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NOVEL MULTIVARIATE INTEGRAL OPERATORS INCORPORATING TRIGONOMETRIC
TRANSFORMATIONS

CHRISTOPHE CHESNEAU

ABSTRACT. The creation of new nonlinear multivariate integral operators is motivated by the need for mathemat-
ical tools that can handle the complex interdependencies that naturally arise in contemporary applications. From
an abstract scientific point of view, it is also necessary to develop new operator theories beyond existing ones to
offer original research perspectives. This article contributes to these complementary aspects. We present two non-
linear multivariate integral operators that have the particularity of incorporating trigonometric transformations
of the main function. Thanks to their trigonometric nature, they completely stand out from existing operators,
offering a new and complete framework. Therefore, we take advantage of advanced mathematical techniques for
trigonometric functions to address the challenges they pose. In particular, we show that they have manageable
integrals and series expansions, that they are solutions of specific differential and functional equations, and that
they are involved in general inequalities of various types (Holder-type, convex-type, etc.). In the application part,
we use some of these properties to propose a wide collection of trigonometric inequalities that are both original
and precise. Figures are produced to illustrate them for a direct visual check.

1. MOTIVATIONS

Integral operators are key mathematical tools. They are used to provide a robust framework for analyz-
ing and transforming functions, playing a crucial role in disciplines such as calculus, functional analysis,
signal processing, mathematical physics, engineering, and image processing. Their actual research is of
importance for introducing new perspectives and addressing specific issues or phenomena beyond the
capabilities of existing operators. In the field of univariate analysis, the most renowned linear integral op-
erator is the Fourier operator. We may also mention the Laplace, Sumudu, Elzaki, Natural, Formable, and
Jafari operators (see [36], [5], [15], [6], [33], and [22], respectively). Despite a certain variety in the defini-
tion, notable linear integral operators using trigonometric functions are relatively rare. The most famous
examples are the Fourier-sine and Fourier-cosine operators, both derived from imaginary and real parts of
the Fourier operator, respectively. Hence, we may define them as

Fs(f)(7) = ﬁ / f(2) sin(y2)da
and

Fe(f)(7) = V% / £() cos(ya)dz,
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where v € R, respectively. There is also the Hartley operator. It is known for its ability to transform real-
valued functions into real-valued functions via integration and trigonometric functions. Technically, the
Hartley operator of a function f is defined by

1
1)) = == [ 1) eastros
where v € R, and cas(t) denotes the cosine-and-sine function indicated as
(1.1) cas(t) = cos(t) + sin(t),
which can also be expressed without a sum as
. T ™
cas(t) = v/2sin (t + Z) . cas(t) = V2cos (t — Z) .

Thus, the following relationship holds: H(f)(v) = Fs(f)(v)+Fc(f)(7). One interest of the Hartley operator
is its involution property: it is its own inverse, i.e., H[H(f)](t) = f(t). More details on the Hartley operator
can be found in [28] and [32]. The trigonometric nature of the Fourier-sine, Fourier-cosine and Hartley
operators will be inspirational for the findings in this article.

On a connex topic, important nonlinear integral operators include the nonlinear Fourier, Kamimura,
Urysohn and Hammerstein operators (see [14], [23], [4], and [30], respectively). Also, to effectively capture
complex dependencies between multiple variables in various applications, the development of innovative
multivariate integral operators has attracted attention. Among the family of linear operators of this type,
except the classic multivariate Fourier operator, we can refer to the multivariate Hartley, triple Laplace-
Aboodh-Sumudu, double Laplace, double Sumudu, triple Laplace, triple Elzaki, double fuzzy Natural
and fractional order multiple integral operators (see [35], [1], [25], [25], [26], [16], [18], and [24], respec-
tively). Among the rare integral operators mixing multidimension and nonlinearity, there are the special
convolution-type, special Kantorovich, ¢, generalized ¢ and integral ratio operators (see [2], [7], [8], [9],
and [10], respectively).

To the best of our knowledge, multivariate nonlinear integral operators involving trigonometric func-
tions have received relatively limited attention in the literature. Nevertheless, they could be very promis-
ing for the creation of new theories and mathematical models. Indeed, trigonometric functions are well-
mastered tools, and their basic properties can enrich those of any derived operator. Thus, as surprising as
it may seem, their use is a particularly original approach in a multivariate nonlinear context. In light of
this, keeping in mind the constructions of the Fourier-sine, Fourier-cosine and generalized ¢ operators, we

define new multivariate nonlinear integral operators having the following general form:

G(f)(a ) = / G118 ())dx.

X
with g(t) € {sin(¢), cos(t)}, and o and § are two tuning parameters (the mathematical details will be given
later). Consequently, a trigonometric function depending on 5 and a power function driven by « both
involve the transformation of the primary function f into the integral. In this article, we emphasize that
such multivariate nonlinear trigonometric integral operators have several notable features and can open
the horizons of new applications. Among them are solutions to sophisticated functional and differential
equations. In addition, we can expand them into simple infinite series with manageable coefficients for fur-
ther mathematical manipulations. As an important aspect, thanks to knowledge of the basic trigonometric
functions, they satisfy general inequalities, including convex, concave, and Holder-type inequalities. These
inequalities can offer an alternative view to existing findings and also innovate, taking advantage of a high
level of precision. Furthermore, we can express these multivariate nonlinear trigonometric integral opera-

tors in simple forms for a broad range of univariate and multivariate functions f. With the aim of giving
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examples of applications, we combine some of the above properties to establish new trigonometric inequal-
ities, which remain a contemporary topic (see [13], [3], [11] and [12], among others). To provide a direct
visual check on them, figures are created. We thus make a theoretical and practical contribution to the field
of analysis by examining multivariate nonlinear trigonometric integral operators that have not received
enough attention, despite promising perspectives.

The article is structured as follows: The two proposed operators and their fundamental characteristics
are covered in detail in Section 2. In Section 3, some general inequalities are established. The two operators
are applied to a comprehensive panel of univariate and multivariate functions in Sections 4 and 5. Section
6 shows how the findings can be exploited to innovate in the field of inequalities. Section 7 provides a
conclusion.

2. DEFINITION AND FUNDAMENTAL CHARACTERISTICS

2.1. Definition. The two proposed multivariate nonlinear trigonometric integral operators are described
in detail below.

Definition 2.1. Let o € R, 8 € R, n be a positive integer, and X = X,, = X[_,[0,1] = [0,1]™. Let us set
X = X, = (21,...,2,) and dx = dx, = H?zld:ri. Let f(x) = f(z1,...,25), x € X, be a non-negative
function. The two considered multivariate nonlinear trigonometric integral operators of f are presented
below.

o We define the sine (S) operator of f as

S(f)(a. ) = /X (£ ()] sin[B (x)]dx.

o We define the cosine (C) operator of f as

C’(f)(a,ﬂ):A[f(x)]acos[ﬂf(x)]dx.

Since |cos(t)|€ [0,1] and [sin(t)|€ [0,1], it is clear that the S and C operators exist if we suppose that
J[f(x)]*dx < oo. Further integral hypotheses can be posed using Riemann rules, integral comparisons,
etc. On the mathematical notion of existence used in this article, the remark below must be taken into
account.

Remark 2.2. Throughout the article, for ease of reading and to relax the possible list of assumptions, all mathematical
quantities used are assumed to exist in the mathematical sense, that is, all sums converge, all integrals converge, etc.
If, on a case-by-case basis, an involved quantity does not exist, the corresponding result becomes invalid.

The non-negative assumption on f is connected to the presence of «. This point is clarified in the remark
below.

Remark 2.3. If « is an integer, the non-negative assumption on f can be removed. For the sake of uniformity
throughout the article, we will, however, suppose that f is non-negative to be more flexible on the possible values of c.

The definition X is chosen in such a way that [, dx = 1. It can, however, be modulated to any bounded
domain, but the coming theory needs to be adjusted accordingly. Also, the remark below nuances the
nature of the sub-intervals used in the original expression of X'.

Remark 2.4. In the article, X can be changed to X = X, I;, with I; € {[0,1],(0,1],[0,1),(0,1)} for each

i=1,...,n.
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We can remark that S(f)(a, 8) and C(f)(«, 8) are the imaginary and real parts, respectively, of the fol-
lowing multivariate complex integral operator:

zwfv<a,ﬂ>::jajf<x>r¥expwﬁf<xndx

where i = —1. It can be considered a special functional variant of the multivariate Fourier transform.

The idea of using the nonlinear composition of f comes from the construction of the € operator studied
in [8]. This approach is, however, original in the context of trigonometric transformation.

In this article, we will emphasize the fact that the S and C operators take advantage of their trigonometric
nature to benefit from manageable properties. The most basic of them are described in the next subsection.

2.2. Basic properties. A list of basic properties satisfied by the S and C operators is presented in the propo-
sition below.

Proposition 2.5. Let « € R, § € Rand f(x), x € X, be a non-negative function.
(1) For f = a with a > 0, we have
S(f)(a, B) = a®sin(Ba),  C(f)(e, ) = a® cos(Ba).
(2) We have
S(f)la,=p) = =S(f)(e, B),  C(f)(e, =) = C(f)(e, B).
(3) We have
S(F)@.0) =0, C(f)(0) = [ [Fx)dx.

(4) By assuming that there exists an integer m such that ff(x) € [2mm,2mm + =] for any x € X so that
sin[Bf(x)] > 0, and setting g(x) = f(x) {sin[Bf(x)]}"/*, x € X, we have

C(9)(,0) = S(f)(a, B)-

(5) We have
S(f)(O,ﬂ):/Xsinwf(x)]dx, :/
(6) By assuming that [f(x)] cos[Bf(x)] € [0, 1] and setting h(x) = (1/5) arcsin {[f(x)]* cos[Bf(x)]}, x €
X, we have

S(r)(0, 8) = C(f)(a, B).
(7) Byassuming that [f (x)]* sin[8f(x)] € [0, 1] and setting {(x) = (1/5) arccos {[f(x)]* sin[Bf(x)]}, x € &,

we have
(0, 8) = S(f)(a, B).
(8) By setting q(x) = f(x4), where x, = (x73,...,z}) withx} € {x;,1 — x;} foreachi =1,...,n, we have
S(Q)(a76) :S(f>(0é,ﬁ>, C(q>(a>ﬁ> :C(f)(avﬁ)
(9) Forany a € R, we have
S(f +a)(0,8) = cos(Ba)S(f)(0, B) + sin(Ba)C(£)(0, B).
(10) Forany a € R, we have
C(f +a)(0,8) = cos(Ba)C(f)(0, B) — sin(Ba)S(f)(0, B).

Proof.
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(1) For f = awitha > 0, since [, dx =1, we have

S(f)la, ) = /X a®sin(fa)dx = a“ sin(fa) /X dx = a®sin(fa)

and

(e = [

a® cos(Ba)dx = a® cos(Ba) / dx = a® cos(fa).
X X

(2) Since the sine function is an odd function, it is obvious that
S()an=5) = [ 7601 sinl=5£(x))dx
X
= [ 101" sinf3FGoldx = =55 a1 5).

Conversely, since the cosine function is an even function, we obtain

C(f) (e, —B) = / FG)] cos[—Bf (x)]dx

X
= /X[f(x)]a cos[Bf(x)ldx = C(f)(e, B).

(8) Since sin(0) = 0 and cos(0) = 1, it is obvious that

S(f)(.0) = / [£()] sinf0 x f(x)]dx = 0

X

and

c(hia0 = |

X

[£(x)]° cos[0 x f(x)]dx = / [ ()] “dx.

X
(4) By substituting, we have

Clo)la0) = [

X

g0 dx = [ [ 60 fsinla )y ax

X

- /X [£())” sin8f (x)dx = S(f)(a, B).

(5) Since [f(x)]° = 1, we directly have

S(£)(0,8) = /X [F()]° sin[8f (x)]dx = /X sinlBf (x)]dx
and
C(f)(0, 5) = /X FG)1° cos[f (x)]dx = /X cos[B (x)]dx.

(6) By substituting and using sin[arcsin(¢)] = ¢, we have

s)0.6) = |

X

sin{3h(x))ix = [

X

sin [ﬁ X %arcsin{[f(x)}"‘ cos[ﬁf(x)]}] dx

= /X[f(x)}“cos[,b’f(X)]dXZ C(f)(e, B).

(7) By substituting and using cos[arccos(t)] = t, we have

C)(0,8) = /XCOSW(X)]dX :/ cos [5 x ;arCCOS{[f(X)}”‘Sin[ﬂf(X)]}} dx

X

- /X (£ ()] sin[8f (x)]dx = S(f) e B).
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(8) Letus consider the multivariate change of variables x, = (z7,...,2}) with a2} € {x;,1—x;} for each
i = 1,...,n. The changed domain of integration is X, = X, and the associated Jacobian is (—1)",
where r denotes the number of z such that z; =1 — z; forany ¢ = 1,...,n. As a result, we have

S(Q)(a,ﬁ)Z/X [f(x*)]asin[ﬁf(x*)]dx*=/X[f(X)}O‘Sin[ﬂf(X)H(—l)TldX

= [ e snfarGolx = S(1) (e, ).

Similarly, we prove that C(q)(a, 8) = C(f)(«, B).
(9) For any a € R, by using the following standard trigonometric formula: sin(¢ + v) = sin(t) cos(v) +
cos(t) sin(v), we obtain

S(f+a)(0,6):/Xsin{ﬁ[f(x)—i—a]}dx:/Xsin[ﬂf(x)—kﬁa]dx

= cos(Ba) /X sin[8 f (x)]dx + sin(Ba) /X cos[Bf(x)]dx
= cos(Ba)S(f)(0, B) + sin(Ba)C(f)(0, B).

(10) For any a € R, by using the following standard trigonometric formula: cos(t + v) = cos(t) cos(v) —

sin(¢) sin(v), we get
C(f +a)(0, 8) = /X cos {BLf (%) + a]} dx = /X cos|Bf (x) + faldx

= cos(fa) /X cos[Bf(x)]dx — sin(Sa) /X sin[B f(x)]dx

= cos(Ba)C(f)(0, B) — sin(Ba)S(£)(0, 5).
The desired properties are established. O

Based on this proposition, the following comments hold:

o S(f)(,0) and C(f)(c,0) are defined with compound trigonometric functions as the main ingredi-
ents, i.e., cos[ff(x)] and sin[S f(x)], respectively.

e Some specific functions make a bridge between the S and C operators.

o If we can determine the S or C operators of a function f, then we have the S or C operators of some
modified versions of f, including its "x-flipping version", i.e., ¢(x) = f(x.), where x,. = (z7,...,z})
with o} € {z;,1 — x;} foreach ¢ = 1,...,n, and its translated version, i.e., f + a, with a € R.

The sign of the S and C operators can be determined directly under some specific assumptions. This is

presented in the result below.

Proposition 2.6. Let o € R, 5 € Rand f(x), x € X, be a non-negative function.

(1) Under the assumption that there exists an integer m such that 5 f(x) € [2mm, 2mm + 7] for any x € X, we
have S(f)(«, ) > 0.

(2) Under the assumption that there exists an integer m such that 8 f(x) € [2mn — 7, 2mn] for any x € X, we
have S(f)(«, 8) < 0.

(3) Under the assumption that there exists an integer m such that 8 f(x) € [(1/2)(dmm — 7), (1/2)(dmm + 7)]
forany x € X, we have C(f)(«, ) > 0.

(4) Under the assumption that there exists an integer m such that 8 f(x) € [(1/2)(dmm+), (1/2)(4mn +37)]
forany x € X, we have C(f)(a, 8) < 0.

Proof.
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M

@)

®)

(4)

For any integer m and ¢ € [2mm, 2mm + 7|, we have sin(t) > 0. Therefore, under the assumption that
there exists an integer m such that 5f(x) € [2mn, 2mn + 7] for any x € X, we have sin[3f(x)] > 0.
We also have [f(x)]* sin[3 f(x)] > 0, which implies that

S()(@.8) = [ 17601 sinlss (oldx > 0.
Conversely, for any integer m and ¢ € [2mnm — 7, 2mm|, we have sin(t) < 0. Therefore, under the
assumption that there exists an integer m such that §f(x) € [2mn — 7, 2mn] for any x € X, we have
sin[Bf(x)] < 0. Hence, we have [f(x)]*sin[8f(x)] < 0, and the integration over X" keeps the sign;
we have S(f)(a, 8) <0.

