〈 vϕλ,m, φj〉L2

α(K)dγα(λ,m)

=

∫
K̂
σ(λ,m)〈vϕλ,m, uϕλ,m〉L2

α(K)dγα(λ,m),

and the proof is complete. �

In the following we give the main result of this subsection.

Corollary 3.2. Let σ be in Lpα(K̂), 1 6 p 6 ∞. Then, the Laguerre two-wavelet multiplier Pu,v(σ) : L2
α(K) −→

L2
α(K) is in Sp and we have

‖Pu,v(σ)‖Sp 6 (‖u‖L∞α (K)‖v‖L∞α (K))
p−1
p ‖σ‖Lpα(K̂).

Proof. The result follows from Proposition 3.3, Theorem 3.2 and by interpolation (See [51, Theorem 2.10 and
Theorem 2.11]). �

Remark 3.1. If u = v and if σ is a real valued and nonnegative function in L1
α(K̂) then

Pu,v(σ) : L2
α(K)→ L2

α(K)

is a positive operator. So, by (2.11) and Corollary 3.1

(3.14) ||Pu,v(σ)||S1 =

∫
K̂
σ(λ,m)||ϕλ,mu||2L2

α(K)dγα(λ,m).

Now we state a result concerning the trace of products of Laguerre two-wavelet multipliers.

Corollary 3.3. Let σ1 and σ2 be any real-valued and non-negative functions in L1
α(K̂). We assume that u = v and

u is a function in L2
α(K) such that ||u||L2

α(K) = 1. Then, the Laguerre two-wavelet multipliers Pu,v(σ1), Pu,v(σ2)

are positive trace class operators and∣∣∣∣∣∣(Pu,v(σ1)Pu,v(σ2)
)n∣∣∣∣∣∣

S1

= tr
(
Pu,v(σ1)Pu,v(σ2)

)n
≤

(
tr
(
Pu,v(σ1)

))n(
tr
(
Pu,v(σ2)

))n
=

∣∣∣∣∣∣Pu,v(σ1)
∣∣∣∣∣∣n
S1

∣∣∣∣∣∣Pu,v(σ2)
∣∣∣∣∣∣n
S1

,

for all natural numbers n.
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Proof. By Theorem 1 in the paper [29] by Liu we know that if A and B are in the trace class S1 and are
positive operators, then

∀n ∈ N, tr(AB)n ≤
(
tr(A)

)n(
tr(B)

)n
.

So, if we take A = Pu,v(σ1), B = Pu,v(σ2) and we invoke the previous remark, the proof is complete.
�

4. THE GENERALIZED LANDAU-POLLAK-SLEPIAN OPERATOR

4.1. Trace formula. Let R and R1 and R2 be positive numbers. We define the linear operators

QR : L2
α(K̂) −→ L2

α(K̂), PR1
: L2

α(K̂) −→ L2
α(K̂), PR2

: L2
α(K̂) −→ L2

α(K̂),

by
QRh = χBK̂(0,R)h, PR1

h = Fα(χBK(0,R1)(Fα)−1(h)), PR2
h = Fα(χBK(0,R2)(Fα)−1(h)),

where
BK(0, Ri) :=

{
(x, t) ∈ K : N(x, t) < Ri

}
, i = 1, 2

and
BK̂(0, R) :=

{
(µ, n) ∈ K̂ : N (µ, n) < R

}
.

We adapt the proof of Proposition 20.1 in the book [51] by Wong, we prove the following.

Proposition 4.1. The operators QR : L2
α(K̂) −→ L2

α(K̂), PRi : L2
α(K̂) −→ L2

α(K̂), i = 1, 2, are self-adjoint
projections.

The bounded linear operator PR2
QRPR1

: L2
α(K̂) −→ L2

α(K̂) it is called the generalized Landau-Pollak-
Slepian operator. We can show that the generalized Landau-Pollak-Slepian operator is in fact a Laguerre
two-wavelet multiplier.

Theorem 4.1. Let u and v be the functions on K defined by

u =
1√

να(BK(0, R1))
χBK(0,R1), v =

1√
να(BK(0, R2))

χBK(0,R2),

where
∀ s > 0, να(BK(0, s)) :=

∫
BK(0,s)

dνα(x, t).

Then the generalized Landau-Pollak-Slepian operator PR2QRPR1 : L2
α(K̂) −→ L2

α(K̂) is unitary equivalent to a
scalar multiple of the Laguerre two-wavelet multiplier

Pu,v(χBK̂(0,R)) : L2
α(K) −→ L2

α(K).

In fact

(4.1) PR2
QRPR1

= Cα(R1, R2)Fα(Pu,v(χBK̂(0,R)))(Fα)−1,

where
Cα(R1, R2) :=

√
να(BK(0, R1))να(BK(0, R2)).

Proof. It is easy to see that u and v belong to L2
α(K) ∩ L∞α (K) and

||u||L2
α(K) = ||v||L2

α(K) = 1.

