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LERAY SCHAUDER TYPE FIXED POINT THEOREMS IN RWC-BANACH ALGEBRAS AND
APPLICATION TO CHANDRASEKHAR INTEGRAL EQUATIONS

KHALED BEN AMARA

ABSTRACT. In this paper, the existence of fixed point results of Leray Schauder type for the sum and the product
of nonlinear operators acting on RWC-Banach algebras under weak topology is proved. Our results are formu-
lated in terms of a sequential characterization of the RWC-Banach algebra and the De Blasi measure of weak
noncompactness. Application to Chandrasekhar Integral equations is also given.

1. INTRODUCTION

Many mathematical models are expressed as operator equations of fixed point type:

A(x) ·B(x) + C(x) = x,(1.1)

associated with some nonlinear operators A,B, and C acting on Banach algebras.
Fixed point theory offer a lot of principles and methods for the existence, uniqueness, and approximation of
solutions. In [19], a mixed method combines the contraction principal and the Schauder fixed point theorem
was used in order to resolve (1.1). Subsequently, many extensions and development of this method in the
strong and the weak topologies are developped, see [8, 12, 13, 24].
Because the weak topology represent a natural framework of different applied problems, and since the
sequential weak continuity property of the product of two sequentially weakly continuous operators is not
always conserved, Ben Amar et al in [8] have introduced a new class of Banach algebras satisfying certain
sequential condition, called condition (P). This condition now represent a key to overcome the last cited
problem of sequential weak continuity and it plays an important role to solve a large class of nonlinear
integro-differential equations; see, for example, [8, 10, 12, 23, 24, 26]. The Leray Schauder alternative, one
of the most important tools in nonlinear analysis. Many fixed point theorems of Leray Schauder type are
obtained on Banach algebras satisfying the condition (P), see [2, 7, 9, 11].

Recently, in [6] Banaś and Olszowy have introduced the class of RWC-Banach algebras which generalizes
that of Banach algebras satisfying the condition (P), see [13, Example 2.1 and Example 2.2] and [6, Example
2.1].
In this paper, we establish Leray Schauder type fixed point results for (1.1) where A,B and C are three
nonlinear operators acting on a closed, convex subset of a RWC-Banach algebra. This extends, improves
and generalizes the above cited works. Our results are applied to prove the existence of a continuous

DEPARTMENT OF MATHEMATICS. FACULTY OF SCIENCES OF SFAX, UNIVERSITY OF SFAX, SFAX, 3000, TUNISIA

E-mail address: khaled.benamara.etud@fss.usf.tn.
Submitted on February 10, 2024.
2020 Mathematics Subject Classification. Primary 46H30, 47H10; Secondary 47J05, 45G15.
Key words and phrases. Banach algebras, Fixed point theorems, Nonlinear operators, Chandrasekhar integral equations.

1

https://doi.org/10.28919/cpr-pajm/3-12


Pan-Amer. J. Math. 3 (2024), 12 2

solution for the Chandrasekhar integral equation:

x(t) = (Ξ1x)(t)

[(
γ(t) +

∫ σ(t)

0

t

t+ s
κ(s, x(µ(s)))ds

)
· u

]
+ (Ξ2x)(t),(1.2)

for t ∈ J, where J = [0, 1], X is a RWC-Banach algebra, and u 6= 0 is a fixed vector in X.
When γ = 0, σ1 = µ = 1, κ(t, x) = λφ(t) log(1 + |x|), Ξ1(x) = x and Ξ2(x) ≡ u ≡ 1, Equation (4.1) reduced
to the following Chandrasekhar quadratic integral equation

x(t) = 1 + x(t)

∫ 1

0

tλ

t+ s
φ(s) log(1 + |x(s)|) ds, t ∈ J.(1.3)

Equation (1.3) was studied and developed in [4, 15, 17, 21].
This paper is organized as follows. Section 2 is devoted to recall useful preliminary results. In Section 3,

we establish new variants Leray Schauder alternative for the fixed point of (1.1), which extends several
works to RWC-Banach algebras. In Section 4, we use our theoretical results to study the existence of a
continuous solution of the Chandrasekhar integral equation (1.2) in the Banach algebra C(J,X), where X
is a RWC-Banach algebra.