For any integer m and ¢t € [(1/2)(4mm — 7), (1/2)(4mm + 7)], we have cos(t) > 0. Therefore, under
the assumption that there exists an integer m such that 8f(x) € [(1/2)(dmn — 7), (1/2)(dm=m + 7)]
for any x € X, we have cos[3f(x)] > 0. Hence, we get [f(x)]* cos[8f(x)] > 0, which implies that
C(f)(e,B) = 0.

Conversely, for any integer m and ¢ € [(1/2)(4mn + 7), (1/2)(4mm + 3m)], we have cos(t) < 0
Therefore, under the assumption that there exists an integer m such that 8f(x) € [(1/2)(4mn +
7), (1/2)(4dmm + 3n)] for any x € X, we have cos[8f(x)] < 0. We also have [f(x)]* cos[3f(x)] < 0
from which we derive C(f)(a, 8) < 0.

This ends the proof. O

Therefore, based on this result, the possible values of 3f can directly determine the sign of the S and C

operators. Some of their more technical properties are described below.

2.3. Series expansions. The S and C operators can be difficult to calculate for complex functions f, and

this can be a barrier to their further analysis. We partially solve this problem in the following proposition

with the use of infinite series expansions.

Proposition 2.7. Let o« € R, § € Rand f(x), x € X, be a non-negative function. The multivariate interchange of
integral and sum rule assumptions on f and the involved parameters are supposed.

)

@)

We have
o _1\k
S(f)(a,B) = Z (71).521%1 /X[f(X)]aJr%ﬂdx.

We have

E%AﬁkW”Wx

Proof. The multivariate interchange of integral and sum rule assumptions on f and the involved parame-

ters are supposed, and are at the heart of the proof.

)

A series expansion of the sine function is

o \k
sin(t) = Z (2<k D) {2kt
k=

|
< (2 + 1)!
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for any t € R. Therefore, we have

= oy~ (D 2%+1
- /X[f(xﬂ {Z(%H)![ﬁf(xn }dx

k=0
— - ﬂ 2k+1 < a+2k+1 <
=3 e e e

(2) A series expansion of the cosine function is

© (_1)k )
cos(t) = Z ((2]{;! t2k
k=0

for any t € R. Therefore, we have

The desired decompositions are established.

O

Thanks to this proposition, the complexity of calculating the operators S and C of a function f is trans-

posed to the calculation of an integral of the form [,.[f(x)]”dx, where v € R, which can be trivial in some

cases, or involved special integral functions (gamma function, beta function, etc.).

For the determination of the S and C operators of some classical functions, we refer to Sections 4 and 5,

respectively.

2.4. Summation relationships. Some comprehensive summation relationships between the S and C oper-

ators are shown in the result below.

Proposition 2.8. Let o € R, § € Rand f(x), x € X, be a non-negative function.
(1) If o denotes a non-negative integer, and 3 # 0, the following relation holds:

5(1+35) @9 - 3 (7) (;;)k C(f)(k, ),

k=0
where () = ol J[k! (a — k)] for k =0,...,
(2) If o denotes a non-negative integer, and 3 # 0, the following relation is true:

c(r-2)en=-3(2)(-5)" svws

k=0

Proof. The proof is mainly based on classical trigonometric formulas and the binomial formula.

(1) For 8 # 0, we have

(s 2= o 5 o )}
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By using the following standard trigonometric formula: sin(t + 7/2) = cos(t), we have

sin{ | 100+ 5| b =sin [37060) + 5| = coss )

On the other hand, since « is a non-negative integer, the standard binomial formula gives

e 5] =50 () oo
Therefore, we have

$(r+55)@m=3(3) (Z)" [ oo essiaroonas

-3 () (27;3) Uk, B).

k=0

Mp

|l

(2) We use the same arguments of the previous proof; for 3 # 0, we have

c{r-g)im= i 2] el -]}

By using the following standard trigonometric formula: cos(t — 7/2) = sin(¢), we have

cos {B [f(x) =

On the other hand, since « is a non-negative integer, the standard binomial formula gives

ICE 2”5] - ; (%) (2’;) S

0

H_ s [8£60 = 2] = sinlB(x))

Therefore, we have

c (f - 2”6) @)=Y (Z‘) (—27;,)“ /X [£ o) sin[Bf (x)]dx

The desired relationships are obtained.

The proposition below examines some concise expressions of S(f)(«, 8) £ C(f)(«, ).

Proposition 2.9. Let o € R, § € Rand f(x), x € X, be a non-negative function.
(1) We have

S(f)(e, B)+C(f \f/ “sin Bf }dx.

Furthermore, if o denotes a non-negative integer, and 3 # 0, the following relation holds:

s<f><a,ﬁ>+c<f><a,ﬁ>=ﬂk2:(§j) (-5) s (14 ) e

(2) We have

S(f)(e, B) +C(f \[/ * cos Bf x) — }dx.

4
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Furthermore, if o denotes a non-negative integer, and 3 # 0, the following relation is true:

S B) + C()(e 6) = V3 ; ()(5) c(r-5)wn
(3) We have
S(f)(a, B) = \f/ “sin 5f }dx.

Furthermore, if o denotes a non-negative integer, and 3 # 0, the following relation holds:

S, B) — Ol §) = V3 k}_j ((5) s(r-5)wn
(4) We have
S(f) (. B) ~ V2 / " cos [3£(0) + 7| dx.

Furthermore, if o denotes a non-negative integer, and 3 # 0, the following relation is true:

s<f><a,5>—c<f><a,ﬁ>=—¢5§‘6(Z) (-5) el 5)wn

Proof.

(1) We have
S(f)e, B) +C(f)(e, B) = /X[f(X)]O‘ sin[Bf(x)]dx + /X[f(X)]aCOS[ﬁf(X)}dX
= / [f(x)]“ cas[Bf(x)]dx
X

where cas(t) is defined in Equation (1.1). By using the following standard trigonometric formula:
cas(t) = v/2sin(t + 7/4), we have

cas[8f(x)] = V2sin [Bf(x) + 7]
Hence, we have
S(f)(e, B) +C(f f/ “sin Bf }dx.

Furthermore, if o is a non-negative integer, and 5 # 0, the binomial formula gives

soar = [reo - - () 5] (5)

k=0

Applying it in the previous integral expression, we obtain

S() e, B) + C(f)(e, B)

a3 () (-5) " [ [ ) s {o oo+ 5] s

() (5 s
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(2) The proof is similar to the previous proof; only the function cas[3 f(x)] can be expressed in another
way. We have

S()(@)+ C(Pa ) = [ F60]" caslifxlix
Owing to the following standard trigonometric formula: cas(t) = v/2 cos(t — 7/4), we have

cas[Bf(x)] = V2 cos {Bf(x) - g] .

Hence, we can write

S(f)(e. B) + \f/ “ cos Bf( ) — }dx.

Furthermore, if « is a non-negative integer, and 5 # 0, the binomial formula gives

oo = oo ] - 2 () -3 (7))

k=0
By substituting it in the previous integral expression, we obtain

S(f)a, B) + C(f)(e, B)

a3 () (5) [ w5 o - 5]
_ \fgkz: (2) (fﬁ)a C (f - 47;3) (k, B).

(3) The proof is similar to that of item 1 with the use of the following standard trigonometric formula:
cos(t) — sin(t) = v/2sin(t — m/4); therefore, details are omitted.
(4) The proof mimics that of item 2 with the use of the following standard trigonometric formula:
cos(t) — sin(t) = —v/2 cos(t + 7/4). We thus omit the details.
The proof ends. O

2.5. Differential equations. After investigations, the S and C operators satisfy numerous and interesting
differential equations. Some of them are described in the next result.

Proposition 2.10. Let o« € R, 8 € Rand f(x), x € X, be a non-negative function. The multivariate Leibniz
integral rule assumptions on f and the involved parameters are supposed.

(1) We have

0

535()(@B) = C(Pa+1.8) =0.
(2) We have

%C(ﬁ(a,ﬁ) +S(f)a+1,8) =0.
(3) We have

82

5N A) +S(a+2.8)=0.
(4) We have

82
a720(10)(%5) +C(f)(a+2,5) =0.
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Proof. The multivariate Leibniz integral rule assumptions on f and the involved parameters are supposed
in all the developments below.

(1) Since  {sin[8f(x)]} /(98) = f(x) cos|(x)], we have
0 0 o -
S5 = 5 [ [ G0 sinfss ol
“i sin X b'e
= [ e g sinla sy a
- /X (£ cos[BF(x)]dx = C(f)(a + 1, B).
As a result, we establish that
D 5(f)(@,8) - C(f)a+1,8) =0.
(2) Since  {cos[B/(x)]} /(95) = — f(x) sin[f (x)], we have
8 (e}
55 | [ 601" st ol
0
- /X £60I" 37 Leosl 37 ()} dx

0
500 =

— /X £ ()2 sin[Bf (x))dx = —S(f)(a + 1, B).

Therefore, we find that

0
%C(f)(a,ﬁ) +5(f)(a+1,8) =0.
(3) Since 9* {sin[Bf(x)]} /(08°) = — [ (x)]?sin[3 f(x)], we have
82
T2S(DMs8) = o | [ 7ol sinls s

/ FO1 o (sl )]
=~ [ 6o sinl s Goldx = =S(1)(a+2.9)

Thus, we obtain
82
052
(4) Since 92 {cos[Bf(x)]} /(9B2) = —[F(x)]? cos[Bf(x)], we have

@) = o [ [ 17601 ol i

S(f)(e, B) + S(f)(a+2,8) = 0.

- /X ) @{cosw )]} dx
. /X [F)]* cosBF(x)]dx = —C(f)(a + 2, B).

As a result, we get

82
a720(10)(%5) +C(f)(a+2,5) =0.
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The stated differential equations are demonstrated. O

This result also implies that, if we have the analytical expressions of the S or C operators, then we can
derive a multitude of differential equations where they are the solutions.
A list of higher order differentiation of the S and C operators with respect to the parameters o and g is

detailed in the proposition below.

Proposition 2.11. Let o € R, § € R, f(x), x € X, be a non-negative function and m be a non-negative integer.
The multivariate Leibniz integral rule assumptions on f and the involved parameters are supposed.
(1) We have
8m
P —
S5SNias = |

X

[FGOI ™ sin [Bf(x) + 5T dx.

Furthermore, if o denotes a non-negative integer, and 3 # 0, the following relation holds:

es0en =3 (1) (55) s () wn

k=0
(2) We have
am
SO = [

X

(I cos [BF(x) + 5 | dx.

Furthermore, if o denotes a non-negative integer, and 3 # 0, the following relation is true:

e =y ("5 (—’;g)“m c(r+53) o,

k=0
(3) We have
L S(@.8) = [ 17601 logl£ G0} sinl3Fx)dx.
da™ X
(4) We have
o

C(f) (e B) = /X [ ()] {loglf ()]} cos{8£ ()] dx.

dam
Proof. We mention that the multivariate Leibniz integral rule assumptions on f and the involved parame-
ters are supposed in all the coming developments. This is an important aspect of the proof.
(1) Since [sin(¢)]™ = sin(t + mn/2), we have 0™ {sin[3f(x)]} /(0F™) = [f(x)]™ sin[Bf(x) + mm/2].
Therefore, we obtain

s s) = 2o | [ oo smiss ol

= [ 17601 3 GsinlB ) dx

- /X £ ) sin [B6) + ™27 ax

Furthermore, if « is a non-negative integer, and 5 # 0, the binomial formula gives
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Substituting it in the previous integral expression, we obtain
am
=S
S5 9.5

S () s s 0 2]
S EE) T s ) e

(2) Since [cos(t)]™ = cos(t + mm/2), we have 9™ {cos[Bf(x)]} /(08™) = [f(x)]" cos[Bf(x) + mm/2].
Hence, we get

a%”fnc (D) = 5’; { /X () COS[Bf(X)}dX]

- /X[f(x)]"‘aaﬁz {cos[Bf(x)]} dx
= [ 1rGoies cos [37060 + ] .

If o is a non-negative integer, and 8 # 0, the summation expression is obtained as in the previous
proof. The details are omitted.

(3) Since 0™ {[f(x)]"} /(9a™) = [f(x)]*{log[f (x)]}™", we have

e S 8) = | [ 00 sinls x|
[ {1 sinlB S ()i
X

— [ 1#G01" {ogl )y ™ sinl 3 ().
x
(4) By proceeding exactly as in the previous proof, just replacing sin[S f(x)] by cos[3f(x)], we get the
desired result.

The proof is complete. U

In addition to summation and differential equations, an advantage of the S and C operators is that they
generate original and precise inequalities.

Some of them are determined in the next section.

3. MATHEMATICAL INEQUALITIES

The inequalities derived from the S and C operators can be of different natures. In this section, we
distinguish between basic, convex-type, and Holder-type inequalities.

3.1. Basic inequalities. Some basic upper bounds for |S(f)(a, 5)| and |S(f)(a, 5)| are presented in the
result below.

Proposition 3.1. Let o € R, § € Rand f(x), x € X, be a non-negative function.
(1) We have

st sl min{ [ 1roarax o] [ (oo ax).
(2) We have

C(f) (e, B)|< / F(x)]dx.

X
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Proof.

(1) By applying the triangle inequality and the fact that [sin(¢)|< min(1, |¢|) for any ¢ € R, we obviously
get

1S(f)( )] < /X [ ()] sin [8£ ()] |dx
< /X [£()]* min[1, 8] £ (x)]dx

<min{ [ 7001ax, 151 [ (7601 ax)

(2) It follows from the triangle inequality and |cos(t)|< 1 for any ¢ € R that

|</[f “lcos [Bf(x ]\dxg/x[f(x)]“dx.

This ends the proof. O

Bounds for the absolute value difference of the S or C operators of two functions are examined in the
result below.

Proposition 3.2. Let « € R, § € R, and f(x) and g(x), x € X, be non-negative functions.
(1) We have

S(/)(@8) = S(g)ew )
/ s P lmin{1 817 <)k + 18] [aG0I71x) = g(x) .
() We have
C( e B) -~ Cla)a )
< [ 1601 = b lix+ 131 fato) (xldx.
Proof.

(1) We can write
S(f)(@. ) — S(g) (e, B) = /X ()] sin[B £ (x)]dx — /X [9(3)] sin[Bg (x)dx
/ s )]} sinf6  (x)]dx — /X ()] {sin[Bg(x)] — sin[Bf(x)]} dx.

The triangle inequality gives
[S(f)(a, ) = S(9) (e, B)|
/ i Plsin{3f0ldx -+ [ 91 sinfBg(x)] ~ sin[B o).
X

By using the inequality |sin(¢)|< min(1, [¢|) for ¢ € R and the fact that the sine function is 1-Lipschitz,
ie., [sin(t) — sin(u)|< |t — ul, for any ¢ € R and u € R, we obtain

1S(7) (a0 8) ~ S() (e B)
< [ s 1 fminf1 817 Goldx + 181 | [5G017166) = gl
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(2) The proof is similar to the previous proof, just replacing the sine function by the cosine function,
using the inequality |cos(¢)|< 1 for ¢t € R and the fact that the cosine function is 1-Lipschitz. The
details are omitted.

The desired inequalities are demonstrated. O

Based on item 1 of the above proposition, under the assumption that there exists a positive constant M
such that f(x) < M and g(x) < M for any x € X, and a > 1, by using the fact that t*, ¢ € [0, M], has the
Lipschitz property with the constant «M“~!, we have

IS(f) (@, B) - S(g)(e, B)I< & /X 1£(x) — g(x)]dx,

where £ = M*~! {amin[1,|3|M] + |5|M}. Such a Lipschitz inequality can be used to investigate the con-
vergence of sequences of functions through the S operator. An analogous result is satisfied for the C opera-
tor.

The next result shows that, under some assumptions, we have a clear order of the S and C operators.