On the other hand we have

〈Pu,v(χBK̂(0,R))(f), g〉L2
α(K) =

∫
K
MχBK̂(0,R)

(uf)(x, t)(vg)(x, t)dνα(x, t).
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By simple calculations we find

〈Pu,v(χBK̂(0,R))(f), g〉L2
α(K) = 1

Cα(R1,R2)

∫
BK̂(0,R)

PR1(Fα(f))(λ,m)PR2(Fα(g))(λ,m)dγα(λ,m)

= 1
Cα(R1,R2)

∫
K̂
QRPR1

(Fα(f))(λ,m)PR2
(Fα(g))(λ,m)dγα(λ,m)

= 1
Cα(R1,R2) 〈QRPR1(Fα(f)), PR2(Fα(g))〉L2

α(K̂)

= 1
Cα(R1,R2) 〈PR2QRPR1(Fα(f)),Fα(g)〉L2

α(K̂)

= 1
Cα(R1,R2) 〈F

−1
α PR2

QRPR1
(Fα(f)), g〉L2

α(K)

for all f, g in S∗(K) and hence the proof is complete. �

The next result gives a formula for the trace of the generalized Landau-Pollak-Slepian operator

PR2QRPR1 : L2
α(K̂) −→ L2

α(K̂).

Corollary 4.1. We have

tr(PR2
QRPR1

) =

∫
BK̂(0,R)

∫
BK(0,min(R1,R2))

|ϕλ,m(x, t)|2dνα(x, t)dγα(λ,m).

Proof. The result is an immediate consequence of Theorem 4.1 and Corollary 3.1. �

Remark 4.1. (i) Let Σ1,Σ2 ⊂ K, S ⊂ K̂ be a measurable subsets with 0 < να(Σi), γα(S) < ∞, i = 1, 2. Using
similar ideas used in Theorem 4.1, we prove that

(4.2) PΣ2
QSPΣ1

= Cα(Σ1,Σ2)Fα(Pu,v(χS))F−1
α ,

where
QSh = χSh, PΣih = Fα(χΣi(F−1

α )(h)), i = 1, 2,

u =
1√

να(Σ1)
χΣ1

, v =
1√

να(Σ2)
χΣ2

and
Cα(Σ1,Σ2) :=

√
να(Σ1)να(Σ2).

(ii) Let Σ ⊂ K, S ⊂ K be a pair of measurable subsets with 0 < να(Σ), γα(S) < ∞. Using similar ideas used
in Corollary 4.1, we obtain

tr(PΣQSPΣ) =

∫
S

∫
Σ

|φx,t(λ,m)|2dνα(x, t)dγα(λ,m).

4.2. Donoho-Stark type uncertainty principle.
One would like to find nonzero functions f ∈ L2

α(K), which are timelimited on a subset S ⊂ K̂ (i.e.
suppf ⊂ S) and bandlimited on a subset Σ ⊂ K (i.e. suppFα(f) ⊂ Σ), for sets S and Σ with finite measure.
Unfortunately, such functions do not exist, because if f is time and bandlimited on subsets of finite measure,
then f = 0. As a result, it is natural to replace the exact support by the essential support, and to focus on
functions that are essentially time and bandlimited to a bounded region like Σ × S in the time-frequency
plane. To do this, we introduce the following operators

EΣf = χΣf, FSf = F−1
α (χSFα(f)), f ∈ L2

α(K).

Concerning the meaning of “concentration” and “not too small” sets we adapt of a well-known notion from
Fourier analysis (cf. [1, 13]).

Definition 4.1. Let 0 ≤ ε < 1 and let S ⊂ K̂, Σ ⊂ K be a pair of measurable subsets. Then

(1) a nonzero function f ∈ L2
α(K) is ε-concentrated on Σ if ‖EΣcf‖L2

α(K) ≤ ε‖f‖L2
α(K),

(2) a nonzero function f ∈ L2
α(K) is ε-bandlimited on K if ‖FScf‖L2

α(K) ≤ ε‖f‖L2
α(K),
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(3) a nonzero function f ∈ L2
α(K) is ε-localized with respect to an operator

L : L2
α(K)→ L2

α(K)

if
‖Lf − f‖L2

α(K) ≤ ε‖f‖L2
α(K).

Here Ac = K\A is the complement of A in K. Notice also that, the ε-concentration measure was
introduced in [13, 25, 26], and the idea of ε-localization has been recently introduced in [1], which arises
from the concept of pseudospectra of linear operators.

If ε = 0 in the ε-concentration measures, then Σ and S are respectively the exact support of f and
Fα(f), moreover when ε ∈ (0, 1), Σ and S may be considered as the essential support of f and Fα(f)

respectively. From Landau’s point of view [25],m is said to be an ε-approximated eigenvalue of the operator
L, if there exists a unit L2-norm function f ∈ L2

α(K), such that

‖Lf −mf‖L2
α(K) ≤ ε.

So that, if a function f ∈ L2
α(K) is ε-localized with respect to an operator L, then f is called an ε-

approximated eigenfunction of L with pseudoeigenvalue 1. In particular, when ε = 0, then every func-
tion f ∈ L2

α(K) which is ε-localized with respect to the operator L is an eigenfunction of such operator
corresponding to the eigenvalue 1.