2. PRELIMINARY RESULTS

Let X be a Banach space with the norm ‖ · ‖. We denote by Br the closed ball of X centered at θ with
radius r. Here θ is the zero element X. We write co(M), and co(M) to denote the convex hull and the closed
convex hull of a subset M ⊂ X, respectively. The symbol→ (resp. ⇀) stands to denote the strong (resp. the
weak) convergence in X.

Definition 2.1. LetA : X −→ X.We say thatA isD-Lipschitzian, if there exists a continuous nondecreasing
function Ψ : R+ −→ R+ with ψ(0) = 0 such that

‖Ax−Ay‖ ≤ Ψ(‖x− y‖)

for all x, y ∈ X. If Ψ(r) < r for r > 0 and Ψ is not necessarily nondecreasing, we say that A is a nonlinear
contraction mapping.

Definition 2.2. Let A : X −→ X.

(1) We say thatA is weakly sequentially continuous, if for every sequence (xn)n ⊂ X such that xn ⇀ x,

we have A(xn) ⇀ A(x).

(2) We say that A is weakly compact, if A(M) is relatively weakly compact, for every bounded subset
M of X.

(3) We say that A is ww-compact, if A is continuous and for every sequence (xn)n ⊂ X such that
xn ⇀ x, we have (A(xn))n has a weakly convergent subsequence.

(4) We say that A is strongly continuous, if for every sequence (xn)n ⊂ X such that xn ⇀ x, we have
A (xn)→ A(x).

Notice that the ww-compact operators are not necessarily weakly sequentially continuous. In addition,
the concepts of ww-compact and strongly continuous mappings arise naturally in the study of integral and
partial differential equations, see [20, 25, 28, 29].

In [18], De Blasi introduced the notion of the measure of weak noncompactness in the following way:

β(M) := inf {ε > 0; there exist a weakly compact set K and ε > 0 : M ⊂ K +Bε}

for all M ∈ B(X), where B(X) is the set of all continuous subset of X.
This measure satisfies several useful properties such as:
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(1) β(M1 +M2) ≤ β(M1) + β(M2) for all M1,M2 ∈ B(X).

(2) β(M1 ∪M2) = max(β(M1), β(M2)) for all M1,M2 ∈ B(X).

(3) β(αM) = αβ(M) for all α > 0 and M ∈ B(X).

Definition 2.3. An operator A : X −→ X is said to be β-condensing or condensing with respect to β, if A is
bounded, i.e. maps bounded subsets into bounded ones, and

β (A(M)) < β(M)

for any bounded subset M of X such that β(M) > 0.

Definition 2.4. Let A : X → X.

(1) We say thatA satisfies the condition (H1) if for any weakly convergent sequence (xn)n ⊂ D(A) ⊂ X,
the sequence (A(xn))n has a strongly convergent subsequence.

(2) We say that A satisfies the condition (H2) if for any weakly convergent sequence (xn) ⊂ D(A) ⊂ X,
(A(xn))n has a weakly convergent subsequence in X.

Remark 2.5. Notice that the condition (H1) does not imply the compactness ofA even ifA is a linear operator.
Moreover, the condition (H1) or (H2) does not implies the weak continuity of the operator.

Lemma 2.6. [1] If A : X → X is a D-Lipschitzian operator with D-function ϕ such that A satisfies the condition
(H2) , then we have

β (A(M)) ≤ ϕ (β(M))

for all bounded subset M of X.

Let X be a Banach algebra. For any arbitrary nonempty sets M and N of a Banach algebra X, we put

M ·N = {x · y; x ∈M, y ∈ N}

and if M is bounded we put
‖M‖ = sup

x∈M
‖x‖.

Definition 2.7. We say that a Banach algebra X is weakly compact (WC-Banach algebra for short) if the
product of two arbitrary weakly compact subsets of X is weakly compact.

An equivalence of the concepts of weak compactness of Banach algebra and Banach algebras satisfying
the condition (P) was proved by J. Banas, and L. Olszowy in [6].

Definition 2.8. [6] A Banach algebra X is said to be relatively weakly compact (RWC-Banach algebra for
short) if the product of two arbitrary relatively weakly compact subsets of X is relatively weakly compact.

Remark 2.9. Notice that, every WC-Banach algebra or equivalently every Banach algebra satisfying the
condition (P) is a RWC-Banach algebra, and from the Kakutani Theorem it follows that every reflexive
Banach algebra is a RWC-Banach algebra. In addition, the spaceL1(J ;X) of all Bochner integrable functions
f : J → X endowed with ‖ · ‖1-norm and the convolution product multiplication, (resp. the space C(K,X)

of all continuous functions from a Hausdorff compact space K to X is a RWC-Banach algebra whenever X
is reflexive (resp. X is a RWC-Banach algebra), see [13].