Proposition 3.3. Let « € R, § € Rand f(x), x € X, be a non-negative function.

(1) Under the assumption that there exists an integer m such that 8 f(x) € [2(mm — 37/8), 2(mn + w/8)] for
any x € X, we have

S()e, B) < C(f)(a, B).

(2) Under the assumption that there exists an integer m such that S f(x) € [2(mm + 7/8),2mn + 7] for any
x € X, we have

C()e, B) < S(f)(a,B).

Proof.

(1) For any integer m and ¢ € [2(mm — 37/8), 2(mm + 7/8)], we have sin(t) < cos(t). Therefore, under
the assumption that there exists an integer m such that 5 f(x) € [2(mm —37/8),2(mm +7/8)] for any
x € X, we have sin[3f(x)] < cos[8f(x)], which implies that

S(f)(ayﬂ):/X[f(X)]asin[ﬁf(X)]dXS/X[f(X)]“COS[ﬂf(X)]dXZC(f)(a,ﬂ)-

(2) Conversely, for any integer m and ¢ € [2(mn + 7/8),2mn + 7], we have cos(t) < sin(t). Therefore,
under the assumption that there exists an integer m such that 8f(x) € [2(mn + 7/8),2mm + 7] for
any x € X, we have cos[ff(x)] < sin[8f(x)], which implies that C(f)(«, 8) < S(f)(«, ).

This ends the proof. O

Technical inequalities on the S and C operators are demonstrated in the next proposition, which is mainly
based on well-known trigonometric inequalities.

Proposition 3.4. Let o € R, § € Rand f(x), x € X, be a non-negative function. Under the assumption that
Bf(x) € [0,7/2] for any x € X, the inequalities below are fulfilled.

(1) We have
S(f)(e,B) = Qf/x[f(x)]“*ldx.
(2) We have
S, B) < § [Z/X[f(x)]o‘“dx+0(f)(a+1,6) :
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(3) We have
C(Nied) = [ lreorax—2 [ [foo)tix
X T Jx
Proof. Each of the inequalities is based on a known trigonometric inequality, recalled before the develop-
ments.
(1) The Jordan inequality ensures that sin(t) > (2/m)t for any ¢ € [0, 7/2] (see [37]). As a result, under
the assumption that 5f(x) € [0, 7/2] for any x € X, we get

si(370) 2 2 1 (x).

Therefore, we have

S(le ) = /X 71 sinfB (<)) x > 22 | [FG) S (e)ax = ad /X [F(0)* " dx.

(2) The Cusa-Huygens inequality states that sin(t) < (1/3)t[2 + cos(t)] for any ¢ € [0,7/2] (see [20]).
Thanks to it, under the assumption that 3 f(x) € [0, 7/2] for any x € X, we have

sin[Bf(x)] < §f(><> {2+ cos[Bf(x)]},

SO

S()@8) = [ 17601 sinlss (x)lax
3|2 e reaaxs [ 1roar o0 costarioax]
B
3

2 [ forHax+ C(a+1.9).
X
(3) The Kober inequality ensures that cos(t) > 1 — (2/7)t for any t € [0,7/2] (see [27]). Under the
assumption that 5 f(x) € [0, 7/2] for any x € X, we get

cos[360] 2 1 2 7).

Therefore, we have

Cn)e8) = [ (160l cossGolax > [ (6ol |1- 200 ax
= [ 1felax— 22 [ (00) i
X X
The proof is complete. O

The inequalities in items 1 and 3 of this proposition will be examined in the applications in Section 6. For
a given f, this can lead to sharp and innovative inequalities.
Some refined inequalities involving the S and C operators are described in the proposition below.

Proposition 3.5. Let o € R, § € Rand f(x), x € X, be a non-negative function. Under the assumption that
Bf(x) € [0, n] for any x € X, the inequalities below hold.

(1) We have

S(f)(a B) > BC()) (a 1, jg) |
(2) We have

S(f)(as ) < BO(S) (a .y §) |
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Proof.

(1) The following trigonometric inequality holds: sin(t) > tcos[t/+/3] for any t € [0, 7] (see [21] and
[29]). Therefore, under the assumption 5f(x) € [0, 7] for any x € X, we have

sin[8f(x)] > B (x) cos [\%f(xﬂ ,
which implies that
S(f)(a. ) = /X FG)I sin[BF())dx > 8 /X [F())° f () cos [%f(x)} dx
B B
_ BC(f) (a 11, ﬁ) .

(2) In a complementary manner, the following trigonometric inequality holds: sin(t) < tcos(t/2) for
any ¢t € [0, 7] (see [21] and [29]). Therefore, under the assumption 8 f(x) € [0, 7] for any x € X, we
have

sinl ()] < 370 os | 5 1)

which implies that
S()@8) = [ 1) sinf3r(x)) < B [ 17601 ) cos { f(x)] ix
= 8C(f) (a 4, g)
This ends the proof. O

The proposition below determines inequalities concerning the functions |S(f)(a,8) £ C(f)(«,B)|,

[S(f) (e, B)]? + [C(f) (e, B)]” and S(f)(av, B) + C(f)(e, B).

Proposition 3.6. Let o« € R, § € Rand f(x), x € X, be a non-negative function.

(1) We have

IS(f)(e, B) + C(f)(, B)|

< vawin{ [ (eoix s [ (oo +ax § [ roora ]
(2) We have

IS(f)(a,8) = C(f) (e, B)|

< ﬁmin{/ )] dx, |m/ X)) ldx + /X[f(x)]"‘dx}.
(3) We have

[S(F) (0, BY2 + [C(f) (0 B)]2 < / [F () dx.

X
(4) Under the assumption that there exists an integer m such that S f(x) € [2mm,2mnm + 7/2] forany x € X,
we have

/X [F@)J2dx < S(f) (e B) + C(f) e B).

Proof.
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(1) By using item 1 of Proposition 2.9, we have

S(F)(@)+ C(P () = V2 [ [76)"sin [0 + ] dx.
By applying the triangle inequality and the fact that |sin(¢)|< min(1, [t|) for any ¢ € R, we get
IS(N(@.8) +C (e )| f/ sin 160 + 5| dx
ol s o

<\[/ mln 1 18] f(x) + }dx

< \/imin{/ x)]*dx, |B\/ x)]*dx + = /X[f(x)]o‘dx}.

(2) We use similar arguments to the previous proof. Thus, by using item 3 of Proposition 2.9, we have

S(F)(@.6) - = V2 [ (0] sin [37(x) ~ ] ax.
Owing to the triangle inequality and the fact that |sin(¢)|< min(1, |¢|) for any ¢ € R, we get
1S(f) (@, B) — |<\f/ sin [B(x) — 7 || dx
< \[/ mln Bf(x)— 1 } dx

<f/ o min [1,18]7(0) + 7] dx

< ﬁmin{/ x)]*dx, |6\/ x)|“Mdx + = /X[f(x)]“dx}.

The same upper bound as the previous item is derived.
(3) By using the integral version of the Cauchy-Schwarz inequality, we obtain

72

[S(f)(a, B))* = [/X[f(X)]”‘Sin[Bf(X)]dX S/X[f(X)]Qa {sin[8 (x)]}" dx

and

192

[C(f) (e, ) = [/X[f(X)]"‘COS[ﬂf(X)]dX S/X[f(X)]QO‘ {cos[Bf (x)]}" dx.

As a result, since {sin[8f(x)]}* + {cos[3f(x)]}* = 1, we have
S @A + O AF < [ G0P {sinfB )Y dx + [ [FG0P {eoslf (oL} dx
= [ e [5G0y + eos(37(x))] ax
= [ rexeax

(4) For any integer m and ¢ € [2mm, 2mm + /2], we have sin(¢) € [0, 1] and cos(t) € [0, 1], so [sin(t)]? <
sin(t) and [cos(t)]* < cos(t). Hence, under the assumption that there exists an integer m such that
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Bf(x) € [2mm, 2mn + 7/2] for any x € X, we have {sin[ﬁf(x)]} < sin[Af(x)] and {cos[ﬁf(x)]}2 <
cos[8f(x)]. This, combined with {sin[3f(x)]}* + {cos[Bf(x)]}* = 1, gives

S()(@. B) + C(f) (e, B) = /X ()" sinBF(x)ldx + /X ()" cos| (x)]dx
> /X [F())° {sinff ()]} dx + /X )] {eos[BF()])? dx
= [ e [fsinlB G0l + {eos{Br(x))y”] ax

- [ rerax.

The indicated inequalities are proved. O

A simple consequence of this proposition and the known properties of the S and C operators is that, if
there exists an integer m such that 5f(x) € [2mm, 2mn + 7/2] for any x € X, we have

/ [f ()] dx < S(f)(a, B) + C(f)(a, B) < 2/ [/ (x)]"dx.
X X

In this case, we have precise control over what we call the cas operator, which can be expressed as

Can(F)(0:8) = S ) + O ) = [ [F60)" sl (o)l
It can be viewed as a variant of the Hartley operator that may merit more attention.

3.2. Convex-type inequalities. Another interest of the S and C operators is to satisfy diverse kinds of
convex-type inequalities. In particular, in the next result, we show that the trigonometric function can
be extracted from the integral to provide upper or lower bounds for these operators. The key tool in the
proof is the integral version of the Jensen inequality.

Proposition 3.7. Let « € R, § € Rand f(x), x € X, be a non-negative function.

(1) Under the assumption that there exists an integer m such that f f(x) € [2mm — w, 2mm]| for any x € X, we

S0, 8) > { [ Lol psin {5z | 60) i)

(2) Under the assumption that there exists an integer m such that Bf(x) € 2mm,2mm + 7| for any x € X, we

st 0) < { [ Lot psin{ 5o | 60t

(3) Under the assumption that there exists an integer m such that B f(x) € [(1/2)(dmm+7),(1/2)(4mm + 37)]
for any x € X, we have

ot = { [ oo eos{ s | 1ol ax

(4) Under the assumption that there exists an integer m such that Bf(x) e [(1/2)(dmm —7), (1/2)(dmm + 7)]
forany x € X, we have

ot < { [ oo eos{ s | 1ol riax

have
1

have
1

Proof.
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M

@

®)

4)

For any integer m and ¢ € [2mn — 7, 2mm], we have sin(t) < 0, implying that [sin(¢)]” = —sin(¢) > 0.
Hence, sin(t) is convex for such ¢. Furthermore, the function g, (x) = [f(x)]*/ [, [f(x)]*dx is a valid
probability density function because g, (x) > 0 forany x € X and [, go(x)dx = 1. Therefore, under
the assumption that there exists an integer m such that 8f(x) € [2mn — 7, 2mn] for any x € X,
we can apply the integral version of the Jensen inequality with the convex sine function and the
measure v(A) = [, go(x)dx, A C X. Hence, we have

S(f)(, B) = / [ ()] sin[B (x)]dx

X

_ { /X [f<x)]adx} /X sin[B ()] ga () dx

> { [ roaraxfsin | [ 5rexix]

1

-{/ [f(X)]“dX}sin{ﬂWM [ lra+iax}.

Conversely, for any integer m and ¢ € [2mn, 2mz + 7], we have sin(t) > 0, implying that [sin(¢)]” =
—sin(t) < 0. Hence, sin(t) is concave for such ¢. Therefore, under the assumption that there exists
an integer m such that 8f(x) € [2mm, 2mn + 7] for any x € X, the integral version of the Jensen
inequality applied in the concave case gives the reversed inequality in the previous item.

For any integer m and ¢ € [(1/2)(4mnm + 7), (1/2)(4mm + 37)], we have cos(t) < 0, implying that
[cos(t)]” = —cos(t) > 0. Hence, cos(t) is convex for such ¢t. Therefore, under the assumption that
there exists an integer m such that 5f(x) € [(1/2)(4mm + 7), (1/2)(4mn + 37)] for any x € X, the
integral version of the Jensen inequality applied in the convex case give a similar result as the one
in item 1 with cos[8 f(x)] instead of sin[3f(x)], providing the desired result.

Conversely, for any integer mand ¢ € [(1/2)(4dmn—m), (1/2)(4dmm+m)], we have cos(t) > 0, implying
that [sin(t)]” = —cos(t) < 0. Hence, cos(t) is concave for such ¢. Therefore, under the assumption
that there exists an integer m such that 5 f(x) € [(1/2)(4mm —7), (1/2)(4mm +7)] for any x € X, the
integral version of the Jensen inequality applied in the concave case gives the reversed inequality
in the previous item.

The desired inequalities are established. O

This proposition will be crucial in the applications in Section 6; for a given f, it can lead to sharp and

innovative trigonometric inequalities.

Other convex-type inequalities satisfied by the S and C operators with respect to f are determined in the

next proposition in the case o = 0.

Proposition 3.8. Let 5 € R, u € [0, 1], and f(x) and g(x), x € X, be non-negative functions.

M

Under the assumption that there exists an integer m such that Sf(x) € [2mm — w,2mn| and Bg(x) €
[2mm — 7, 2mm] for any x € X, we have

Sluf + (1 = )gl(0, B) < uS(f)(0,8) + (1 — 1)S(g)(0, ).

(2) Under the assumption that there exists an integer m such that Sf(x) € [2mm,2mm + «] and Bg(x) €

[2mm, 2mm + 7] for any x € X, we have

wS()(0,8) + (1 = )S(9)(0, 8) < S[uf + (1 = 1)g](0, B).
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(3) Under the assumption that there exists an integer m such that 8 f(x) € [(1/2)(dmm + ), (1/2)(4mn +37)]
and Bg(x) € [(1/2)(dmn + ), (1/2)(dmm + 37)] for any x € X, we have

Cluf + (1 = wgl(0,8) < uC(f)(0,5) + (1 = u)C(9)(0, B).

(4) Under the assumption that there exists an integer m such that 8 f(x) € [(1/2)(dmn —7), (1/2)(dmm + 7)]
and Bg(x) € [(1/2)(4dmm — 7), (1/2)(4dmm + 7)| for any x € X, we have

pC(f)(0,8) + (1 = u)C(g)(0,8) < Cluf + (1 — p)gl(0, B).

Proof. We re-use the convex and concave properties of the sine and cosine functions as described in the
proof of Proposition 3.7.

(1) For any integer m and ¢t € [2mn — 7, 2mmn], sin(¢) is convex. Therefore, under the assumption that
there exists an integer m such that 5f(x) € [2mm — 7,2m7] and Bg(x) € [2mn — 7, 2mm] for any
x € X, we have

sin{f[uf + (1 — p)gl(x)} = sin[uBf(x) + (1 — p)Bg(x)]
< psin[Bf(x)] + (1 — p) sin[Bg(x)].

As a result, we have
Sluf + (1 - p)g) (0, 8) = /X sin{Bluf + (1 — )g)() pax

<u /X sinB(0))dx + (1 - ) /X sinlBg(x))dx
= uS(F)(0,8) + (1 — 1)S(9)(0, B).

(2) Conversely, for any integer m and ¢ € [2m, 2mn + 7], sin(¢) is concave. Therefore, under the as-
sumption that there exists an integer m such that 8 f (x) € [2mm, 2mn+n] and Bg(x) € [2mn, 2mn+7]
for any x € &, the classical concave property followed by an integration gives the reversed inequal-
ity in the previous item.

(3) For any integer m and ¢ € [(1/2)(4dmm + 7), (1/2)(dmm + 3)], cos(t) is convex. Therefore, under the
assumption that there exists an integer m such that 5f(x) € [(1/2)(4m=n + 7), (1/2)(4mm + 37)] and
Bg(x) € [(1/2)(dmm + 7), (1/2)(4mm 4 37)] for any x € X, a similar inequality to item 1 is obtained
with cos[3 f(x)] instead of sin[§ f(x)], giving the desired inequality.

(4) Conversely, for any integer m and ¢ € [(1/2)(4mnr —m), (1/2)(4mn +)], cos(t) is concave. Therefore,
under the assumption that there exists an integer m such that 8 f(x) € [(1/2)(4dmn —7), (1/2)(4mn+
m)] and Bg(x) € [(1/2)(dmm — 7), (1/2)(4mnm + 7)] for any x € X, the classical concave property
followed by an integration produces the reversed inequality in the previous item.