Now let S ⊂ K̂, Σ ⊂ K be a pair of measurable subsets. We put

LS(f) := Pu,v(χS)(f), LΣ(f) := χΣf, f ∈ L2
α(K),

where we assume that u and v satisfy ‖u‖L∞α (K)‖v‖L∞α (K) = 1.
The main of this subsection is to prove the following Donoho-Stark type uncertainty principle.

Theorem 4.2. Let εS , εΣ ∈ (0, 1) such that εS + εΣ < 1. If f ∈ L2
α(K) is εS-localized with respect to LS and

εΣ-localized with respect to LΣ then,

(4.3) γα(S)να(Σ) ≥ 1− εS − εΣ.

Proof. From Proposition 3.3, we have

‖f − LΣLSf‖L2
α(K) ≤ ‖f − LΣf‖L2

α(K) + ‖LΣf − LΣLSf‖L2
α(K)

≤ ‖LΣf − f‖L2
α(K) + ‖LΣ‖S∞‖LSf − f‖L2

α(K)

≤ (εΣ + εS)‖f‖L2
α(K).

Therefore

‖LΣLSf‖L2
α(K) ≥ ‖f‖L2

α(K) − ‖f − LΣLSf‖L2
α(K)

≥ (1− εS − εΣ)‖f‖L2
α(K).

Thus from Proposition 3.4 it follows that

1− εS − εΣ ≤ ‖LΣLS‖S∞
≤ ‖LS‖S∞‖LΣ‖S∞
≤ γα(S)να(Σ).

This proves the desired result. �

Corollary 4.2. If f ∈ L2
α(K) is an eigenfunction of LS and LΣ corresponding to the same eigenvalue 1, then

(4.4) γα(S)να(Σ) ≥ 1.
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Proof. Notice that, when εS = εΣ = 0 we have in this case Σ = suppf , S = suppFα(f) and we proceed as
above theorem we obtain the result. �

Remark 4.2. (1) As a first result, we can remark that the essential supports S and Σ cannot be too small.
(2) The result involves the couple (LΣf,LSf) and the rectangle Σ × S analogously to the Donoho-Stark UP

which involves the couple (f,F(f)) and the same rectangle.
(3) The estimate

γα(S)να(Σ) ≥ 1− εS − εΣ

is stronger then the classical Donoho-Stark estimate

γα(S)να(Σ) ≥ (1− εS − εΣ)2.

4.3. Approximation inequalities.
Let S ⊂ K̂, Σ ⊂ K be a pair of measurable subsets with 0 < να(Σ), γα(S) < ∞. Let εS , εΣ ∈ [0, 1). We

denote by L2
α(εΣ, εS ,K) the subspace of L2

α(K) consisting of functions that are εΣ-concentrated on Σ and
εS-bandlimited on S (clearly L2

α(0, 0,K) = ∅).
We define the phase space restriction operator by

LΣ,S := EΣFSEΣ.

It is clear that the operator LΣ,S : L2
α(K) → L2

α(K), special case of the generalized Landau-Pollak-Slepian
operator, is compact, self-adjoint and then can be diagonalized as

(4.5) LΣ,Sf =

∞∑
n=1

λn〈f, ϕn〉L2
α(K)ϕn,

where {λn = λn(Σ, S)}∞n=1 are the positive eigenvalues arranged in a non-increasing manner

(4.6) λn ≤ · · · ≤ λ1 < 1,

and {ϕn = ϕn(Σ, S)}∞n=1 is the corresponding orthonormal set of eigenfunctions. In particular

(4.7) ‖LΣ,S‖S∞ = λ1,

where λ1 is the first eigenvalue corresponding to the first eigenfunction ϕ1 of the compact operator LΣ,S .
This eigenfunction realizes the maximum of concentration on the set S × Σ. On the other hand, since ϕn is
an eigenfunction of LΣ,S with eigenvalue λn, then

(4.8) ‖LΣ,S ϕn − ϕn‖L2
α(K) = 〈ϕn − LΣ,S ϕn, ϕn〉L2

α(K) = 1− λn,

and

‖LΣ,S (LΣ,S ϕn)− LΣ,S ϕn‖L2
α(K) = λ−1

n 〈LΣ,S ϕn − LΣ,S (LΣ,S ϕn) , LΣ,S ϕn〉L2
α(K)

= λn(1− λn) = (1− λn)‖LΣ,S ϕn‖L2
α(K).(4.9)

Thus, for all n, the functions ϕn and LΣ,S ϕn are (1−λn)-localized with respect to LΣ,S . More generally, we
have the following comparisons of the measures of localization.

Proposition 4.2. Let ε, εΣ, εS ∈ (0, 1).

(1) If f ∈ L2
α(εΣ, εS ,K), then f is (εS + εΣ)-localized with respect to FSEΣ and (εS + 2εΣ)-localized with

respect to LΣ,S .
(2) If f ∈ L2

α(K) is ε-localized with respect to LΣ,S , then

(4.10) 〈f − LΣ,Sf, f〉L2
α(K) ≤ (ε2 + ε)‖f‖2L2

α(K).