A characterization of the RWC-Banach algebra was investigated in [13].

Definition 2.10. Let X be a Banach algebra. We say that X satisfies a sequential condition
(
P
)

if for any
weakly convergent sequences (xn)n and (yn)n of X, the sequence (xn · yn)n has a weakly convergent sub-
sequence.
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A sequential characterization of the RWC-Banach algebras was established as follows.

Theorem 2.11. [13] A Banach algebra X is a RWC-Banach algebra, if and only, if X satisfies the condition
(
P
)
.

Lemma 2.12. [13] Let X be a RWC-Banach algebra. Then, we have

β (M ·N) ≤ ‖M‖β(N) + ‖N‖β(M) + β(M)β(N)

for all bounded subsets M and N of X.

3. LERAY SCHAUDER FIXED POINT RESULTS FOR HYBRID OPERATOR EQUATION IN RWC-BANACH

ALGEBRAS

In this Section, we establish a nonlinear alternative of Leray Schauder type of the fixed point theorems
for the sum and the product of three nonlinear operators.

Lemma 3.1. Let Ω be a nonempty, closed and convex subset of a Banach algebraX, and let U be a weakly open subset
of Ω, and such that 0 ∈ U. Let A,C : X −→ X and B : Uw −→ X such that

(1) A and C are D-Lipschitzian with D-functions ΦA and ΦC respectively.
(2) B(Uw) is bounded.
(3) ‖B(Uw)‖ΦA(r) + ΦC(r) < r, r > 0.

Then, for every y ∈ Uw there exist an unique x such that x = A(x) · y + C(x).

Proof. It suffices to prove that, for each y ∈ B(Uw), the fixed point problem

x = A(x) · y + C(x)

has a unique solution in X. To do this, let x1, x2 ∈ X. We have

‖A(x1) · y −A(x2) · y + C(x1)− C(x2)‖

≤ ‖A(x1)−A(x2)‖ ‖y‖+ ‖C(x1)− C(x2)‖

≤ ‖B(Uw)‖ΦA (‖x1 − x2‖) + ΦC (‖x1 − x2‖) .

Then, the operator A(·) · y + C(·) : X → X defines a nonlinear contraction with D-function

Ψ(r) = ‖B(Uw)‖ΦA(r) + ΦC(r), r ≥ 0.

Applying the Boyd-Wong fixed point theorem [14], there exists a unique xy ∈ X such that

A (xy) · y + C (xy) = xy.

�

Let T : B(Uw) → X be the operator which assigns for each y ∈ B(Uw) the element xy, and define the
operator S : Uw → X by the formula

S(x) = T (B(x)) for all x ∈ Uw.

Now, we are going to state and prove our main results for the nonlinear operator equations (1.1).

Theorem 3.2. Let X be a RWC-Banach algebra, Ω ⊂ X be a closed convex subset, U ⊂ Ω be a weakly open set, and
such that 0 ∈ U. Let A,C : X −→ X be two operators satisfying Condition (H2), and let B : Uw −→ X such that:

(1) A and C are D-Lipschitzian with D-functions ΦA and ΦC respectively.
(2) B(Uw) is relatively weakly compact and S

(
Uw
)

is bounded.
(3) If xn ⊂ Uw ⇀ x and S(xn) ⇀ y, then y = A(y) ·Bx+ C(y).

(4)
∥∥B(Uw)

∥∥ ΦA(r) + ΦC(r) < r, r > 0.
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Then, either

(A1) A(x) ·B(x) + C(x) = x has a solution, or
(A2) there exist x ∈ ∂Ω(U) and λ ∈ (0, 1) such that A

(
x
λ

)
·B(x) + C

(
x
λ

)
= x

λ .

Proof. First, note that the equation A
(
x
λ

)
·B(x) +C

(
x
λ

)
= x

λ is equivalent to that λS(x) = x. Now, suppose
that (A2) does not occur and S has no fixed point in ∂Ω(U) (otherwise, we are finished since (A1) occurs).
Then for all x ∈ ∂Ω(U) and for all λ ∈ [0, 1], we have

λS(x) 6= x.