This ends the proof. O

A more general result below is presented, but under some additional assumptions on the domains of 3 f
and (g.

Proposition 3.9. Let « € R, 8 € R, p € [0, 1], and f(x) and g(x), x € X, be non-negative functions.

(1) Under the assumptions that there exists a positive integer m such that S f(x) € [(1/2)(dmm — ), 2mm] and
Bg(x) € [(1/2)(4mm — 7), 2mm] for any x € X, and « € [0, 1], we have

Sluf + (1 = wgl(e, B) < pS(f)(e, B) + (1 = p)S(g) (@, B).
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(2) Under the assumptions that there exists a non-negative integer m such that 8f(x) € [(1/2)(4mnm +
7),2mm + «| and Bg(x) € [(1/2)(dmm + ©), 2mm + 7| for any x € X, and o € [0, 1], we have

uS(f)(e, ) + (1 = p)S(g)(a, B) < Sluf + (1 = w)gl(ev, B).
(3) Under the assumptions that there exists a positive integer m such that 5 f (x) € [2mm — =, (1/2)(4dmm — 7)]
and Bg(x) € [2mm — 7, (1/2)(dmm — 7)] for any x € X, and « € [0, 1], we have
Cluf + (1 = pgl(e, B) < pC(f)(e, B) + (1 = w)C(g) (e, B).
(4) Under the assumptions that there exists a non-negative integer m such that 8 f (x) € [2mm, (1/2)(4dmm +1)]
and Bg(x) € [2mm, (1/2)(dmm + 7)] for any x € X, and o € [0, 1], we have
pC(f)(e, B) + (1 = p)C(g) (e, B) < Cluf + (1 — p)gl(ex, B).
Proof.

(1) Let us consider the function h(t) = ¢t sin(¢) for any ¢ > 0. Under the considered assumptions on f
and Sf, itis clear that 5 > 0. Therefore, we can write

S()@) = 5 / [8/(x)]° sin[B (x)]dx 51 / hBf (x)]dx

Let us now study the two first derivatives of h and their signs. We have
R (t) = t* asin(t) + tcos(t)]
and
R (t) = t*"?{2at cos(t) — [a(1 — a) + t*] sin(t)}.
For any positive integer m, t € [(1/2)(dmm — 7),2mn], and « € [0, 1], we have ¢ > 0, cos(t) > 0,
sin(t) < 0 and a(1 — «) > 0, implying that 2" (t) > 0. Hence, h(t) is convex for such ¢. Therefore,
under the assumptions that there exists a positive integer m such that 3 f(x) € [(1/2)(4mn—m), 2mm]
and Bg(x) € [(1/2)(4mn — 7),2mn] for any x € X, and « € [0, 1], we have
MBS + (1 = p)gl(x)} = hlpbf(x) + (1 = p)Bg(x)]
< ph[Bf)]+ (1 = p)h[Bg(x)].

As a result, we have

Sluf + (1= wgl(a,5) = = / MBIAS + (1= gl ()
pge [ MBNdx+ (1= ) [ hiBglxax
x

= pS(f)(e, B) + (1 = p)S(g)(a, B).
(2) Similarly to the previous proof, for any non-negative integer m, ¢t € [(1/2)(4mn + 7),2mn + 7| and
€ [0,1], we have t > 0, cos(t) < 0, sin(t) > 0 and a(1 — ) > 0, implying that 2”(¢) < 0. Hence,
h(t) is concave for such t. Therefore, under the assumptions that there exists a non-negative integer
m such that 3f(x) € [(1/2)(4mnm + 7),2mn + 7] and Bg(x) € [(1/2)(4mn + 7),2mm + 7] for any

x € X, and « € [0, 1], the concave property gives the reversed inequality in the previous item.

(3) Following the spirit of the proof of item 1, let us consider the function £(¢) = ¢* cos(t) in such a way

that )
C(PeB) = 5 /X 018 f (x)]dx

0 (t) = t* o cos(t) — tsin(t)]

Then we have



Pan-Amer. J. Math. 3 (2024), 11 24

and
' (t) = t* 2 {—2atsin(t) — [a(1 — a) + t*] cos(t)}.

For any positive integer m, t € [2mnr—m, (1/2)(4mm—m)], and « € [0,1], wehave ¢ > 0, cos(t) < 0,
sin(t) < 0 and «(1 — ) > 0, implying that ¢”(¢t) > 0. Hence, ¢(t) is convex for such t. Therefore,
under the assumptions that there exists a positive integer m such that 8f(x) € 2mn—m, (1/2)(4dmmr—
m)] and Bg(x) € [2mm —m, (1/2)(4mm — 7)] for any x € X, and « € [0, 1], a similar inequality in item
1is obtained with / instead of h, giving the desired result.

(4) Similarly, for any non-negative integer m, ¢ € [2mm, (1/2)(4mn + 7)], and « € [0, 1], we have ¢t > 0,
cos(t) > 0, sin(¢) > 0 and «(1 — o) > 0, implying that ¢”(¢) < 0. Hence, ¢(¢) is concave for such
t. Therefore, under the assumptions that there exists a non-negative integer m such that f(x) €
[2mm, (1/2)(4m7 + )] and Bg(x) € [2mm, (1/2)(dmm +7)] for any x € X, and « € [0, 1], the concave
property gives the reversed inequality in the previous item.

The desired convex-type inequalities are demonstrated. O

The next result investigates convex-type inequalities for the S and C operators with respect to the pa-
rameter (3 for the case o = 0.

Proposition 3.10. Let 51 € R, 2 € R, pp € [0,1], and f(x), x € X be a non-negative function.

(1) Under the assumption that there exists an integer m such that B, f(x) € [2mn — 7, 2mm] and Bo f (x) €
[2mm — 7, 2mm] for any x € X, we have

SN0, ubr+ (1 = p)B2] < pS(F)(0, B1) + (1 = 1) S(£)(0, B2).

(2) Under the assumption that there exists an integer m such that p1 f(x) € [2mm,2mnm + 7] and B2 f(x) €
[2mm, 2mm + 7] for any x € X, we have

uS(f)(0, Br) + (1 = p)S(F)(0, 82) < S(f)[0, wbr + (1 — p)Ba].

(3) Under the assumption that there exists an integer m such that 81 f(x) € [(1/2)(dmn+m), (1/2)(4mm+37)]
and B2 f (x) € [(1/2)(dmn + 7), (1/2)(dmm + 37)] for any x € X, we have

C(OI0, phr + (1 = p)B2] < pC(f)(0,51) + (1 = w)C(f)(0, B2).

(4) Under the assumption that there exists an integer m such that 1 f (x) € [(1/2)(dmnm — ), (1/2)(dmm + )]
and B f (x) € [(1/2)(dmnm — ), (1/2)(dmm + )] for any x € X, we have

nC(f)(0, B1) + (1 = w)C(f)(0, B2) < C(F)[0, pbr + (1 — ) Ba].

Proof. The arguments are identical to those used in the proof of Proposition 3.8. Let us focus mainly on the
first item. For any integer m and ¢ € [2mm — 7, 2mmn], sin(t) is convex. Therefore, under the assumption that
there exists an integer m such that £, f(x) € 2mnm — 7,2mn]| and B2 f(x) € [2mm — 7, 2mn] for any x € X,
we have

sin{[pf1 + (1 — )2l f(x)} = sinfpf1 f(x) + (1 — p)B2f (x)]
< psin[f1f (x)] + (1 = p) sin[B2 f (x)].
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As a result, we have

S(F)[0, 1By + (1 — )] = /X sin{[1B + (1 — )B] £ () }dx

<o [ sinlp flix+ (1= ) [ sinlf 0l
— uS(F)(0, B1) + (1= )S(F)(0, Ba).

In some sense, the proof is identical to the one in Proposition 3.8, it is enough to put 8 = f; and
g = (B2/51)f. With this mind, we directly demonstrate items 2, 3 and 4. This ends the proof. O

The next proposition is analogous to the previous one, but with respect to the parameter a.

Proposition 3.11. Leta; € R, ap € R, p € [0,1], B € Rand f(x), x € X, be a non-negative function.

(1) Under the assumption that there exists an integer m such that 8f(x) € [2mmn, 2mz + 7| for any x € X, we
have

S(Nlpen + (1 = paz, f] < pS(f)(ar, B) + (1 = p)S(f)(az, B).
(2) Under the assumption that there exists an integer m such that 5 f(x) € [2mn — 7, 2mm] for any x € X, we
have

wS(f)(on, B) + (1 = w)S(f) (a2, B) < S(f)[par + (1 — p)az, B].

(3) Under the assumption that there exists an integer m such that 8 f (x) € [(1/2)(dmz — =), (1/2)(dmm + 7)]
for any x € X, we have

C(H)lpar + (1 = pag, B < pC(f)(en, B) + (1 = p)C(f)(az, B).
(4) Under the assumption that there exists an integer m such that 8 f(x) € [(1/2)(dmm+), (1/2)(4mn +37)]
forany x € X, we have

pC(f)(a1, B) + (1 = w)C(f)(az, B) < C(f)[uar + (1 — p)az, B].

Proof.
(1) It follows from item 3 of Proposition 2.11 applied with m = 2 that

02 .

55 8) = [ 1601 (logls 1Y sinlsf (ol

It is obvious that [f(x)]*{log[f(x)]}? > 0 and, under the assumption that there exists an integer m
such that 8 f(x) € [2mm, 2mn + 7] for any x € X, we have sin[5f(x)] > 0. As a result, we have

implying that S(f)(«, 8) is convex with respect to a. A consequence of this convex property is the
desired inequality, i.e.,

S(Hluon + (1 = pag, B < pS(f)(ar, B) + (1 = p)S(f)(z; B).
(2) Under the assumption that there exists an integer m such that Sf(x) € [2mnm — 7, 2mn] for any
x € X, we have sin[3f(x)] < 0. By using the same arguments as those in the previous proof, we get

82
S <0,

implying that S(f)(«, 8) is concave with respect to «.. The reversed inequality in the previous item
is directly obtained.
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(3) It follows from item 4 of Proposition 2.11 applied with m = 2 that
82
da?

C(f) (e B) = /X 1)) {log[f ()]} cos{ 3£ () dx.

It is obvious that [f(x)]*{log[f(x)]}? > 0 and, under the assumption that there exists an integer m
such that gf(x) € [(1/2)(4mnm — 7), (1/2)(4mnm + m)] for any x € X, we have cos[3f(x)] > 0. Asa
result, we have

SO, 8) 20,
implying that C(f)(c, ) is convex with respect to «, so
C(N)lpar + (L= p)az, B] < pC(f)(ar, ) + (1 = p)C(f)(az2, B).

(4) Under the assumption that there exists an integer m such that 5 f(x) € [(1/2)(dmm+7), (1/2)(dmnm+
3m)] for any x € X, we have cos[3f(x)] < 0. By using the same arguments as those in the previous
proof, we get

92
O ) <0,
implying that C(f)(«, 8) is concave with respect to «. The reversed inequality in the previous item
is established.
The proof is complete. U

The result below is about convex-type convex inequalities based on the power versions of the S and C
operators.

Proposition 3.12. Let o € R, § € Rand f(x), x € X, be a non-negative function.

(1) Under the assumptions that o > 1 and that there exists an integer m such that 5 f (x) € [2mm, 2mn + 7| for
any x € X, we have

S(f)(@.B8) = [S(f)(0,8)]"* [S(FL /)

(2) Under the assumptions that « € [0, 1] and that there exists an integer m such that S f (x) € [2mm, 2mn + 7]
for any x € X, we have

S()(@.p) < [S(HO./]' S (LB
(8) Under the assumptions that o > 1 and that there exists an integer m such that 8f(x) € [(1/2)(4dmnm —
), (1/2)(4mm + )] for any x € X, we have
C(f)(e ) = [C(HO, )] [C(NL A"
(4) Under the assumptions that « € [0, 1] and that there exists an integer m such that 5 f(x) € [(1/2)(4mm —
), (1/2)(dmm + m)] for any x € X, we have
C(f)(e, B) < [C(HO, B ™[O, B

Proof. The integral version of the Jensen inequality is again at the center of the proof.

(1) For any t > 0 and a > 1, it is clear that (t*)” = a(a — 1)t*~2 > 0, implying that ¢* is convex.
Moreover, under the assumption that there exists an integer m such that gf(x) € [2mm, 2mn + 7]
for any x € X implying that sin[3f(x)] > 0, the function hg(x) = sin[3f(x)]/ [, sin[8f(x)]dx =
sin[Bf(x)]/S(f)(0,5) is a valid probability density function because hg(x) > 0 for any x € X and
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f x hg x)dx = 1. Therefore, the integral version of the Jensen inequality applied with the measure
th/; x)dx, B C X, gives

S(f)(@, B) = /X [FG] sinlB (x))dx = S(£)(0. ) /X [ ()] hs (x)dx
8) [ / f(X)hﬁ(X)dX]

=510 { 5505 L sinlor G0
— [S(7)(0. 8) (S A

(2) Forany ¢ > 0 and « € [0, 1], it is clear that (t*)” = a(a — 1)t*~2 < 0. Hence, t* is concave for such
t. Therefore, under the assumption that there exists an integer m such that 8f(x) € [2mm, 2mn + 7]
for any x € X implying that sin[3f(x)] > 0, the integral version of the Jensen inequality applied in
the concave case gives the reversed inequality in the previous item.

(3) Under the assumption that there exists an integer m such that 8 f(x) € [(1/2)(4m7—m7), (1/2)(4mr+
)] for any x € X, we have cos[ff(x)] > 0 and the function /3(x) = cos[3f(x)]/ [, cos[Bf(x)]dx =
cos[Bf(x)]/C(f)(0,B) is a probability density function. So, we can apply the integral version of the
Jensen inequality with the measure 7(B) = [ {3(x)dx, B C X. The desired results follow the lines
of the proof of item 1 with /3 instead of h 8-

(4) The proof combines the arguments of those in items 2 and 3; we omit the details.

The proof ends. O

Thanks to this result, if S(f)(0,8), C(£)(0,8), S(f)(1,8) and C(f)(1,3) are calculable, we have direct
lower or upper bounds of the possibly more complex associated S and C operators, depending on whether

a>loracl0,1].

3.3. Holder-type inequalities. Inequalities of Holder-type involving the S and C operators are exhibited
in the next result.

Proposition 3.13. Leta € R, F € R, 8 > 1, p € [0,1], and f(x), x € X, be a non-negative function.

(1) Under the assumption that there exists an integer m such that § f(x) € [2mm, 2mn + 7| for any x € X, we
have

S(f)a, B) < [S(f) (b, B)]? {s<f> [“iﬁl‘l’“‘)ﬁ] } "

(2) Under the assumption that there exists an integer m such that 8 f(x) € [(1/2)(dmz — 7), (1/2)(dmm + 7)]
forany x € X, we have

af(1 — 1-1/0
cth)a ) < Ceon s {cn |52 0] )
Proof.

(1) Under the assumption that there exists an integer m such that Sf(x) € [2mm,2mn + 7] for any
x € X, we have sin[8f(x)] > 0. In light of this, by the decompositions a = au + (1 — p)aand 1 =
1/6 + (1 — 1/0), the integral version of the Holder inequality applied with the parameter p = 6 > 1
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gives
S()(@8) = [ 17601 sinlss (ol
::Jaif<xna“{snﬂﬂf<xn}1“Wf<xn<**”a{snwﬂf<xn}l*4/9dx

1-1/6

<9 [ 1 sin[Bf (x)]dx v [f ()] 200/ 0=V sin[B £ (x)]dx
U, P

—wmmWﬁW”&Uﬂmﬁimﬁﬂlw.

(2) Just noticing that, under the assumption that there exists an integer m such that ff(x) €
[(1/2)(4mm — m), (1/2)(4mm + 7)] for any x € X, we have cos[3f(x)] > 0, so we can replace the
sine function by the cosine function in the previous proof. The details are omitted.

The proof is complete. U

Let us notice that, by taking 4 = 1 and § = 1/ with o > 1, items 1 and 2 of Proposition 3.13 correspond
to items 2 and 4 of Proposition 3.12, respectively. Thus, it can be viewed as a generalization in a certain
case.