Pan-Amer. J. Math. 3 (2024), 13 17

(3) If f ∈ L2
α(K) satisfies

(4.11) 〈f − LΣ,Sf, f〉L2
α(K) ≤ ε‖f‖

2
L2
α(K),

then f is
√
ε-localized with respect to LΣ,S .

(4) If f ∈ L2
α(εΣ, εS ,K), then

(4.12) 〈f − LΣ,Sf, f〉L2
α(K) < (εS + 2εΣ)‖f‖2L2

α(K).

Proof. (1) Recall that ‖FS‖S∞ = ‖EΣ‖S∞ = 1. First we have

‖FSEΣf − f‖L2
α(K) ≤ ‖EΣf − f‖L2

α(K) + ‖FSEΣf − EΣf‖L2
α(K)

≤ ‖EΣcf‖L2
α(K) + ‖EΣ‖S∞‖FScf‖L2

α(K)

≤ (εS + εΣ)‖f‖L2
α(K).

Moreover,

‖LΣ,Sf − f‖L2
α(K) ≤ ‖EΣFSEΣf − EΣf‖L2

α(K) + ‖EΣf − f‖L2
α(K)

≤ ‖EΣ‖S∞‖FSEΣf − f‖L2
α(K) + ‖EΣf − f‖L2

α(K)

≤ (εS + 2εΣ)‖f‖L2
α(K).

Thus the first result is proved.
(2) Now since

2〈f − LΣ,Sf, f〉L2
α(K) = ‖LΣ,Sf − f‖2L2

α(K) + ‖f‖2L2
α(K) − ‖LΣ,Sf‖2L2

α(K)

≤ ‖LΣ,Sf − f‖2L2
α(K) +

(
‖LΣ,Sf − f‖L2

α(K) + ‖LΣ,Sf‖L2
α(K)

)2

− ‖LΣ,Sf‖2L2
α(K)

= 2‖LΣ,Sf − f‖2L2
α(K) + 2‖LΣ,Sf − f‖L2

α(K)‖LΣ,Sf‖L2
α(K),

and as ‖LΣ,S‖S∞ ≤ 1, then

(4.13) 〈f − LΣ,Sf, f〉L2
α(K) ≤ ‖LΣ,Sf − f‖2L2

α(K) + ‖LΣ,Sf − f‖L2
α(K)‖f‖L2

α(K) ≤ (ε2 + ε)‖f‖2L2
α(K),

and the second result follows.
(3) On the other hand, since

(4.14)
〈

(LΣ,S)
2
f, f
〉
L2
α(K)

≤ 〈LΣ,Sf, f〉L2
α(K),

and as LΣ,S is self-adjoint, then

(4.15) ‖LΣ,Sf − f‖2L2
α(K) =

〈
(I − LΣ,S)

2
f, f
〉
L2
α(K)

≤ 〈(I − LΣ,S)f, f〉L2
α(K) ≤ ε‖f‖

2
L2
α(K).

(4) Finally, since

〈f − LΣ,Sf, f〉L2
α(K) = 〈EΣcf, f〉L2

α(K) + 〈EΣf, FScf〉L2
α(K) + 〈FSEΣf,EΣcf〉L2

α(K),

then we obtain the last result. �

The estimate (4.11) is equivalent to

(4.16) 〈LΣ,Sf, f〉L2
α(K) ≥ (1− ε)‖f‖2L2

α(K),

and we denote by L2
α(ε, S,Σ,K) the subspace of L2

α(K) consisting of functions f ∈ L2
α(K) satisfying (4.16).

Hence from (4.8) and (4.9) we have,

(4.17) ∀n ≥ 1, ϕn, LΣ,S ϕn ∈ L2
α(1− λn, S,Σ,K).
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Moreover from Proposition 4.2, if f ∈ L2
α(εΣ, εS ,K), then f ∈ L2

α(εS + 2εΣ, S,Σ,K), and if f is ε-localized
with respect to LΣ,S , then f ∈ L2

α(2ε, S,Σ,K). Therefore we are interested to study the following optimiza-
tion problem

(4.18) Maximize 〈LΣ,Sf, f〉L2
α(K), ‖f‖L2

α(K) = 1,

which aims to look for orthonormal functions in L2
α(K), which are approximately time and band-limited to

a bounded region like Σ × S. It follows that the number of eigenfunctions of LΣ,S whose eigenvalues are
very close to one, are an optimal solutions to the problem (4.18), since if ϕn is an eigenfunction of LΣ,S with
eigenvalue λn ≥ (1− ε), we have from the spectral representation,

(4.19) 〈LΣ,S ϕn, ϕn〉L2
α(K) = λn ≥ (1− ε).

We denote by N(ε,Σ, S) the number of eigenvalues λn of LΣ,S which are close to one, in the sense that

(4.20) λ1 ≥ · · · ≥ λN(ε,Σ,S) ≥ 1− ε > λ1+N(ε,Σ,S) ≥ · · · ,

and we denote by VN(ε,Σ,S) = span {ϕn}N(ε,Σ,S)
n=1 the span of the first eigenfunctions of LΣ,S corresponding

to the largest eigenvalues {λn}N(ε,Σ,S)
n=1 .