Let

M =
{
x ∈ Uw, λS(x) = x for some λ ∈ [0, 1]

}
.

The setM is nonempty since 0 ∈M, andM∩∂Ω(U) = ∅.We first claim thatM is relatively weakly compact.
If it is not the case, then β (M) > 0. Since M ⊂ co(S(M) ∪ {0}), by the properties of the De Blasi measure
we get

β(M) ≤ β (co(S(M) ∪ {0})) = β (S(M)) < β(M),

which is absurd. We next prove that M is weakly closed. To do this, we claim first that S is weakly
sequentially continuous. Indeed, let {xn, n ∈ N} be a sequence of Uw such that xn ⇀ x. Since B(Uw) is
relatively weakly compact, by using Inclusion

S(Uw) ⊂ A(S(Uw)) ·B(Uw) + C(S(Uw))

and the fact that X is a RWC-Banach algebra, we get

β
(
S(Uw)

)
≤
∥∥B(Uw)

∥∥ β (A (S(Uw)
))

+ β
(
C
(
S(Uw)

))
≤
∥∥B(Uw)

∥∥ ΦA
(
β
(
S(Uw)

))
+ ΦC

(
β
(
S(Uw)

))
.

Using a contradiction argument, we obtain that S(Uw) is relatively weakly compact, and so (S (xn))n has a
subsequence, say (S (xnk

))k , converges weakly to some y ∈ X. By hypothesis, we have y = A(y) · B(x) +

C(y), or equivalently y = S(x). Now, we will prove that the whole sequence {S(xn), n ∈ N} converges
weakly to S(x). Otherwise, there exists a subsequence

(
xnj

)
j

of {xn, n ∈ N} and a weak neighborhood V

of S(x) such that

S
(
xnj

)
6∈ V, for all j ∈ N.

Proceeding as above, we conclude the existence of a subsequence
(
xnjk

)
k

such that S
(
xnjk

)
⇀ S(x),

which is a contradiction and consequently the claim is proved.
Now, let x ∈Mw. Taking into account the fact that Mw is weakly compact, in view of the Eberlein-Smulian
Theorem, there exists a sequence (xn)n such that xn ⇀ x. Notice that for each integer n ∈ N, there is
λn ∈ [0, 1] such that

xn = λnS(xn).

By extracting a subsequence, if necessary, we assume that

λn → λ ∈ [0, 1].

Taking into account the sequential weak continuity of S and letting n −→ ∞, we get λS(x) = x, and so
x ∈M, and consequently the set M is weakly closed.
Keeping in mind that M ∩∂Ω(U) = ∅, M is weakly compact, and ∂Ω(U) is weakly closed, since X endowed
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with the weak topology is a Tychonoff space, the Urysohn Theorem for the weak topology [22] ensures the
existence of a weakly continuous mapping ϕ : X → [0, 1] such that

ϕ(x) =

{
1, if x ∈M ;

0, if x ∈ ∂Ω(U).

Consider the operator S1 : X → X given by

S1(x) =

{
ϕ(x)S(x), if x ∈ Uw;

0, if x ∈ X \ Uw.

It is clear that

S1(X) ⊂ co(S(Uw) ∪ {0}).(3.1)

Let C = co(S(Uw) ∪ {0}). It is easy to see that C is a convex closed subset of X, and S1(C) ⊂ C. Let

L = {V ⊂ C such that co(V ) ⊂ V, 0 ∈ V, S1(V ) ⊂ V }.

The set L is nonempty since C ∈ L. Define the set

O =
⋂
V ∈L

V.

We can see that O is a closed convex subset of C, and S1(O) ⊂ O. This implies that

co(S1(O) ∪ {0}) ⊂ O,

from which we get

S1(co(S1(O) ∪ {0})) ⊂ S1(O) ⊂ co(S1(O) ∪ {0}).

Consequently,

co(S1(O) ∪ {0}) ∈ L

and so

O ⊂ co(S1(O) ∪ {0}).

This infer that

O = co(S1(O) ∪ {0}) ⊂ co(S(O) ∪ {0}),

hence

β(O) ≤ β(co(S(O) ∪ {0})) = β(S(O)).

Since S(Uw) is relatively weakly compact and O is closed, we deduce that O is weakly compact.
The Arino-Gautier-Penot fixed point theorem [5], implies that there exists u ∈ O such that S1(u) = u. Now
u ∈ Uw since 0 ∈ Uw. Hence, ϕ(u)S(u) = u, and so S(u) = u. �

In the following Lemma, we prove that under the conditions of Lemma 3.1, if B is strongly continuous
then S also is.