4. SOME EXPLICIT FORMULAS FOR THE S OPERATOR

This section is devoted to some explicit formulas for the S operator, taking the usual functions for f. For
the sake of simplicity, we always suppose that 5 > 0. Indeed, when the S (or C) operator is considered, the
cases 3 < 0 and = 0 can be easily derived by using items 2 and 3 of Proposition 2.5, respectively. We
emphasize the casesn = 1 and o = 0,n = 1 and a = 1, n = 1 and varying «, cases n = 2 and o = 0, and
some more general cases.

4.1. Casesn = 1 and o = 0. First, let us consider the casesn = 1 and o« = 0.
For f(z) =z, z € [0, 1], the calculus of the S operator gives

. 1
S(f)(0,8) = / sin(fx)dx = —
[0,1] B
The same result holds for f(z) =1 —z, 2 € [0, 1].
By taking f(z) = 22, z € [0, 1], we obtain

[1 — cos()].

S()(0,8) = /[O . sin(fz?)dz = %S* [ %] :

where S, (z) = f[o 2] sin(7t?/2)dt is the Fresnel S integral. For f(z) = (1 — x)?, x € [0, 1], the same formula
is found.
For f(x) = v/z, x € [0,1], we find that
. 2.
SUN0.8) = [ smf3Vads = 2 fsn(s) —Beos(s)]
0,1

This is also true for f(z) = v/1 — =z, z € [0,1].
By selecting f(z) = exp(z), x € [0, 1], the calculus of the S operator gives

smmmzﬁfM&mww=&mmm—&@,

where S, (z) = f[o 2] [sin(¢)/t]dt is the sine integral. The same result holds for f(z) = exp(1 — z), z € [0, 1].



Pan-Amer. J. Math. 3 (2024), 11 29

For f(z) = —log(z), = € (0, 1], we obtain

S(F)(0,8) = /[O - los(2)ds — B2ﬁ+ y

For f(z) = —log(1l — z), x € [0,1), the same formula is found.

By choosing f(x) = 1/z, z € (0, 1], we have

S(f)(0,8) = / sin (B> dx = sin(B8) — BC,(B),
0,1] z
where C,(z) = — f[m’oo)[cos(t)/t}dt is the cosine integral. The same result holds for f(z) = 1/(1 — z),

x €[0,1).
For f(z) =1/(1 + z), z € [0, 1], we get

S(/)(0,6) = /H sin (12 Yo = 8 [cut) - €, (5)] + 2m (5) —snio.

This is also true for f(z) =1/(2 — z), z € [0,1].
\/ﬁ
K

For f(x) = 1/2%, z € (0, 1], we have
cos(mt?/2)dt is the Fresnel C integral. For f(z) = 1/(1 — z)?, # € [0,1), the same

S(f)(0,8) = /[0 : sin (ﬁ) dx = %T {1 —2C,

s

where C.(z) = [, 4

formula is found.
By considering f(z) = (1 — z), z € [0, 1], we obtain

For f(z) = arcsin(zx), z € [0, 1], we get

S(f)(0,8) = /[0’1] sin[8 arcsin(x)]dx = . jﬂ2 {sin <B27T) — ﬁ} .
The same result holds for f(z) = arcsin(1 — z), z € [0, 1].
For f(z) = arccos(zx), z € [0, 1], we have

S(f)0,5) = /[0’1] sin[f arccos(z)]dz = . —652 cos <67r) .

For f(x) = arccos(1 — ), = € [0, 1), the same formula is found.

42. Casesn =1and o = 1. Let us consider the casesn =1and o = 1.
By selecting f(z) = x, z € [0, 1], we establish that
. 1.
S((1,8) = /[ sin(Ba)ds = gy lsin(8) — feos(s)]
0,1

For f(x) =1 -z, x € [0,1), the same formula is found.
By taking f(z) = 2%, z € [0, 1], the calculus of the S operator gives

S(H1.5) =/ 2 sin(Bz?)dx zi lgc ( 26) B 2co;(ﬁ)] .

[0,1] &

This is also true for f(x) = (1 — z)?, z € [0, 1].
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For f(z) = vz, z € [0,1], we have

SWA = [ Vesinlayis
- % [285in(B) — (52 — 2) cos(8) — 2] .

We get the same result for f(z) =1 -z, 2z € [0, 1].
For f(z) = exp(z), x € [0, 1], the following S operator is obtained:

S(F)(1,8) = /[ | expla) sl exp(e)]de = %{eosm ~ coslBexp(L)]}.

The same result holds for f(z) = exp(l — z), z € [0, 1].
By choosing f(z) = —log(z), = € (0, 1], we get

S(HA,B) = /[071] [— log(z)] sin[—S log(z)]dz = (ﬁffl)Q

This is also true for f(z) = —log(1 — z), z € [0, 1).
For f(z) = 1/z, z € (0,1], we obtain

SO = [ Lsin(2) o= Jir 25,000

[0,1] *

The same result holds for f(z) =1/(1 — z),z € [0,1).
For f(z) = 1/22,x € (0, 1], we have

This is also true for f(z) = 1/(1 — z)?, z € [0,1).
By considering f(z) = 1/(1 + z), = € [0, 1], we obtain

S()(1,8) = /H o (lf) dr = 5,(8) - 5, (ﬁ) |

This formula is also valid for f(z) = 1/(2 — x), z € [0, 1].
For f(z) = arcsin(x), = € [0, 1], the following S operator is calculated:

S, B) = / arcsin(z) sin[f3 arcsin(z)|dx

[0,1]

= ,2(1_71&2)2 {(52 — 1)msin (@) + 40 cos (”3277)] .

This is also true for f(z) = arcsin(1 — z), = € [0, 1].
For f(x) = arccos(z), « € [0, 1], we have

S(H(A,B) = /[0 : arccos(z) sin[f arccos(x)|dz

_ ﬁ [(1 + %) sin (*82”) - g(ﬁQ — 1)mcos ('62”) - 24 .

We get the same result for f(x) = arccos(1 — z), z € [0, 1].
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4.3. Cases n = 1 and varying a. We now focus on the cases n = 1 and varying «. Also, due to the effect of
a, most of the expressions of the S operator are in infinite series form, with reference to Proposition 2.7.
By selecting f(z) = 2™, = € [0, 1], with m(a + 1) > —1, we obtain

S(f)e, B) = / 2™ sin(Bx™)dx

[0,1]

> 1)k 1
— Z (_ ) /62k+1
= (2k +1)! m(a+2k+1)+1’

provided that convergence is achieved.

This formula is also valid for f(z) = (1 — z)™, = € [0, 1].

By taking the more general function f(z) = 2™ (1 —x)°, « € [0, 1], withm(a+1) > —1land s(a+1) > —1
, we obtain

S(F) (e, B) :/ 21— 2)* sin[B2™ (1 — 2)"]dz

[0,1]

00 1\k
= Z (z(ki)l)'ﬂ?k“B[m(a +2k+1)+1,s(a+2k+1)+ 1],
k=0 ’

where B(t,v) = fol z'71(1 — )"~ duz is the standard beta function, provided that convergence is achieved.

For f(z) = [~ log(z)]™, = € (0, 1], with m(a + 1) > —1, the following S operator is computed:

S, B) = / [—log(z)]™ sin{ B[ log(x)]"™ }dx

[0,1]

(="
= kZ:O m52’€+11“[m(oé +2k+1) +1],
where I'(t) = f[O,oo) 21 exp(—x)dz is the standard gamma integral function, provided that convergence is
achieved. For f(z) = [—log(1 — x)]™, = € (0, 1], the same formula is found.

For f(z) = [—zlog(x)]™, = € (0,1], with m(a+ 1) > —1, we get

S = [ [elo@)] ™ sin 3l og(e)] "o
0,1
R G Dy 1
— kZ:O o 1)!/3 e kT DT 1]m(a+2k+1)+1f[m(a + 2k + 1) + 1],
provided that convergence is achieved. For f(x) = [—(1 — z)log(1l — z)|™, z € (0, 1], the same formula is

found.

0.1
e (EDE 1
- kZ:O (2k + 1)!6 v m(o+ 2k + 1) {exp[m(a+ 2k +1)] — 1},

provided that convergence is achieved. This is also true for f(z) = exp[m(1l — z)], = € [0, 1].

4.4. Casesn = 2 and o = 0. We now emphasize the casesn = 2 and a = 0.
For f(x1,22) = x1 + 2, (r1,22) € [0, 1]?, the calculus of the S operator gives

S(N0.9) = [ sl +az)ldeides = 7 sm(@[1— cos(s)]
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or, eventually, S(f)(0,8) = (2/8)sinc(8)[1 — cos(8)], where sinc(8) = sin(8)/8 is the sine cardinal, or
S(F)(0,8) = (4/8) sinc(8){sin[B/2]}2 or S()(0,8) = Bsinc(B){sinclB/2}2. For f(z1,2) = 1 — 21 + o3,
f(x1,m2) =21 + 1 —myand f(x1,22) =2 — 21 — X9, (21, 72) € [0,1]?, the same formula is found.

By taking f(z1,z2) = o1 + 2, for xo < z1, (21, 22) € [0, 1)%,and f(x1,x2) = 0 otherwise, the following S
operator is obtained:

/ / sin[B(x1 + z2)]dzodry = ;2 sin(B)[1 — cos(B)],
0,1] J[0,z1]

or, eventually, S(f)(0, 8) = [sinc(5)/B][1 — cos(B)].

This is also true for f(z1,22) = 1 — 21 + @9, for x5 < 1 — 11, (z1,22) € [0,1]%, and f(x1,72) = 0
otherwise, f(x1,22) = 1 + @1 — @9, for 1 — 2y < 21, (21,72) € [0,1]%, and f(z1,22) = 0 otherwise, and
f(xl,l‘g) =2—x1 — X9, for 1 < X9, (331,332) S [0, 1]2, and f(ﬂil,.rg) = 0 otherwise.

For f(IEl,SCQ) = |2131 — ZL‘Ql, (xl,xg) € [0, 1}2, we get

. 2 .
Smmm[]mwmmmwuwwSmm,
0,1]2
or, eventually, S(f)(0,8) = (2/8)[1 — sinc(B)].
The same result holds for f(z1,72) = |1 — 21 — 22| and f(z1,22) = |71 — 1 + 22|, (21, 22) € [0,1]2.
By considering f(z1,72) = (z1 — 22)?, (z1,72) € [0,1]%, we have

ﬂﬂ@@‘%@fﬂﬂmmﬁmﬁm—;bﬁﬁ&lff

This formula is also valid for f(x1,72) = (1 — 21 — x2)? and f(x1,22) = (v1 — 1 + 22)?, (21, 22) € [0, 1]
SUIO8) = [ sinla(a? + ad)ldnidrs = 5C.

28 23
— | S, —.
[0,1]2 Ié] T ] ™ ]

For f(x1,72) = (1—m1)2+a3, f(x1,72) = 22 +(1—ax2)? and f(z1,22) = (1—21)%+(1—22)?, (21, 22) € [0,1]3,
the same formula is found.
By choosing f(z1,x2) = \/Z1 + \/Z2, (z1,22) € [0,1]?, we have

S(N0.8) = [ sn{8lVE + ) dedes

-1+ cos(ﬂ)] .

For f(z1,22) = 23 + 23, (1, 72) € [0,1]?, we have

3

= % [—8sin(B) — 4(B* — 1) sin(2B) + 8B cos(B) — 8B cos(23)] .

This formula is also obtained for f(x1,x2) = V1 — 21 + /22, f(21,22) = /T1 + V1 — 22 and f(z1,22) =
\/1 —x1 + \/1 — X2, (1‘1,332) € [0, 1]2.
For f(x1,22) = 129, (71,22) € [0,1]?, the following S operator is obtained:

S(F)(0, B) = /[0 | (i) deida; =

%hﬂ%@—me

where ~ denotes the Euler-Mascheroni constant. The same result holds for f(z1,z2) = (1 — z1)xs,
f(l‘hl‘g) = 171(1 — 172) and f($17x2) = (1 — Il)(l — IQ), (l’l,ﬂfz) € [0, 1]2
For f(x1,22) = x1/%2, (z1,72) € (0,1]%, we have

SUN0.5) = [ sin (52 ) derde = -5 152C,(3) 1 - Bsin(s) + s3]
[0,1]2 2 2p
This is also true for f(l‘l,l‘g) = (1 — 1‘1)/.132, f(.l?l,l‘z) = 3;‘1/(1 — 3;‘2) and f(l‘l,xg) = (1 — .131)/(1 — .132),

(x1,72) € (0,1)%
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By selecting f(x1,22) = — log(x122), (z1,72) € (0,1]%, we find that

= i — T1x T104Ty = L
SO8) = [ s (pl-lon(aras) deides = 7
For f(x1,22) = —log[(1 — x1)a2], f(#1,22) = —log[z1(1 — @2)] and f(z1,22) = —log[(1 — x1)(1 — x2)],

(x1,72) € (0,1)2, the same formula is found.

4.5. Some more general cases. Some more general cases than the previous ones are now examined.

By taking f(z1, 2, 23) = — log(z12223), (71,22, 73) € (0,1]3, we obtain
. BB -5
= —1 dridrodrs = —————=.
S(N0.8)= [ sin {8l logtriraz)]) desdesdas = 7
We find the same result for f(xl,CC27l‘3) = —log[(l — ll?l)l'gxg], f(l‘l,IQ,:lig) = —log[xl(l — Ig)l‘g],
(1, 20,23) = —loglriza(l — 23)], fz1,22,23) = —log[(1 — z1)(1 — w2)x3], f(w1,72,23) = —log[z1(1 —

z2)(1 — w3)], f(z1, 22, 23) = —log[(1 — @1)x2(1 — w3)] and f(21,22,23) = —log[(1 — x1)(1 — z2)(1 — w3)],
(1,22, 23) € (0,1)°.
For f(x) =[]/, /"', x € X, withm;(a+ 1) > —1forany i = 1,...,n, we have

n

S(f)(a, B) = /x Hﬂf‘] sin lﬁHm ] dx
o0 - a+2k+1
:kZ:O 2k+1 ﬁQkH/ [Hm ] dx

M

(71) 2k+1 m;(a+2k+1)
—f x; " dx;
@2k + 1] 1;[1 o

~
Il

0

( 1) 2k+1 1
(2k+1)!ﬁ il;[lmi(oz+2k+1)—|—1’

E
I
=

provided that convergence is achieved.
For f(x.) = [[i,(z})™ with z} € {2;,1 — 2;} foreachi=1,...,n,x € X, the same formula holds.
By considering f(x) = [[;—,[— log(z;)]™, x € X, with m;(a + 1) > —1forany i =1,...,n, we get

S8 = | {H[—logw]’"i} sin{ﬂ H[—log(xi)}mi} dx
* i=1

i=1

:Z(Q(kJr)l o / lH_IOg i)

k=0 i=1

a+2k+1
] dx

oo

( 2k+1 / m; (a+2k+1)
= —1 o dzx:
Z(2k+1 p H 0.1] og(® i

—Z 2k+1 ﬂ%“HF 42k + 1) + 1],

provided that convergence is achieved. We find the same result for f(x) = [[;_,[— log(z})]™ with z} €
{z;;1 —x;} foreachi=1,...,n,x € X.
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For f(x) = [, [—;log(z;)]™, x € X, with m;(a +1) > —1forany i = 1,...,n, we have

{Ilkanbguar“} ﬁn{ﬂll}ﬂubg@ﬂﬁ“}dx

i=1

52k+1 / [H —x; IOg Iz
2]{: + 1)! ey

(—1) ) ﬁ2k+1H/ [—961' log(xi)}mi(a+2k+1)dxi
i—=1700,1]

S, B) =

dx

M8><\

k

Il
o

~| a+2k+1

M8

|

= (2k + 1)
= ii(_l)k 52k+1ﬁ ! Llmi(a+ 2k + 1) + 1]
= (2k+1)! 4 [mi(a+ 2k + 1) + 1tk T ’

provided that convergence is achieved.