Therefore, by (4.19) and (4.17), each eigenfunction ϕn and its resulting function LΣ,S ϕn are in
L2
α(ε, S,Σ,K), if and only if 1 ≤ n ≤ N(ε,Σ, S). Now, if f ∈ VN(ε,Σ,S), then

〈LΣ,Sf, f〉L2
α(K) =

N(ε,Σ,S)∑
n=1

λn

∣∣∣〈f, ϕn〉L2
α(K)

∣∣∣2 ≥ λN(ε,Σ,S)

N(ε,Σ,S)∑
n=1

∣∣∣〈f, ϕn〉L2
α(K)

∣∣∣2 ≥ (1− ε)‖f‖2L2
α(K).

Thus VN(ε,Σ,S) determines the subspace of L2
α(K) with maximum dimension that is in L2

α(ε, S,Σ,K). Mo-
tivated by the recent paper [50] in the Gabor setting, we obtain the following theorem that characterizes
functions that are in L2

α(ε, S,Σ,K).

Proposition 4.3. Let ε ∈ (0, 1) be a fixed real number. Let fker denote the orthogonal projection of f onto the kernel
Ker(LΣ,S) of LΣ,S . Then a function f is in L2

α(ε, S,Σ,K) if and only if,

N(ε,Σ,S)∑
n=1

(λn + ε− 1)
∣∣∣〈f, ϕn〉L2

α(K)

∣∣∣2 ≥ (1− ε)‖fker‖2L2
α(K) +

∞∑
n=1+N(ε,Σ,S)

(1− ε− λn)
∣∣∣〈f, ϕn〉L2

α(K)

∣∣∣2.
Proof. For a given function f ∈ L2

α(K), write

(4.21) f =

∞∑
n=1

〈f, ϕn〉L2
α(K)ϕn + fker,

where fker ∈ Ker(LΣ,S). Then

(4.22) 〈LΣ,Sf, f〉L2
α(K) =

∞∑
n=1

λn

∣∣∣〈f, ϕn〉L2
α(K)

∣∣∣2.
So the function f is in L2

α(ε, S,Σ,K) if and only if

(4.23)
∞∑
n=1

λn

∣∣∣〈f, ϕn〉L2
α(K)

∣∣∣2 ≥ (1− ε)

(
‖fker‖2L2

α(K) +

∞∑
n=1

∣∣∣〈f, ϕn〉L2
α(K)

∣∣∣2) ,
and the conclusion follows. �

While a function f that is in L2
α(ε, S,Σ,K) does not necessarily lies in some subspace

VN = span{ϕn}Nn=1, it can be approximated using a finite number of such eigenfunctions.
Let ε0 ∈ (0, 1) be a fixed real number and let P the orthogonal projection onto the subspace VN(ε0,Σ,S).



Pan-Amer. J. Math. 3 (2024), 13 19

Proposition 4.4. Let f be a function in L2
α(ε, S,Σ,K). Then

(4.24)

∥∥∥∥∥∥f −
N(ε0,Σ,S)∑

n=1

〈f, ϕn〉L2
α(K)ϕn

∥∥∥∥∥∥
L2
α(K)

≤
√

ε

ε0
‖f‖L2

α(K).

Proof. By an easy adaptation of the proof of Proposition 3.3 in [50], we can conclude that

(4.25) ‖Pf‖2L2
α(K) ≥ (1− ε/ε0)‖f‖2L2

α(K).

It then follows,

‖f‖2L2
α(K) = ‖Pf + (f − Pf)‖2L2

α(K) = ‖Pf‖2L2
α(K) + ‖f − Pf‖2L2

α(K).

Thus

‖f − Pf‖2L2
α(K) = ‖f‖2L2

α(K) − ‖Pf‖
2
L2
α(K) ≤ ‖f‖

2
L2
α(K) − (1− ε/ε0)‖f‖2L2

α(K) = ε/ε0‖f‖2L2
α(K).

This completes the proof of the theorem. �

Consequently and from Proposition 4.2, we immediately deduce the following approximation results.

Corollary 4.3. Let ε, εΣ, εS ∈ (0, 1).

(1) If f ∈ L2
α(εΣ, εS ,K), then

(4.26)

∥∥∥∥∥∥f −
N(ε0,Σ,S)∑

n=1

〈f, ϕn〉L2
α(K)ϕn

∥∥∥∥∥∥
L2
α(K)

≤
√

2εS + εΣ

ε0
‖f‖L2

α(K).

(2) If f ∈ L2
α(K) is ε-localized with respect to LΣ,S , then

(4.27)

∥∥∥∥∥∥f −
N(ε0,Σ,S)∑

n=1

〈f, ϕn〉L2
α(K)ϕn

∥∥∥∥∥∥
L2
α(K)

≤
√

2ε

ε0
‖f‖L2

α(K).

5. Lp BOUNDEDNESS AND COMPACTNESS OF Pu,v(σ)

5.1. Boundedness for symbols in Lpα(K̂). For 1 ≤ p ≤ ∞, let σ ∈ L1
α(K̂), v ∈ Lpα(K) and u ∈ Lp

′

α (K) .
We are going to show that Pu,v(σ) is a bounded operator on Lpα(K). Let us start with the following

propositions.