Lemma 3.3. If B is strongly continuous, then

(1) S is strongly continuous, and
(2) if xn ⊂ Uw ⇀ x and S(xn) ⇀ y, then y = A(y) ·B(x) + C(y).
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Proof. (1) Let {xn;n ∈ N} be a sequence of Uw such that xn ⇀ x. Let yn = S (xn) and y = S(x). Using (3.2)
we infer that

‖S (xn)− S(x)‖ = ‖A (S (xn)) ·B (xn) + C (S (xn))−A(S(x)) ·B(x)− C(S(x))‖

≤ ‖A (S (xn))−A(S(x))‖ ‖B (xn)‖+ ‖A(S(x))‖ ‖B (xn)−B(x)‖

+ ‖C (S (xn))− C(S(x))‖

≤
∥∥B(Uw)

∥∥ΦA (‖S (xn)− S(x)‖) + ‖A(S(Uw))‖ ‖B (xn)−B(x)‖

+ ΦC (‖S (xn)− S(x)‖) .

Consequently, we get

‖S (xn)− S(x)‖ ≤
∥∥B(Uw)

∥∥ ΦA (‖S (xn)− S(x)‖)− ΦC (‖S (xn)− S(x)‖)

≤ ‖A(S(Uw))‖ ‖B (xn)−B(x)‖ .

Since B is strongly continuous, then there exists r ≥ 0 such that

lim
n
‖S(xn)− S(x)‖

= lim
n

[
‖B(Uw)‖ΦA (‖S (xn)− S(x)‖) + ΦC (‖S (xn)− S(x)‖)

]
= r.

On the other hand, since ΦA and ΦC are continuous, if r > 0 then

lim
n

[∥∥B(Uw)
∥∥ ΦA (‖S (xn)− S(x)‖) + ΦC (‖S (xn)− S(x)‖)

]
=
(∥∥B(Uw)

∥∥ ΦA(r) + ΦC(r)
)
< r.

This contradiction implies that r = 0, and consequently S (xnk
) ⇀ S(x). By uniqueness of limit, we con-

clude that y = S(x), or equivalently y = A(y) · B(x) + C(y). An application of Theorem 3.2 yields to the
desired results.
(2) Let {xn;n ∈ N} be a sequence of Uw such that xn ⇀ x and S(xn) ⇀ y. Using assertion (1),

we have S is strongly continuous. By uniqueness of limit, this implies that S(x) = y. Since S(x) =

A(S(x)) ·B(x) + C(S(x)), we conclude that y = A(y) ·B(x) + C(y). �

A combination of Lemma 3.3 together with Theorem 3.2 enables as to obtain the following result.

Corollary 3.4. Let X be a RWC-Banach algebra, Ω ⊂ X be a closed convex subset, U ⊂ Ω be a weakly open set, and
such that 0 ∈ U. Let A,C : X −→ X be two operators satisfying (H2) and B : Uw −→ X be stronly continuous
such that:

(1) B(Uw) is relatively weakly compact and S(Uw) is bounded.
(2) A and C are D-Lipschitzian with functions ΦA and ΦC respectively,
(3)

∥∥B(Uw)
∥∥ ΦA(r) + ΦC(r) < r, r > 0.

Then, either

(A1) A(x) ·B(x) + C(x) = x has a solution, or
(A2) there exist x ∈ ∂Ω(U) and λ ∈ (0, 1) such that A

(
x
λ

)
·B(x) + C

(
x
λ

)
= x

λ .

IfB satisfies Condition (H1) and is weakly sequentially continuous, thus it is strongly continuous. Then,
we obtain the following result.

Corollary 3.5. Let X be a RWC-Banach algebra, Ω ⊂ X be a closed convex subset, U ⊂ Ω be a weakly open set, and
such that 0 ∈ U. Let A,C : X −→ X be two operators satisfying (H2) and B : Uw −→ X be a weakly sequentially
continuous operator satisfying (H1) such that

(1) A and C are D-Lipschitzian with functions ΦA and ΦC respectively,
(2) B(Uw) is relatively weakly compact and S

(
Uw
)

is bounded,
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(3) ‖B(Uw)‖ΦA(r) + ΦC(r) < r, r > 0.