The same formula holds for f(x) = [[_, [~} log(z})|™ with 2} € {z;,1 — a;} foreachi = 1,...,n,
xe X.

By considering f(x) = exp (3.1 mz;) = [[;—, exp(mz;), x € X, withm; € Rforany i =1,...,n, and
a € R, the following S operator is obtained:

S(f)(« / lH exp(m;x; ] sin lﬂﬁexp ™m;T 1)1 dx
0o a+2k+1
- Z 2k+ 1)! ﬁ%l/ lHexp e ]

dx

k=0

_ - (_1) 2k+1 . 4

- kzzo e H /[o , xplzimi(ar+ 2k + Dlda:

— Z (Q(k: +)1 62k+1 H m {exp[m;(a+ 2k +1)] — 1},

TT
o

provided that convergence is achieved.
We find the same result for f(x) = exp (>, m;z}) with z} € {z;,1 —z;} foreachi=1,...,n,x € X.

5. SOME EXPLICIT FORMULAS FOR THE C OPERATOR

By taking inspiration from the above section, we now examine some explicit formulas for the C operator.
For the sake of simplicity, we always suppose that 5 > 0.

5.1. Cases n =1 and o = 0. First, let us consider the casesn =1 and o = 0.
By taking f(z) = z, x € [0, 1], the following C operator is established:

C(f)0,5) = /[0 . cos(fBz)dx = sinc(p).

The same result holds for f(z) =1— =z, z € [0, 1].
For f(x) = 22,z € [0,1], we get

cmmmzﬁummﬂmz 755

For f(z) = (1 — x)?, x € |0, 1], the same formula is found.
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For f(z) = vz, z € [0,1], we have

C(f)(0,5) = / cos|Bv/aldz = = [Bsin(B) + cos(8) — 1.

[0,1] B @

This is also true for f(z) = /1 — =z, z € [0,1].
By selecting f(z) = exp(z), z € [0, 1], we get
C(f)0,p) = / cos[B exp(x)]dx = C,[Bexp(l)] — Co(B).
0,1]
The same result holds for f(z) = exp(1 — z), z € [0, 1].
For f(x) = —log(x), z € (0,1], we have
1
C()0,8) = /[071] cos[—flog(z)]dx = il

For f(x) = —log(1l — z), x € [0,1), the same formula is found.
By choosing f(z) = 1/, x € (0, 1], the following C operator is obtained:

C(f)(0,8) = /M cos (ﬁ) de = 3 |S(8) = 5] + cos(8).

T

The same result holds for f(z) =1/(1 — z), z € [0,1).
For f(z) =1/(1+ ),z € [0,1], we get

CL)0,8) = /[0 eos <1fx> do
B B

50(2) - 0] 200 (£) -t

This is also true for f(z) =1/(2 —z), z € [0,1].
By selecting f(x) = 1/2?%, z € (0, 1], we have

CH0,8) = /[0 eos (g) o = %” {25*

For f(z) = 1/(1 — z)?, z € [0, 1), the same formula is found.
For f(z) = 2(1 — z), z € [0, 1], we have

C(f)(0.5) = /[ cosla(1 — )

_ 27 Bl (P
_\/2{0* 2W]cos<4)+5*

For f(z) = arcsin(x), z € [0, 1], the calculus of the C operator gives

()}

C(f)(0,p8) = / cos|f arcsin(z)|dx = ﬁcos (@) .

(0,1]

The same result holds for f(z) = arcsin(1 — z), z € [0, 1].
For f(z) = arccos(zx), z € [0, 1], we have

C(f)(0, 8) = /[071] cos{ avcoos (o) dr = == {1 _ Bsin (;ﬂ .

For f(z) = arccos(1 — ), z € [0, 1), the same formula is found.

Qf] - 1} + cos(f).
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5.2. Casesn = 1and o = 1. Let us consider the casesn = 1 and o« = 1.
For f(z) =z, z € [0, 1], we obtain

1

- @[5 sin(B) + cos(B) — 1].

c(hHa,p) = /[0 : x cos(Bx)dx

For f(x) =1—z, 2 € [0,1), the same formula is found.
By choosing f(z) = 2%, z € [0, 1], we get

0= [ reos(patiin = 5 {QSmcm) s, [ Qﬁ] } |

This is also true for f(x) = (1 — z)?, z € [0, 1].
For f(z) = v/z, z € [0,1], we find that

C(f)(LB) = /[ | Vaeospyalin = 53 [26 cos(B) + (5% — 2) sin(B)]

We get the same result for f(z) =1 — =z, z € [0, 1].
For f(z) = exp(z), x € [0, 1], the calculus of the C operator gives

c(Ha,p) = /[0 . exp(x) cos[f exp(z)]dz = %{sin[ﬁ exp(1)] — sin(B)}.

The same result holds for f(z) = exp(1 — ), z € [0, 1].
By considering f(z) = —log(z), x € (0, 1], we have
) = [ - logte)] conl- S logllde = o
’ [0,1] (1+p32)%
This is also true for f(z) = —log(1 — z), z € [0, 1).
For f(x) = 1/z, z € (0,1], we obtain

c(H,p) = / L cos (ﬁ) dz = —C,(B).

[0_’1] X x

The same result holds for f(z) =1/(1 — z),z € [0,1).
By selecting f(x) = 1/22%, z € (0, 1], we have

1 1
(N, ):/[Ol}xzcos(li)dx=2 27;{1—20*

This is also true for f(z) = 1/(1 — z)?, z € [0, 1).
Based on f(x) = 1/(1 + ), z € [0, 1], the calculus of the C operator gives

()1, 5) = /H eos (1fx) dx = C,() - C, (f) .

This formula is also valid for f(z) =1/(2 — x), z € [0, 1].
For f(x) = arccos(z), « € [0, 1], we have

)

C(fH,p) = /[0 . arccos(z) cos[8 arccos(x)|dx

_ ﬁ [(1 + %) cos @”) + g(BQ — 1)msin (éﬂﬂ .

We get the same result for f(x) = arccos(1 — z), z € [0, 1].
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5.3. Cases n = 1 and varying . We now focus on the cases n = 1 and varying a. Also, due to the effect of
a, most of the expressions of the C operator are in infinite series form, with reference to Proposition 2.7.
By taking f(z) = 2™, « € [0, 1], with ma > —1, we obtain

> 1
C(f)(oz,ﬂ)z/[0 1}96 “cos(Bx™) =Z [3’% et T

k=0

provided that convergence is achieved. This formula is also valid for f(z) = (1 —2)™, z € [0, 1].
By considering the more general function f(z) = z™(1 — z)%, z € [0,1], with m(a + 1) > —1 and
s(a+1) > —1, we obtain
C(Paf) = [ om0 ) coslga™(1 - )}
[0.1]
s
(2k)!

k=0

[m(a+ 2k) + 1, s(a + 2k) + 1],

provided that convergence is achieved.
For f(z) = [~ log(x)]™, = € (0,1], with ma > —1, we have

C(f)(a, B) =/ [—log(z)]™* cos{B[—log(x)]" }dx

[0,1]

< (_1\k
= C U gkr (o + 26) + 1),
2k)!
k=0
provided that convergence is achieved. For f(z) = [—log(1 — z)]™, = € (0, 1], the same formula is found.

By choosing f(z) = [—zlog(x)]™, z € (0,1], with ma > —1, we establish that

CKJ)(a,6)==t/‘ [~ log()]™ cos{ B[~ log(x)]™ }dz

(0,1]
o D' 1
- kZ:O @ ° (o £ 2k) ¢ fmerzor L it 2k) + 1,
provided that convergence is achieved. For f(x) = [—(1 — z)log(1l — )|, z € (0, 1], the same formula is
found.

For f(z) = exp(mz), z € [0,1] withm € R and « € R, we have
C(f(aB) = [ explma) cos( exp(ma) dz
0,1]
o (-1)*

_ 2k
N 0 (2k)! p

provided that convergence is achieved. This is also true for f(z) = exp[m(1l — z)], = € [0, 1].

1
m(a + 2k

] {exp[m(a + 2k)] — 1},

5.4. Cases n = 2 and oo = 0. We now emphasize the casesn = 2 and a = 0.
By selecting f(z1,x2) = x1 + 2, (x1,22) € [0, 1]?, the calculus of the C operator gives

2
C(f)0,58) = /[071]2 cos[B(z1 + x2)]|dz1das = E cos(8) [sin (g)} ,
or, eventually, C(f)(0, 3) = cos(f)[sinc(3/2)]%.
For f(xl,xg) =1—21 + 2o, f(l‘l,l‘Q) =1x;+1— 29 and f(l‘hxg) =2—x1 — To, (.231,@‘2) S [0, 1]2, the
same formula is found.
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Let us now consider the case f(z1,72) = 21 + ¥9, for o < w1, (21,72) € [0,1]%, and f(z1,22) = 0
otherwise. In this case, an important detail must be mentioned. Since cos(0) = 1, if the support of f is not
entirely X, say =, then we have

C(f)(O,B)z/:cos[ﬁf(x)]dx—i—/x\:dx.

Based on this remark, we have

[‘3 —/ / COS 1’1 +l’2 dl‘gdlﬁl + / dIQdel
0,1] J[0,z1] [0,1] J[z1,1]

ﬁQ{SID +cos fl}Jrf

This is also true for f(z1,22) = 1 — 21 + @9, for m3 < 1 — 11, (z1,22) € [0,1]%, and f(x1,72) = 0
otherwise, f(x1,22) = 1 + @1 — @9, for 1 — x5 < 1, (21,72) € [0,1]%, and f(z1,22) = 0 otherwise, and
f(x1,m2) =2 — 21 — ma, for 1 < 3, (21, 22) € [0,1]%, and f(z1,72) = 0 otherwise.

Based on f(z1,22) = |71 — 2a], (¥1,22) € [0,1]?, we get

C(f)0,p5) = /[071]2 cos[B|z1 — x2|]dzrdre = %[1 —cos(B)].

The same result holds for f(z1,72) = |1 — 1 — 22| and f(z1,22) = |71 — 1 + 32|, (21, 22) € [0, 1]2.

ff-wmm}

This formula is also valid for f(x1,72) = (1 — 21 — x2)? and f(x1,22) = (v1 — 1 + 22)?, (21, 22) € [0, 1]%.
By considering f(z1,72) = 2% + 23, (z1,22) € [0,1]?, we obtain

For f(x1,22) = (z1 — 72)?, (z1,72) € [0,1]?, we have

chw.s = [

[0,1]2

cos[B(x1 — I2)2]d.131d.132 = % {\/QﬁWC’*

mﬁ@@=%@fwmﬁ+ﬁW%Wz

ey

For f(x1,22) = (1—a1)*+a3, f(z1,22) = a3 +(1—22)? and f(a1,22) = (1—21)*+(1—22)?, (21, 22) € [0,1]%,
the same formula is found.

For f(z1,22) = \/Z1 + /T2, (z1,22) € [0,1]?, we have

CH0,8) = /[0 s BV + V] dede

= % {QB[sin(QB) —sin(B)] — 2[1 — cos(B)] cos(B) — 52 cos(Qﬂ)} .

™

" 28

This formula is also obtained for f(x1,22) = 1 — 21 + /@2, f(21,22) = /21 + V1 — 22 and f(z1,22) =
\/1 —x1 + \/1 — I, (1‘1,332) € [O, 1]2.
For f(x1,72) = z172, (21, 72) € [0, 1]?, the calculus of the C operator gives

%sow).

The same result holds for f(z1,22) = (1 — z1)z2, f(z1,22) = 21(1 — x2) and f(z1,22) = (1 — 21)(1 — z2),
(21, 2) € [0, 1]

c(£)(0,8) = /[0 . cos(Bxyxo)dridas =
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By choosing f(x1,22) = x1 /32, (z1,22) € (0,1]?, we establish that

C(f)(0,8) = /[0 ” cos (Bxl) dzidxs

€2

5 |55.(0) ~ G+ sinc(s) + cos(3)

This is also true for f(x1,72) = (1 — x1)/z2, f(71,22) = 21/(1 — 22) and f(z1,22) = (1 —21)/(1 — 22),
(.131,.1?2) S (0,1)2.
For f(:El,IQ) = —10g(9§‘1$2), (171,.1’2) S (O, 1]2, we have

1—p?
cm@mzﬁmmwkmmmmmmﬁa+wy
For f(z1,22) = —log[(1 — z1)x2], fz1,22) = —loglei(l — 2)] and f(a1,22) = —log[(1 — 21)(1 — 22)),

(71, 22) € (0,1)2, the same formula is found.

5.5. Some more general cases. Some more general cases that the previous ones are now examined.
By taking f(z1, 2, z3) = — log(z12923), (21,22, 23) € (0,1]%, we have

_ 232

C()0,8) = /[0)1]3 cos {B[—log(z1x223)]} dridrodas = (1_:;5)3
We find the same result for f(x1,22,23) = —log[(1 — x1)z273], f(21,72,73) = —loglzi(l — z2)w3],
f(x1,m2,23) = —log[z12e(1 — 23)], f(x1, 22, 23) = —log[(1 — z1)(1 — m2)as], f(a1, 72, 23) = —log[z1(1 —

z2)(1 — w3)], f(z1, 22, 23) = —log[(1 — @1)x2(1 — w3)] and f(21,22,23) = —log[(1 — x1)(1 — z2)(1 — w3)],
(1,22, 23) € (0,1)°.
For f(x) =[]/, =", x € X, withm;a > —1 forany i = 1,...,n, we have

i=1" 7/

k=0 ) i=1
_ = (*1)]c 2k ml(a-‘er)d
];) (2k)! g [[1/[0,1] ! '
IR G VAP 1
_I;O (Qk)'ﬁ gml(a+2k)+1’

provided that convergence is achieved. By selecting f(x.) = [[;_,(z})™ with 2 € {x;,1 — 2;} for each

i=1,...,n,x € X, the same formula holds.
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By choosing f(x) = [[;_,[—log(z;)]™, x € X, with m;a > —1 forany i =1,...,n, we have
cifiad) = [ {H[ log(z:)]™ } {5H log(:)]™ } dx
i=1
a+2k
A e
(2k + 1)! x| ’
k=0 i=1
_ i (*1):652k ﬁ/ [_ 10g(:€i)}mi(a+2k)dl’i
= 2k o
_ i (_1)k52kﬁrm (o +2k) + 1],
(2k)! ’
k=0 i=1
provided that convergence is achieved.
We find the same result for f(x) = [[;_,[— log(z})]™ with 2} € {z;,1 — a;} foreachi=1,...,n,x € X.

For f(x) = [[i_,[—=ilog(x;)]™, x € X, with m;a > —1 for any ¢ = 1,...,n, the calculus of the C

operator gives

[—x; 1og(xi)]m"} dx

Q
=
B

|
a_—
—~  —
—=
iR

&
<)
L

8
——
Q

Q

o

@
——
=
==

=1
e 71)k n a+2k
= I;) (2k>[ 621@/){ [II[IZ log(Il)] ] dx
= i (_1)k52k ﬁ [—.’E' log(x )]ml(a+2k)d$
k=0 (Qk ! i=1 [0,1] '

provided that convergence is achieved.

The same formula holds for f(x) = [[;_, [~} log(z})|™ with 2} € {z;,1 — z;} foreachi = 1,...,

xeX.

_ = (_1 k - 1 ‘
> (2k)! 4 E s(a & ok) 1 ez L (e + 2k) + 1,

n,

For f(x) = exp (Y1, mz;) = [[i—, exp(m;x;), x € X, withm; € Rforanyi =1,...,n,and o € R, we

have

. lH exp(mixi)l cos [5Hexp(mi$i)] dx

i=1

J
= i <(2]1):€52k/ lH exp(m;z;) r‘“k dx

k

ﬁ2k H/ explx;m;(a + 2k)]dx;

=

Z((Q;) 5%Hm{exp[mz( a4 2k) — 1},

provided that convergence is achieved.