Proposition 5.1. Let σ be in L1
α(K̂), u ∈ L∞α (K) and v ∈ L1

α(K), then the Laguerre two-wavelet multiplier

Pu,v(σ) : L1
α(K) −→ L1

α(K)

is a bounded linear operator and we have

||Pu,v(σ)||B(L1
α(K)) 6 ‖u‖L∞α (K)‖v‖L1

α(K)‖σ‖L1
α(K̂).

Proof. For every function f in L1
α(K), we have from the relations (3.2), (2.6) and (2.4)

||Pu,v(σ)(f)||L1
α(K) 6

∫
K̂

∫
K
|σ(λ,m)| |Fα(uf)(λ,m)| |ϕλ,m(x, t)v(x, t)|dγα(λ,m)dνα(x, t)

6 ‖f‖L1
α(K)||u||L∞α (K)||v||L1

α(K)‖σ‖L1
α(K̂)

Thus,

||Pu,v(σ)||B(L1
α(K)) 6 ||u||L∞α (K)||v||L1

α(K)‖σ‖L1
α(K̂).

�
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Proposition 5.2. Let σ be in L1
α(K̂), u ∈ L1

α(K) and v ∈ L∞α (K), then the Laguerre two-wavelet multiplier

Pu,v(σ) : L∞α (K) −→ L∞α (K)

is a bounded linear operator and we have

||Pu,v(σ)||B(L∞α (K)) 6 ‖u‖L1
α(K)‖v‖L∞α (K)‖σ‖L1

α(K̂).

Proof. Let f be in L∞α (K). As above from the relations (3.2), (2.6) and (2.4)

∀ (x, t) ∈ K, |Pu,v(σ)(f)(x, t)| 6
∫
K̂
|σ(λ,m)| |Fα(uf)(λ,m)| |ϕµ,λ(x, t)v(x, t)|dγα(λ,m)

6 ‖f‖L∞α (K)||u||L1
α(K)||v||L∞α (K)‖σ‖L1

α(K̂)

Thus,

||Pu,v(σ)||B(L∞α (K)) 6 ||u||L1
α(K)||v||L∞α (K)‖σ‖L1

α(K̂).

�

Remark 5.1. Proposition 5.2 is also a corollary of Proposition 5.1, since the adjoint of

Pv,u(σ) : L1
α(K)→ L1

α(K)

is Pu,v(σ) : L∞α (K)→ L∞α (K).

Using an interpolation of Propositions 5.1 and 5.2, we get the following result.

Theorem 5.1. Let u and v be functions in L1
α(K) ∩ L∞α (K). Then for all σ in L1

α(K̂), there exists a unique bounded
linear operator

Pu,v(σ) : Lpα(K) −→ Lpα(K), 1 ≤ p ≤ ∞,

such that
||Pu,v(σ)||B(Lpα(K)) 6 ‖u‖

1
p′

L1
α(K)‖v‖

1
p

L1
α(K)‖u‖

1
p

L∞α (K)‖v‖
1
p′

L∞α (K)‖σ‖L1
α(K̂).

With a Schur technique, we can obtain an Lp-boundedness result as in the previous Theorem, but the
estimate for the norm ||Pu,v(σ)||B(Lpα(K)) is cruder.

Theorem 5.2. Let σ be in L1
α(K̂), u and v in L1

α(K)
⋂
L∞α (K). Then there exists a unique bounded linear operator

Pu,v(σ) : Lpα(K) −→ Lpα(K), 1 ≤ p ≤ ∞,

such that
||Pu,v(σ)||B(Lpα(K)) 6 max(‖u‖L1

α(K)‖v‖L∞α (K), ‖u‖L∞α (K)‖v‖L1
α(K))‖σ‖L1

α(K̂).

Proof. Let N be the function defined on K×K by

(5.1) N (x, t; s, y) =

∫
K̂
σ(λ,m)ϕλ,m(x, t)v(x, t)ϕλ,m(s, y)u(s, y)dγα(λ,m).

We have

Pu,v(σ)(f)(x, t) =

∫
K
N (x, t; s, y)f(s, y)dνα(s, y).

By simple calculations, it is easy to see that∫
K
|N (x, t; s, y)|dνα(x, t) ≤ ‖u‖L∞α (K)‖v‖L1

α(K)‖σ‖L1
α(K̂), (s, y) ∈ K,

and ∫
K
|N (x, t; s, y)|dνα(s, y) ≤ ‖u‖L1

α(K)‖v‖L∞α (K)‖σ‖L1
α(K̂), (x, t) ∈ K.
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Thus by Schur Lemma (cf. [16]), we can conclude that

Pu,v(σ) : Lpα(K) −→ Lpα(K)

is a bounded linear operator for 1 ≤ p ≤ ∞, and we have

||Pu,v(σ)||B(Lpα(K)) 6 max(‖u‖L1
α(K)‖v‖L∞α (K), ‖u‖L∞α (K)‖v‖L1

α(K))‖σ‖L1
α(K̂).