Then, either

(A1) A(x) ·B(x) + C(x) = x has a solution, or
(A2) there exist x ∈ ∂Ω(U) and λ ∈ (0, 1) such that A

(
x
λ

)
·B(x) + C

(
x
λ

)
= x

λ .

If A and C are Lipschitzian, we obtain the following result.

Theorem 3.6. Let X be a RWC-Banach algebra, Ω ⊂ X be a closed convex subset, U ⊂ Ω be a weakly open set,
and such that 0 ∈ U. Let A,C : Ω −→ X be nonlinear operators satisfying (H2), and B : Uw −→ X be strongly
continuous such that:

(1) A and C are Lipschitzian with constants α and γ respectively,
(2) B(Uw) is relatively weakly compact,
(3) α ‖B(Uw)‖+ γ < 1.

Then, either

(A1) there exist x ∈ Ω such that Ax ·Bx+ Cx = x, or
(A2) there exist x ∈ ∂Ω(U) and 0 < λ < 1 such that A

(
x
λ

)
·B(x) + C

(
x
λ

)
= x

λ .

Proof. Arguing as in the proof of Lemma 3.1, the operator S is well defined from Uw into Ω. Let (xn)n ⊂ Uw

be a weakly convergent subsequence to x, x ∈ Uw. Put y = S(x) and yn = S(xn) for all n ∈ N. Using the
fact that

S(x) = A(S(x)) ·B(x) + C(S(x))

together with assumption (i), we infer that

‖yn − y‖ = ‖A(yn) ·B(xn) + C(yn)−A(y) ·B(x)− C(y)‖

≤ ‖A(yn)−A(y)‖ ‖B(xn)‖+ ‖A(y)‖ ‖B(xn)−B(x)‖+ ‖C(yn)− C(y)‖

≤ ‖B(Uw)‖‖A(yn)−A(y)‖+ ‖A(Ω)‖‖B(xn)−B(x)‖+ ‖C(yn)− C(y)‖

≤ α ‖B(Uw)‖ ‖yn − y‖+ ‖A(Ω)‖ ‖B(xn)−B(x)‖+ γ ‖yn − y‖.

Thus, (
1− (α ‖B(Uw)‖+ γ)

)
‖yn − y‖ ≤ ‖A(Ω)‖ ‖B(xn)−B(x)‖,

which implies that

‖yn − y‖ ≤
‖A(Ω)‖

1− (α ‖B(Uw)‖+ γ)
‖B(xn)−B(x)‖.

Hence, yn −→ y, by using the fact that B is strongly continuous, and in particular, S is weakly sequentially
continuous. On the other hand, we can claim that S(Uw) is bounded. In fact, since

S(x) = A(S(x)) ·B(x) + C(S(x)), for all x ∈ Uw,

then
‖S(x)− S(x0)‖ ≤ ‖A(S(x)) ·B(x)−A(S(x0)) ·B(x0)‖+ ‖C(S(x))− C(S(x0))‖

≤ ‖A(S(x)) ·B(x)−A(S(x0)) ·B(x)‖

+ ‖A(S(x0)) ·B(x)−A(S(x0)) ·B(x0)‖+ ‖C(S(x))− C(S(x0))‖

≤ ‖B(Uw)‖α‖S(x)− S(x0)‖+ ‖A(S(x0))‖‖B(x)−B(x0)‖

+ γ‖S(x)− S(x0)‖.

Consequently,

‖S(x)− S(x0)‖ ≤ ‖A(S(x0))‖‖B(x)−B(x0)‖
(1− ‖B(Uw)‖α− γ)

,
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which implies that

‖S(x)‖ ≤ ‖S(x)− S(x0)‖+ ‖S(x0)‖ ≤ ‖A(S(x0))‖‖B(x)−B(x0)‖
(1− ‖B(Uw)‖α− γ)

+ ‖S(x0)‖.

Hence,

‖S(Uw)‖ ≤ 2‖A(S(x0))‖‖B(Uw)‖
(1− ‖B(Uw)‖α− γ)

+ ‖S(x0)‖.

Now proceeding essentially as in the proof of Theorem 3.2, we can obtain the desired result. �

Remark 3.7. Theorem 3.6 extend Corollary 2.4 in [27] to RWC-Banach algebras and relaxing the sequential
weak continuity on A and C by assuming that A and C satisfy only Condition (H2).