We find the same result for f(x) = exp (3., m;z}) with 2} € {2;,1 — z;} foreachi=1,...,

Some expressions in this section will be at the center of the proof of the new trigonometric inequalities

examined in the next section.
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6. APPLICATIONS TO INEQUALITIES

Some inequalities derived from the operators S and C and their characteristics are now presented. For
reasons of simplicity and compliance with the format of standard trigonometric inequalities in the litera-
ture, we consider § € [0,7/2] or 8 € [0, 1]; the intervals may be possibly refined if necessary for most of the
inequalities presented. From a technical point of view, we exclusively use the results of Proposition 3.4 for
the left inequality and those of Proposition 3.7 for the right inequality. Of course, other previously proven
results can be used; this is a subjective choice motivated by the generated inequalities, which deserve to
be communicated thanks to their apparent sharpness. To provide a clear visual check, figures illustrating
these inequalities are offered.

6.1. Inequalities derived from the S operator. The result below examines inequalities centered around the
function 1 — cos(/8), with maximum details in the proof as a first example of application of the S operator.

Proposition 6.1. For any § € [0, 7/2], the following inequalities hold:

'6—2 <1—cos(B) < Bsin (g) .

™

Proof. We consider the function f(z) = z, x € [0, 1]. Then the S operator of f at « = 0 is given as

S(F)(0,8) = / sin(Bz)dz = %[1 ~ cos(B)].

[0,1]
We are now able to apply most of the theory to the S operator.
First, since 8 € [0,7/2], for any = € [0,1], we have Sf(z) = Sz € [0,7/2]. Therefore, by applying item 2
of Proposition 3.7 withn = 1 and a = 0, we get

x)]%dz 3 sin ; z)]%dx
S(£)(0.8) < { [, } {%H[ﬂmodx [, lr@ra }

= sin [ﬂ o f(x)dx] = sin [ﬁ /[071] xdx) =sin (g) .

1 —cos(f) < Bsin (g) .

On the other hand, by using item 1 of Proposition 3.4 with n = 1 and « = 0, we have

We thus obtain

2B 2p
SNOB) = — | @) de="[ f(z)dz
™ J10.] T Jo.1
2
= —ﬂ zdr = % X 1 = ﬁ
T J{0,1) ™ 2 7
We deduce that
BZ
— < 1—cos(B).
s
This ends the proof by combining the two obtained inequalities. O

The right inequality in the proposition also appears in [34, Theorem 11], also established via integration
techniques.
From the demonstrated inequalities, for any S € [0, 7/2],

o the inequality cos(8) + S sin(8/2) > 1 holds, which does not seem to be so evident at first glance,
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e we also have the following inequalities centered around cos(/3):

1— (Bsin (§> <cos(f) <1-— 5—2

™

We do not claim that it is optimal in the sharpness sense, but it has a certain originality with regard
to the involved polynomial and trigonometric functions.

The proposition below presents inequalities centered around the function sin(57/2) — S.

Proposition 6.2. For any 8 € [0, 1], the following inequalities hold:

(1-2)sa-o <sn (5) -5 < a- s [Zm-2)].

Proof. We consider the function f(x) = arcsin(z), = € [0, 1]. Then the S operator of f at « = 0 is given as

S(F)(0, 8) = / sin[B arcsin()]dz — 1_1 e {sin @”) _ 5: .

[0,1]

Since 3 € [0,1], for any = € [0,1], we have S f(z) = Sarcsin(x) € [0, 7/2]. Therefore, by applying item 2 of
Proposition 3.7 with n = 1 and a = 0 and using f[O,l] arcsin(x)dx = (1/2)(7 — 2), we obtain

i = sin arcsin(z)dx | = sin é T —
S(H(0.8) < sin [ﬂ . f(:v)dx] - [ﬁ [, arsin )d] -2,

Hence, we have
sin (iﬁ) —B<(1-p%sin [g(ﬁ - 2)] .

On the other hand, by using item 1 of Proposition 3.4 with n = 1 and « = 0, we have

sN0.8> 2L [ jayie=2

T Jioa] T Joa]

:fx;ﬁ—?):ﬁ(l—i).

(1 - i) B(1— 6) < sin (i”) )

The desired results are established. O

arcsin(x)dx

We deduce that

The inequalities in the above proposition imply that, for any 3 € [0, 1], we have
(1 - 2) B(1 — B?) + B < sin (62”) < (1 — p%)sin [g(w — 2)} + 8.
s

In particular, the left inequality gives an improvement of the Jordan inequality; since (1—2/7)3(1— %) > 0,
we clearly have sin(87/2) > 5. However, it is not competitive with sophisticated versions, such as those
established in [38] and [31].

Remark 6.3. In item 1 of Proposition 3.4, the Jordan inequality is the main tool for the proof. Thus, our improved
Jordan inequality can be applied to a more precise lower bound. In some sense, the S (or C) operator is able to improve
itself with well-selected functions in progressive calculus steps.

Figure 1 illustrates the above proposition by considering the function

1) o) =sin () -5 - (1-2) - 22,
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showing how it is both positive and close to the y = 0 axis, and the function
(6.2) h(B) = sin <ﬂ2ﬁ) — B —(1—p%sin [g(w - 2)} )

showing how it is both negative and close to the same axis.

o
o
] 3
© o
Q -
© -
g <
3 S .
| o
o i
Q -
S |
o o]
o o
S T T T T T T ; T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p B

FIGURE 1. Illustration of (left) g(8) > 0, 8 € [0, 1], where g(5) is given in Equation (6.1),
and (right) the fact that #(8) > 0, 8 € [0, 1], where h(3) is given in Equation (6.2)

The precision of h(0) is notable.
The next proposition contains inequalities based on the function j3 cos(57/2).

Proposition 6.4. For any 8 € [0, 1], the following inequalities hold:
gﬂ(l — %) < Beos (B;-) < (1= p%)sin(B).
™

Proof. We consider the function f(x) = arccos(z), « € [0, 1]. Then the S operator of f at & = 0 is calculated
as

S(f)(0,8) = /[0 ; sin[8 arccos(z)]dz = : —652 cos <B27r) )

Since 8 € [0,1], for any = € [0, 1], it is clear that §f(z) = Barccos(z) € [0,7/2]. It follows from item 2 of

Proposition 3.7 withn = 1 and o = 0 and f[ arccos(x)dx = 1 that

0,1]

[0,1]

S(f)(0,5) <sin lﬂ f(x)dx} =sin [B /[0 . arccos(x)dx] = sin(8).

We thus obtain
B cos <[327r) < (1= p%)sin(B).
On the other hand, by using item 1 of Proposition 3.4 with n = 1 and « = 0, we have

S(f)(0,5) > %/ fz)dx = 28 arccos(z)dz = %
T Jioa]

™ Jio s
We deduce that

2,6(1 — %) < Bcos (ﬁw) .

s 2
This ends the proof. O
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From the inequalities in this proposition, for any 3 € [0, 1], we notice that

e we also have the following inequalities centered around cos(S7/2):
2
Z(1 - B?%) < cos (6;) < (1 — B%)sinc(B).
™

e alower bound for sinc(f) is thus given as

sinc(f) > 1 _lﬁz Cos (?) .

Sharp inequalities of sin(3) — § cos(3) are described in the result below.

Proposition 6.5. For any § € [0, 7/2], the following inequalities hold:

3. <sin(B) — Beos(B) < %2 sin <2f> .

Proof. We consider the function f(z) = z, « € [0, 1]. Then the S operator of f at = 1 is indicated as

S(f),p) = /[0 ; zsin(Bz)dx = %[sin(ﬂ) — Bcos(f)].

Since S € [0,7/2], for any x € [0, 1], we have Sf(x) = Bz € [0,7/2]. By applying item 2 of Proposition 3.7
withn = 1 and o = 1, we obtain

SLﬂ(LB)SZ{%;Hthde}ﬂn{Bjmuuindxj&ﬂLﬂxH*“dw}
= [ /[071] g:dx] sin l'@f[o)l]lxdx /[071] x2d9:‘|
— g (sx2xg) = fan (%),

We thus obtain
2
sin(8) — Bcos(B) < % sin (23)6) .
On the other hand, it follows from item 1 of Proposition 3.4 with n = 1 and a = 1 that
2 141 26 2 28 128
S(f)L,B8) > — f)) T de = == rédr = — X = = —.
R ) -1 Cx =2
We deduce that
25 < sin(B) — Beos(s)
3, < sin cos(f).
The proof is complete. U

In particular, this result provides a significant improvement of the well-known inequality sin(8) —
Beos(B) > 0 for any 8 € [0, 7/2]. We highlight it graphically in Figure 2 by considering the two following
functions:

(63 9(6) = sin(B) — Geos(3) — 55"

and

2
(6.4) h(B) = sin(B) — B cos(B) — % sin (?) .
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FIGURE 2. Illustration of (left) g(8) > 0, 5 € [0, /2], where ¢(f) is given in Equation (6.3),
and (right) h(8) <0, 8 € [0,7/2], where h(0) is given in Equation (6.4)

The next proposition contains inequalities based on the function (1 + 8%)sin(87/2) — (8/2)(8* —
1) cos(Bm/2) — 20.
Proposition 6.6. For any 8 € [0, 1], the following inequalities hold:

2(1-2) 50 - 02 < (14 s () = 505° - Deos () 25

2
< (1-p%)?sin[B(r —2)].
Proof. We consider the function f(z) = arccos(z), z € [0,1]. Then the S operator of f at « = 1 can be

expressed as

S(H,pB) = /[0 . arccos(z) sin[f arccos(x)|dx

o () - ()]

Since f € [0,1], for any = € [0,1], it is clear that Sf(z) = Barccos(z) € [0,7/2]. Owing to item 2 of
Proposition 3.7 withn = 1 and a = 1, using f[o ) arccos(z)dzr = 1 and fo [arccos( (z)]?dz = 7 — 2, we get

)] dz ¥ sin ; Hl v
S(f)(L8) < { /[0,1]“( ' } {/3 Jo @)tz [o e }

. 1
= [/{071] arccoS(x)dxl sin {Bf[o,u arccos(@ )dx/[ ][arccos (z)] dm}
= sin [B(7 — 2)].

We thus obtain

1+ )sin () = 5062~ meos (57 ) — 20 < (1= pPsin [5Gz - 2.

2) 2
On the other hand, by using item 1 of Proposition 3.4 with n = 1 and a = 1, we have
2 2 2
s 2L [ (pantar =2 [ farceos(o)de = L x (-2
[0.1] T J10.] T

)
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We deduce that
2 <1 — i) B(1— %2 < (1+ B?)sin <527T> - 5(52 — 1) cos <ﬂ2”> — 2.

This completes the proof. O

The obtained inequalities in the above proposition are original in form; no equivalent are in the literature
to the best of our knowledge. Illustration of their sharpness is given in Figure 3, with the consideration of
the following functions:

(6.5) 9(8) = (1 + %) sin (B”> ~Bg2 — tymcos (ﬁ”) —24 -2 (1 - 2) 81— pB%)?
2 2 2 T
and
(6.6) h(B) = (1 + ?)sin (T) - g(ﬁQ — 1)mcos (?) — 28— (1 — %)?sin [B(7 — 2)].
) o‘.o o.‘2 0.‘4 0.‘6 o.‘s 1io o.‘o 0.‘2 o.‘4 oie oia 1ﬁ0
B p

FIGURE 3. Illustration of (left) g(8) > 0, 8 € [0, 1], where g(5) is given in Equation (6.5),
and (right) h(8) <0, 8 € [0, 1], where h(f) is given in Equation (6.6)

From this figure, we observe that the left inequality is particularly sharp.
The theory on the S operator also leads to inequalities involving infinite series, as shown in the proposi-
tion below.

Proposition 6.7. Forany 8 € [0,7/2], m > 0 and o > 0, the following inequalities hold:

25 — (D" o 1
7r[m(a+1)+1]gkz:;)(2k+1)!ﬂ [ e s

1 . ma + 1
<ma—|—lsm[ﬁm(a—|—1)—|—1}

Proof. We consider the function f(z) = 2™, = € [0, 1], with m > 0. Then the S operator of f (with a general
o) is given as

S(Ha,B) = /[0 . 2™ gin(Bx™)dx
o (-DF 1
- Z (2k+1)!52k+1m(a+2k+1)+1'

k=0
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Since 8 € [0,7/2], for any z € [0, 1], we have 8f(z) = 2™ € [0,7/2]. Hence, by using item 2 of Proposition
3.7 with n = 1, we establish that

@ i L a+1
S()(e:) < { [, e dx} sin {ﬂw@]d J,, v dx}

1
= / ™ %dz | sin BW/ 2™t gy
[0,1] Joyemedz Jio

. ma+ 1
= sin |[f———| .
ma + 1 m(a+1)+1

We thus obtain

o~ (DF
Z !52k+1m

1 ma+ 1
— (2k+1) ’

1
< i _
(a+2k+1)+1 _ma+181n[ﬁm(a+1)+l

On the other hand, by using item 1 of Proposition 3.4 with n = 1, we have

28 28 28 1
S(f)a,B) > — z)|“Mde = =5 getge =2~
_ 26
alm(a+1) +1]°
We deduce that
2ﬁ < i (_1)k 62k+1 1
mlm(a+ 1) + 1] T = (2k+ 1) m(a+2k+1)+1°
This ends the proof. O

Inequalities derived from the bivariate S operator are examined below.

Proposition 6.8. For any 3 € [0, /2], the following inequalities hold:
B2 (B
r <« _ < 2\
o = v+ 1og(6) Co(ﬁ) < fBsin (4)

Proof. We consider the function f(x1,22) = @122, (71,22) € [0,1]?. Then the S operator of f at o = 0 is
determined by

S(£)(0,8) = / sin(Baras)dedas = %[v 1 log(8) — ColB)]

[0,1]2

Since 3 € [0,7/2], for any (z1,z2) € [0,1]?, we have Bf(z1,72) = Bxiz2 € [0,7/2]. By applying item 2 of
Proposition 3.7 with n = 2 and « = 0 and using f[o,1]2 x1Tadx1dre = 1/4, we find that

S(£)(0,8)
. 1
= {/[0,1]2“(%1’ xQHdelde} o {6f[0’1]2[f(:ﬂl,xQ)]Od;zzlde /[Oﬂl]z[f(xh$2)]0+1d$1d332}

= sin ﬂ/ f(x1,x0)dx1das| = sin [3/ r1Todr1dry| = sin (5>
[0.1]2 [0.1]2 4

We thus obtain

7 +10g(8) — Cu(B) < sin (f) |
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On the other hand, by using item 1 of Proposition 3.4 with n = 2 and a = 0, we have

2 2
S(f)(0,8) > % [f (21, 22)]" " dwyday = 26 x1w2drdTy
™ [071]2 ™ [071]2
_B 1_8
s 4 27
We deduce that
52
<+ 10g(8) - Co(B).
The stated inequalities are established. O

Figure 4 provides graphical evidence of the sharpness of these inequalities by investigating the curves of
the following functions:

2
(67) 9(8) =~ + log(8) ~ Co(8) — o
and
68) B(8) = +1ox(8) ~ Cul3) ~ psin (5 ).
0‘.0 0.‘5 1ﬂ0 1‘.5 0.‘0 0ﬂ5 1ﬂ0 1‘.5
B p

FIGURE 4. Illustration of (left) g(8) > 0, 8 € [0, 7/2], where ¢(3) is given in Equation (6.7),
and (right) h(8) <0, 8 € [0, 7/2], where h(f) is given in Equation (6.8)

The precision of the obtained inequalities is thus validated visually.
The next proposition contains original inequalities based on the product of the S and C Fresnel integrals.

Proposition 6.9. For any § € [0, 7/4], the following inequalities hold:
2
Zco 2] s 2] <L (¥).
0 s 3

il Fls,
3n2 —
Proof. We consider the function f(z1,72) = 2% + 23, (z1,22) € [0,1]%. Then the S operator of f at a = 0 is

determined by

S(f)(0,8) = /[0 » sin[B(23 + x3)]dz dre = %C’*
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Since 8 € [0,7/4], for any (z1,22) € [0,1]?, we have Bf(z1,22) = B(x? + 23) > 0 and Bf(z1,72) =
B(x3 +23) <28 < w/2,80 Bf(x1,22) € [0,7/2]. By applying item 2 of Proposition 3.7 withn = 2and o = 0
and using 11[0,1]2(9”% + 23)dx1dxs = 2/3, we get

S()(0,8)

0 3 1 0+1
: {/[0,1]2“(3:1’@)} dmd@} o {Bf[o,uz[f($1,$2)]0dm1dx2 /[0,1]2[f(x1’x2)] ! dxldx?}
= sin [ﬂ /[071]2 f(xhxz)dxldmg] = sin lﬂ /[0,1]2@% + x%)dmldm] = sin <23ﬁ) .