�

Remark 5.2. The previous Theorem tells us that the unique bounded linear operator on Lpα(K), 1 ≤ p ≤ ∞, obtained
by interpolation in Theorem 5.1 is in fact the integral operator on Lpα(K) with kernel N given by (5.1).

We can give another version of the Lp-boundedness. Firstly we generalize and we improve Proposi-
tion 5.2.

Proposition 5.3. Let σ be in L1
α(K̂), v ∈ Lpα(K) and u ∈ Lp

′

α (K), for 1 < p ≤ ∞, then the Laguerre two-wavelet
multiplier

Pu,v(σ) : Lpα(K) −→ Lpα(K)

is a bounded linear operator, and we have

||Pu,v(σ)||B(Lpα(K)) 6 ‖u‖Lp′α (K)
‖v‖Lpα(K)‖σ‖L1

α(K̂).

Proof. For any f ∈ Lpα(K), consider the linear functional

If : Lp
′

α (K) → C
g 7→ 〈g,Pu,v(σ)(f)〉L2

α(K).

From the relation (3.3)

|〈Pu,v(σ)(f), g〉L2
α(K)| 6

∫
K̂
|σ(λ,m)||Fα(uf)(λ,m)| |Fα(vg)(λ,m)|dγα(λ,m)

6 ‖σ‖L1
α(K̂)‖Fα(uf)‖L∞α (K̂)‖Fα(vg)‖L∞α (K̂).

Using the relation (2.5), (2.4) and Hölder’s inequality, we get

|〈Pu,v(σ)(f), g〉L2
α(K)| 6 ‖σ‖L1

α(K̂)‖u‖Lp′α (K)
‖v‖Lpα(K)‖f‖Lpα(K)‖g‖Lp′α (K)

.

Thus, the operator If is a continuous linear functional on Lp
′

α (K), and the operator norm

||If ||B(Lp
′
α (K))

6 ‖u‖
Lp
′
α (K)
‖v‖Lpα(K)‖f‖Lpα(K)‖σ‖L1

α(K̂).

As If (g) = 〈g,Pu,v(σ)(f)〉L2
α(K), by the Riesz representation theorem, we have

||Pu,v(σ)(f)||
Lp
′
α (K)

= ||If ||B(Lp
′
α (K))

6 ‖u‖
Lp
′
α (K)
‖v‖Lpα(K)‖f‖Lpα(K)‖σ‖L1

α(K̂),

which establishes the proposition. �

Combining Proposition 5.1 and Proposition 5.3, we have the following theorem.

Theorem 5.3. Let σ be in L1
α(K̂), v ∈ Lpα(K) and u ∈ Lp

′

α (K), for 1 ≤ p ≤ ∞, then the Laguerre two-wavelet
multiplier

Pu,v(σ) : Lpα(K) −→ Lpα(K)

is a bounded linear operator, and we have

||Pu,v(σ)||B(Lpα(K)) 6 ‖u‖Lp′α (K)
‖v‖Lpα(K)‖σ‖L1

α(K̂).
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We can now state and prove the main result in this subsection.

Theorem 5.4. Let σ be in Lrα(K̂), r ∈ [1, 2], and u, v ∈ L1
α(K)

⋂
L∞α (K). Then there exists a unique bounded linear

operator
Pu,v(σ) : Lpα(K) −→ Lpα(K)

for all p ∈ [r, r′], and we have

(5.2) ||Pu,v(σ)||B(Lpα(K)) 6 C
t
1C

1−t
2 ‖σ‖Lrα(K̂),

where

C1 =
(
‖u‖L∞α (K)‖v‖L1

α(K)

) 2
r−1(

‖u‖L∞α (K)‖v‖L∞α (K)

) 1
r′
,

C2 =
(
‖u‖L1

α(K)‖v‖L∞α (K)

) 2
r−1(

‖u‖L∞α (K)‖v‖L∞α (K)

) 1
r′
,

and
t

r
+

1− t
r′

=
1

p
.

Proof. Consider the linear functional

I :
(
L1
α(K̂) ∩ L2

α(K̂)
)
×
(
L1
α(K) ∩ L2

α(K)
)
→ L1

α(K) ∩ L2
α(K)

(σ, f) 7→ Pu,v(σ)(f).

Then by Proposition 5.1 and Theorem 3.1

(5.3) ||I(σ, f)||L1
α(K) 6 ‖u‖L∞α (K)‖v‖L1

α(K)||f ||L1
α(K)‖σ‖L1

α(K̂)

and

(5.4) ||I(σ, f)||L2
α(K) ≤

√
‖u‖L∞α (K)‖v‖L∞α (K)||f ||L2

α(K)‖σ‖L2
α(K̂).

Therefore, by (5.3), (5.4) and the the multi-linear interpolation theory, see Section 10.1 in [8] for reference,
we get a unique bounded linear operator

I : Lrα(K̂)× Lrα(K)→ Lrα(K)

such that

(5.5) ||I(σ, f)||Lrα(K) ≤ C1||f ||Lrα(K)‖σ‖Lrα(K̂),

where

C1 =
(
‖u‖L∞α (K)‖v‖L1

α(K)

)θ(
‖u‖L∞α (K)‖v‖L∞α (K)

) 1−θ
2

and
θ

1
+

1− θ
2

=
1

r
.