Remark 3.8. If X is a Dunford-Pettis space, the result of the above theorem remains true if we replace the
assumption (2) by "B is a weakly compact linear operator on X."

Theorem 3.9. Let X be a RWC-Banach algebra, Ω ⊂ X be a closed convex subset, U ⊂ Ω be a weakly open set, and
such that 0 ∈ U. Let A,C : X −→ X and let B : Uw −→ X be nonlinear operators satisfying Condition (H2) such
that:

(1) A and C are D-Lipschitzian with D-functions ΦA and ΦC respectively,
(2) B(Uw) is bounded and ‖B(Uw)‖ΦA(r) + ΦC(r) < r, r > 0,

(3) S : Uw → X is condensing with respect to the measure β, and S(Uw) is bounded,
(4) If {xn;n ∈ N} ⊂ Uw ⇀ x and S(xn) ⇀ y, then y = A(y) ·B(x) + C(y).

Then, either

(A1) A(x) ·B(x) + C(x) = x has a solution, or
(A2) there exist x ∈ ∂Ω(U) and λ ∈ (0, 1) such that A

(
x
λ

)
·B(x) + C

(
x
λ

)
= x

λ .

Proof. Proceeding as in Theorem 3.2, and suppose that (A2) does not occur and S has no fixed point in
∂Ω(U) (otherwise, we are finished since (A1) occurs). Then for all x ∈ ∂Ω(U) and for all λ ∈ [0, 1], we have

λS(x) 6= x.

Let
M =

{
x ∈ Uw, λS(x) = x for some λ ∈ [0, 1]

}
.

It is clear that M is nonempty and M ∩ ∂Ω(U) = ∅. Using Inclusion

M ⊂ co(S(M) ∪ {0}),

we get
β(M) ≤ β (co(S(M) ∪ {0})) = β (S(M)) .

Taking into account the fact that S is condensing, by a contradiction argument we can obtain that β(M) = 0,

or equivalently M is relatively weakly compact. We next prove that M is weakly closed. Let x ∈Mw. Since
Mw is weakly compact the Eberlein-Smulian Theorem ensures the existence of a sequence (xn)n such that
xn ⇀ x. Notice that for each integer n ∈ N, there exists λn ∈ [0, 1] such that xn = λnS(xn). By extracting
a subsequence, if necessary, we assume that (λn)n converges to some λ ∈ [0, 1]. Without loss of generality,
we may suppose that λ 6= 0. Otherwise since the set {S(xn), n ∈ N} is bounded and xn = λnS(xn) ⇀ x, we
infer that x = 0, which implies that λS(x) = x, and so x ∈M. Now, since λ > 0, we infer that

S(xn) ⇀
x

λ
.

From assumption (4), we get
x

λ
= A(

x

λ
) ·B(x) + C(

x

λ
),



Pan-Amer. J. Math. 3 (2024), 12 10

or equivalently λS(x) = x, and so x ∈M.

Keeping in mind that M ∩ ∂Ω(U) = ∅, M is weakly compact, and ∂Ω(U) is weakly closed since X endowed
with the weak topology is a Tychonoff space, the Urysohn theorem for the weak topology [22] guarantees
the existence of a weakly continuous mapping ϕ : X → [0, 1] such that

ϕ(x) =

{
1, if x ∈M ;

0, if x ∈ ∂Ω(U).

We define the mapping S1 : X → X by

S1(x) =

{
ϕ(x)S(x), if x ∈ Uw;

0, if x ∈ X \ Uw.

Furthermore, we readily check that

S1(X) ⊂ co(S(Uw) ∪ {0}).(3.2)

LetC = co(S(Uw)∪{0}).Clearly, C is a convex closed subset ofX, and S1(C) ⊂ C. Since S(Uw) is bounded,
so is S(C). We consider the set

L = {V ⊂ C such that co(V ) ⊂ V, 0 ∈ V, T1(V ) ⊂ V } .

The set L is nonempty since C ∈ L. Set O =
⋂
V ∈L V. Clearly, O is a closed convex subset of C, and

S1(O) ⊂ O. This implies that

co(S1(O) ∪ {0}) ⊂ O,

from which we get

S1(co(S1(O) ∪ {0})) ⊂ S1(O) ⊂ co(S1(O) ∪ {0}).

Then, we get

co(S1(O) ∪ {0}) ∈ L,

and consequently

O ⊂ co(S1(O) ∪ {0}).