We thus obtain
25] s, l 26] < B (26)
T T T 3

On the other hand, by using item 1 of Proposition 3.4 with n = 2 and a = 0, we have

Ci

2 2
$N0,8) > 2L [ (flwr,z) dudes = 22 [ (@2 + 22)dwrdas
Y [0,1]2 ™ [0’1]2
— % X g — ﬁ_
s 3 3
We deduce that
2
48 2615*{ w]_
32 T s
This ends the proof. O

Figure 5 provides graphical evidence of the sharpness of these inequalities by investigating the curves of
the following functions:

B 23 23 452
=B [ ]
and
6.10) h(ﬁ):a[ ﬂ S*[ ﬂ_ﬂmcﬂ).
T T T 3
° 010 Oi2 014 OiG 018 OEO 0.‘2 014 OiG 018
B B

FIGURE 5. Illustration of (left) g(8) > 0, 8 € [0, 7/4], where ¢(3) is given in Equation (6.9),
and (right) h(8) <0, 8 € [0, /4], where h(f) is given in Equation (6.10)
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Additional graphical tests show that these inequalities can be extended for 5 € [0, 7/2].

6.2. Inequalities derived from the C operator. We now use the theory on the C operator to establish some
refined trigonometric inequalities. The next proposition contains inequalities centered around the sine
function.

Proposition 6.10. For any 3 € [0, 7/2], the following inequalities hold:

ﬂ(lf) Ssnmﬂ>s¢hns<§>.

Proof. We consider the function f(z) = z, x € [0, 1]. Then the C operator of f at « = 0 is calculated as

Cmumkﬁmmm:“yx

or, eventually, C(f)(0, 8) = sinc(8). Since 8 € [0,7/2], for any z € [0, 1], itis clear that 3f(x) = Sz € [0,7/2].
By applying item 4 of Proposition 3.7 with n = 1 and a = 0, we get

C(f)(0,8) < {/[0"1] [f(x)]odx} sin {ﬁm [071][ (x)]OHdm}

= cos [B o f(x)dx] = cos [B /[0’1] xdm] = cos <§> .

We thus obtain
sin(8) < B cos (g) .
On the other hand, by using item 3 of Proposition 3.4 withn = 1 and a = 0, we have
2 28
cno.pz [ pere-2 [ gertaw-1-2 [ e
(0.1] T Joa T Jo
:17%/ xdlef%xlzlfé.
T Jjo, m 2 T
We deduce that
B <1 — 5) < sin(pB).
s
This completes the proof. O

This proposition gives interesting complementary materials to the famous inequality sin(8) > 5 cos(8)
for any 8 € [0, 7/2]. In terms of the sine cardinal function, it is equivalent to, for any 5 € [0, 7/2],

B _ . B
_ < < 2.
1 _< sinc(8) < cos <2>
We highlight the obtained inequalities graphically in Figure 6 by considering the two following func-
tions:
(61) o(8) =sin(3) - (1- 2)
and

(6.12) h(B) = sin(8) — B cos (g) .
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FIGURE 6. Illustration of (left) g(3) > 0, 5 € [0, 7/2], where g(8) is given in Equation (6.11),
and (right) h(8) <0, 8 € [0,7/2], where h(f) is given in Equation (6.12)
The proposition below is about inequalities that bound the function cos(87/2).
Proposition 6.11. For any /3 € [0, 1], the following inequalities hold:
(1 - 5% {1 -8B+ 26} < cos <BW) < cos [6(77—2)} .
™ 2 2

Proof. We consider the function f(z) = arcsin(z), € [0, 1]. Then the C operator of f at o = 01is given as

c(f)0,8) = / cos[ arcsin(z)|dx = 1 _152 cos (ﬁ;> .

(0,1]

Since g € [0,1], for any x € [0, 1], we have 8f(z) = S arcsin(z) € [0, 7/2]. By applying item 4 of Proposition
3.7withn =1and a = 0, we get

C(f)(0,5) < cos [ﬁ f(x)dz] = cos [,8 /[0 . arcsin(z)daz] = cos {g(r - 2)] .

[0.1]
We thus obtain
cos </327r> < (1 - B%) cos {g(w - 2)} .
On the other hand, by using item 3 of Proposition 3.4 withn = 1 and a = 0, we have
2 2
c(fH0,8)>1— 2 (x)de =1-— 2 arcsin(x)dx
™ J10.] T J10.]
2 1 2
:1—£x%7r—2)zl—,8+—ﬁ.
m 2 m
We deduce that
28 B
_ ;2 _ < 7
(1 ﬁ){l ﬂ—i—ﬂ_}cos(Q).
This ends the proof. O

The obtained inequalities are original in form. Their sharpness is illustrated in Figure 7 through the
analysis of the two following functions:

(613) o) =cos () - 15+ 2|
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and
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FIGURE 7. Illustration of (left) g(8) > 0, 8 € [0, 1], where g(§) is given in Equation (6.13),
and (right) h(8) <0, 8 € [0, 1], where h(f) is given in Equation (6.14)

This figure supports the interest of the C operator in generating sharp inequalities of original form.
The main function of interest in the result below is 1 — G sin(f7/2).

Proposition 6.12. For any § € [0, 1], the following inequalities hold:

(1- 6% (1 - 2/3) <1- sin (ﬂ;) < (1- %) cos(B).
T
Proof. We consider the function f(z) = arccos(x), z € [0,1]. Then the C operator of f at o = 0 is obtained
as

CH)0,8) = /[0’1] cos|B arccos(z)]dz = ﬁ {1 _ Bsin (éﬂﬂ .

Since 8 € [0,1], for any = € [0, 1], it is clear that 8f(x) = Barccos(z) € [0,7/2]. By applying item 4 of
Proposition 3.7 withn = 1 and « = 0, since 8f(z) € [0,7/2] for any x € [0, 1], we get

C(£)(0,8) < cos lﬁ f(m)dx} = cos l,é’ /[0 , arccos(x)dx] = cos(f3).

[0,1]
We thus obtain

1 — Bsin (5;) < (1= B%) cos(B).
On the other hand, by using item 3 of Proposition 3.4 with n = 1 and « = 0, we have

C(f)(o, >1—— f(z)dz —1——6 arccos(x )dm—l—%.

[0,1] [0,1] ™

(1—ﬁ2)<1—2f)<1—5sin<ﬁ27r).

The desired results are established. O

We deduce that
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The inequalities in the above proposition also imply that, for 3 € [0, 1],

1—(1— /%) cos(B) < Bsin (ﬁ;) <1-(1-p5% (1— Qf)

which remains new in the literature, to the best of our knowledge.
The proposition below considers the function 8sin(8) + cos(8) and proposes lower and upper bounds
for it.

Proposition 6.13. For any 3 € [0, 7/2], the following inequalities hold:

2
1+ B2 (; _ ?ﬂﬁr) < Bsin(B) 4 cos(B) <1+ %cos (25) )

Proof. We consider the function f(x) = z, x € [0, 1]. Then the C operator of f at « = 1is given as

C(f)(LB) = / v cos(Ba)de = — [Bsin(B) + cos(8) — 1]

0,1] (2

Since 8 € [0, /2], for any x € [0, 1], it is clear that 8 f(z) = Bz € [0, 7/2]. By applying item 4 of Proposition
3.7 withn = 1 and a = 1, we obtain

1 1 T 141 T
C(h)(1,8) < { [, @ dx}cos{ﬂﬁoﬁuwﬂldx [, s }

= / xdz | cos B#/ 22 dx
[0,1] f[o,l] zdx Jio )
1 1 1 253
= = cos 2x = | ==cos|— |.
2cos<ﬁ>< ><3> 2cos<3>

Bsin(B) + cos(B) < 1+ 5—2 cos <25> .

Hence, we have

2 3
On the other hand, by using item 3 of Proposition 3.4 withn = 1 and a = 1, we have
2p
cHLA = [ (f@ide -2 [ (f@) e
[0.1] T J0.1]
:/ xdm—% x2dx:1—%x1:1—%,
[071] '/T [071] 2 ™ 3 2 3
We deduce that
, (1 2 _
") < .
1+3 (2 3 ) S Bsin(B) + cos(B)
This ends the proof. O

The sharpness of the obtained inequalities is illustrated in Figure 8 by considering the two following

functions:
(6.15) g(B) = Bsin(B) + cos(B) — 1 — 2 (; - gi)
and

(6.16) h(B) = Bsin8) +cos(8) — 1 - 2 cos (235) .
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FIGURE 8. Illustration of (left) g(3) > 0, 5 € [0, 7/2], where g(8) is given in Equation (6.15),
and (right) h(8) <0, 8 € [0,7/2], where h(f) is given in Equation (6.16)

The result below is about inequalities centered around the function (1 + 32) cos(87/2) + (8/2)(8* —
1w sin(B7/2).

Proposition 6.14. For any /3 € [0, 1], the following inequalities hold:

(1-p%)? (1 —28+ 45) < (14 8?)cos (62”) + 2(52 —1)msin (ﬁ;)
< (1- B%)2 cos [B(m — 2)].

Proof. We consider the function f(z) = arccos(z), z € [0,1]. Then the C operator of f at o = 1 is calculated
as

c(Ha,p) = /[0 . arccos(z) cos[8 arccos(x)]dx

_ ﬁ [(1 + ) cos @”) + g(ﬁQ —1)7sin (iﬂﬂ .

Since 8 € [0,1], for any = € [0, 1], it is clear that 3f(x) = Barccos(z) € [0,7/2]. By applying item 4 of
Proposition 3.7 withn = 1 and a = 1, since §f(z) € [0,7/2] for any x € [0, 1], we get

mlx COS ; .’,U1+1$
aﬁ@ms{m$<nd} {%Mﬁummﬁﬁﬂﬂ d}

_ 1 ,
— [/[071] arCCOS($)dI] cos {ﬂf[o,l} arccos(z)dz /[0’1] [arccos(z)] da:}

= cos [B(m —2)].

We thus obtain

(1 yeos () 4 502 = ymsin () < (1 922 cos [t — 2.
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On the other hand, by using item 3 of Proposition 3.4 with n = 1 and a = 1, we have

oz [ e =T [ )
- /{071] arccos(z)dz — ? - [arccos(z)]2da = 1 — % x (1 —2)
—1-28+ %.
We deduce that
(1—5?%)? (1 — 238+ 47?) < (1+ ?) cos (?) + 2(52 — 1)msin <B2”) .
This completes the proof. O

The next proposition illustrates how the theory of the C operator also results in infinite series inequalities.

Proposition 6.15. Forany 8 € [0,7/2], m > 0 and o > 0, the following inequalities hold:

1 23 N (D

1
_ 2k
ma+1  7wm(a+1)+1] 2k)! p m

(a+2k)+1

T

< 1 3 ma+ 1
oS .
~“ma+1 m(a+1)+1

Proof. We consider the function f(x) = 2™, z € [0, 1], with m > 0. Then the C operator of f (with a general
«) is indicated as

B ma my g 5~ (CD o 1
C(f)(a,ﬁ)—/[o’ux cos(fz )d”—kzzo @)’ km(a+2k)+1'

Since 8 € [0, 7/2], for any x € [0, 1], itis clear that 5 f(z) = Sz™ € [0, 7/2]. By applying item 4 of Proposition
3.7 withn =1, we get

Q@ x)|*dx 3 cos _ z)|“Mdx
Cf)a ) < { [, e } {B @R o O }

1
/ x"%dx | cos ﬂﬁ/ 2D gy
0,1 Joy " dz Jio

_ 1 cos | 8 ma+ 1
 ma+1 m(a+1)+1]"

We thus obtain

= (=1)F e 1 ma 4 1
kZ:O (2k)! F m(o+2k) +1 = ma+1°" [ﬂm(a—k 1)+ 1] '

On the other hand, by using item 3 of Proposition 3.4 with n = 1, we have

sz [ p@ltde-2 [ ()i

[0.,1] T J0.]
= / " %dx — 25 2™t gy
[0,1] T Jo,1]
1 _ % o 1
ma+1l 7 mla+1)+1
1 28
ma+1  alm(a+1)+1]
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We deduce that
1 = ok 1
ma+1 7w[m (onrl kZ:o 5 m(a+ 2k) +
This ends the proof. O

Innovative inequalities based on the S and C Fresnel integrals are established in the result below.

Proposition 6.16. For any /3 € (0,7 /4], the following inequalities hold:

20-8)<fe [ [ R <2 3)

Proof. We consider the function f(z1,z2) = 23 + 23, (v1,22) € [0,1]%. Then the C operator of f at o = 0 is

calculated as

C(f)(0,8) = / cos|B(a? + 3)|drydas

[y

Since 8 € [0,7/4], for any (z1,22) € [0,1]?, we have Bf(z1,72) = B(2? + 23) > 0 and Bf(z1,72) =
B(x3 +23) < 2B < /2,50 Bf(x1,22) € [0,m/2]. It follows from item 4 of Proposition 3.7 with n = 2 and
a = 0 that

C(£)(0,5)

1
< / [f(z1,22)]°dz1d2s 5 / [f(z1,20)]"  daydas
[0,1]2 f[o 1]2 5171,1’2)] dzidx [0,1]2

= cos lﬂ /[0)1]2 f(xl,xg)dxldxgl = COS lﬂ /[0)1]2(x% +x§)dm1dx2] = cos <ﬁ§> .

We thus obtain
2 2
S BN H
T T ™ 3

On the other hand, by using item 3 of Proposition 3.4 with n = 2 and a = 0, we have

™

2

C(f)(0,8) 2/ [f(%,xz)] dridry — — f(x1,22)] e day

[0,1]2 [0, 1]2

=1-— (22 + 22)dx1dxy

We deduce that

25 (1—‘%) < {C*
™ 3

The desired inequalities are proved. O
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By examining the curves of the following functions, Figure 9 offers a visual proof of the quality of these
inequalities:

- 4N 2 - 4N 2
_ 2680\ _ 2800 _28(,_48
(6.17) g(ﬁ)—{C* W_} {s* W_} : (1 37r>

and

- a8\ 2 r TN 2
(6.18) h(B) = {C* % } — {S* % } — % cos (25) .
T T T 3
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FIGURE 9. Illustration of (left) g(3) > 0, 8 € [0, /4], where g(/5) is given in Equation (6.17),
and (right) h(8) <0, 8 € [0,7/4], where h(f) is given in Equation (6.18)

The inequalities proved in this section form just a limited sample of the possible applications of the S
and C operators; they were obtained with the application of only two general results, among all those
established. So much more in this direction can be done.

7. CONCLUSION

In conclusion, integral operators provide powerful mathematical tools essential for analyzing and trans-
forming functions, with applications in various disciplines. Although linear integral operators have re-
ceived considerable attention, there is a notable gap in the exploration of multivariate nonlinear integral
operators involving trigonometric functions. In this article, we emphasize two new multivariate nonlinear
trigonometric integral operators. We highlight some of their promising features, such as solving com-
plex functional and differential equations, allowing manageable series expansions, and generating sharp
inequalities. As an application of some of the findings, a wide collection of original trigonometric inequali-
ties is offered, giving key results that can be used in many fields. Graphical illustrations are given for visual
evidence. New theoretical horizons are thus opened. A possible perspective is the study of the "inverse
trigonometric versions" of our operator in the following general form:

2G(f) (e, B) = / FO01* 9187 (),

X

with g(t) € {arcsin(t),arccos(t)}. Interesting choices also include g(t) € {cas(t),arctan(t)}. Finally, by
addressing this under-explored area, we contribute to the understanding and use of multivariate nonlinear
integral operators in analysis.
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