By the definition of I, we have
||Pu,v(σ)||B(Lrα(K)) 6 C1‖σ‖Lrα(K̂).

As the adjoint of Pu,v(σ) is Pv,u(σ), so Pu,v(σ) is a bounded linear map on Lr
′
(K) with its operator norm

(5.6) ||Pu,v(σ)||B(Lr′α (K)) = ||Pv,u(σ)||B(Lrα(K)) ≤ C2‖σ‖Lrα(K̂),

where

C2 =
(
‖u‖L1

α(K)‖v‖L∞α (K)

)θ(
‖u‖L∞α (K)‖v‖L∞α (K)

) 1−θ
2

.

Using an interpolation of (5.5) and (5.6), we have that, for any p ∈ [r, r′],

||Pu,v(σ)||B(Lpα(K)) 6 C
t
1C

1−t
2 ‖σ‖Lrα(K̂),
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with
t

r
+

1− t
r′

=
1

p
.

�

5.2. Compactness of Pu,v(σ).

Proposition 5.4. Under the same hypothesis of Theorem 5.1, the Laguerre two-wavelet multiplier Pu,v(σ) :

L1
α(K) −→ L1

α(K) is compact.

Proof. Let (fn)n∈N ∈ L1
α(K) such that fn ⇀ 0 weakly in L1

α(K) as n→∞. It is enough to prove that

lim
n→∞

||Pu,v(σ)(fn)||L1
α(K) = 0.

We have

(5.7) ||Pu,v(σ)(fn)||L1
α(K) 6

∫
K̂

∫
K
|σ(λ,m)| |〈fn, ϕλ,mu〉L2

α(K)| |ϕλ,m(x, t)v(x, t)|dγα(λ,m)dνα(x, t).

Now using the fact that fn ⇀ 0 weakly in L1
α(K), we deduce that

(5.8) ∀ (x, t) ∈ K, ∀ (λ,m) ∈ K̂, lim
n→∞

|σ(λ,m)| |〈fn, ϕλ,mu〉L2
α(K)| |ϕλ,m(x, t)v(x, t)| = 0.

On the other hand as fn ⇀ 0 weakly in L1
α(K) as n → ∞, then there exists a positive constant C such that

||fn||L1
α(K) ≤ C.

Thus using Hölder’s inequality and relation (2.4), we get for all (x, t) ∈ K, for all (λ,m) ∈ K̂,

(5.9) |σ(λ,m)| |〈fn, ϕλ,mu〉L2
α(K)| |ϕλ,m(x, t)v(x, t)| ≤ C|σ(λ,m)| ||u||L∞α (K) |v(x, t)|.

So, from Fubini’s theorem and previous relation, we obtain

(5.10)

∫
K̂

∫
K
|σ(λ,m)| |〈fn, ϕλ,mu〉L2

α(K)| |ϕλ,m(x, t)v(x, t)|dγα(λ,m)dνα(x, t)

≤ C||u||L∞α (K)

∫
K̂
|σ(λ,m)|

∫
K
|v(x, t)|dνα(x, t)dγα(λ,m)

≤ C||u||L∞α (K)||v||L1
α(K)‖σ‖L1

α(K̂) <∞.

Thus from the relations (5.7), (5.8), (5.9), (5.10) and the Lebesgue dominated convergence theorem we de-
duce that

lim
n→∞

||Pu,v(σ)(fn)||L1
α(K) = 0

and the proof is complete. �

In the following we give three results for compactness of the Laguerre two-wavelet multiplier opera-
tors.

Theorem 5.5. Under the hypothesis of Theorem 5.1, the bounded linear operator

Pu,v(σ) : Lpα(K) −→ Lpα(K)

is compact for 1 ≤ p ≤ ∞.

Proof. From the previous proposition, we only need to show that the conclusion holds for p = ∞. In fact,
the operator Pu,v(σ) : L∞α (K) −→ L∞α (K) is the adjoint of the operator

Pv,u(σ) : L1
α(K) −→ L1

α(K),

which is compact by the previous Proposition. Thus by the duality property,

Pu,v(σ) : L∞α (K) −→ L∞α (K)
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is compact. Finally, by an interpolation of the compactness on L1
α(K) and on L∞α (K) such as the one given

on pages 202 and 203 of the book [7] by Bennett and Sharpley, the proof is complete. �

The following result is an analogue of Theorem 5.4 for compact operators.

Theorem 5.6. Under the hypotheses of Theorem 5.4, the bounded linear operator

Pu,v(σ) : Lpα(K) −→ Lpα(K)

is compact for all p ∈ [r, r′].

Proof. The result is an immediate consequence of an interpolation of Corollary 3.2 and Proposition 5.4. See
again pages 202 and 203 of the book [7] by Bennett and Sharpley for the interpolation used. �

Using similar ideas as above we can prove the following.

Theorem 5.7. Under the hypothesis of Theorem 5.3, the bounded linear operator

Pu,v(σ) : Lpα(K) −→ Lpα(K)

is compact for 1 ≤ p ≤ ∞.
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