This discussion enables to obtain

O = co(S1(O) ∪ {0}) ⊂ co(S(O) ∪ {0}).

Arguing as above, we can infer that O is weakly compact.
Now, we claim that S1 is sequentially weakly continuous on O. It is enough to prove the sequential weak
continuity of S. Indeed, let {xn, n ∈ N} be a sequence of O such that xn ⇀ x. Since B satisfies the condition
(H2), then {B(xn), n ∈ N} has a weakly convergent subsequence, and consequently it is relatively weakly
compact, in view of Eberlian-Sumilian’s Theorem. Using the inclusion

{S(xn), n ∈ N} ⊂ A({S(xn), n ∈ N}) · {B(xn), n ∈ N}+ C({S(xn), n ∈ N})

and the fact that X is a RWC-Banach algebra, we get

β ({S(xn), n ∈ N}) ≤
∥∥B(Uw)

∥∥ β (A ({S(xn), n ∈ N})) + β (C ({S(xn), n ∈ N}))

≤
∥∥B(Uw)

∥∥ΦA (β ({S(xn), n ∈ N})) + ΦC (β ({S(xn), n ∈ N})) .

Using a contradiction argument, we obtain that {S(xn), n ∈ N} is relatively weakly compact, and so it has
a subsequence, say (S (xnk

))k , converges weakly to some y ∈ X. By hypothesis, we have y = A(y) ·B(x) +

C(y), or equivalently y = S(x). Now, we will prove that the whole sequence {S(xn), n ∈ N} converges
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weakly to S(x). Otherwise, there exists a subsequence
(
xnj

)
j

of {xn, n ∈ N} and a weak neighborhood V

of S(x) such that

S
(
xnj

)
6∈ V, for all j ∈ N.

Proceeding as above, we conclude the existence of a subsequence
(
xnjk

)
k

such that

S
(
xnjk

)
⇀ S(x),

which is a contradiction and consequently the claim is proved.
The Arino-Gautier-Penot fixed point theorem [5], implies that there exists u ∈ O such that S1(u) = u. Now
u ∈ Uw since 0 ∈ Uw. Consequently, ϕ(u)S(u) = u, and so S(u) = u. �

A combination of Theorem 3.9 with Lemma 3.3 yields to the following result.

Corollary 3.10. Let X be a RWC-Banach algebra, Ω ⊂ X be a closed convex subset, U ⊂ Ω be a weakly open set,
and such that 0 ∈ U. Let A,C : X −→ X be nonlinear operators satisfying Condition (H2) and B : Uw −→ X be a
strongly continuous operator such that:

(1) A and C are D-Lipschitzian with D-functions ΦA and ΦC respectively,
(2) B(Uw) is bounded and

∥∥B(Uw)
∥∥ ΦA(r) + ΦC(r) < r, r > 0.

(3) S : Uw → X is condensing with respect to the measure β, and S(Uw) is bounded.

Then, either

(A1) A(x) ·B(x) + C(x) = x has a solution, or
(A2) there exist x ∈ ∂Ω(U) and λ ∈ (0, 1) such that A

(
x
λ

)
·B(x) + C

(
x
λ

)
= x

λ .

Remark 3.11. (1) Arguing as in the proof of Theorem 3.6, if A and C are Lipschizian and B(Uw) is
bounded. Then S(Uw) is so. Therefore, taking into account the fact that every Lipschitzian with
constant α ≥ 0 is a D-Lipschizian mapping with D-function ϕ(·) where ϕ(t) = αt, t ≥ 0, then
Corollary 3.12 extend Theorem 2.2 in [27] to RWC-Banach algebras and relaxing the sequential weak
continuity on A and C, by assuming only that A and C satisfy only Condition (H2).

(2) Corollary 3.12 extend Theorem 3.1 in [2] to RWC-Banach algebras, and relaxing the sequential weak
continuity of A and C, by assuming only that A and C satisfy only Condition (H2). In contrast to
Theorem 3.1 in [2], the operator A in our results needs not be regular.

(3) When C ≡ x0 for some x0 ∈ X, Corollary 3.12 extend Theorem 3.2 in [2] to RWC-Banach algebras,
and relaxing the sequential weak continuity ofA and C, by assuming only thatA and C satisfy only
Condition (H2). In contrast to Theorem 3.2 in [2], the operator A in our results needs not be regular.

Corollary 3.12. Let X be a RWC-Banach algebra, Ω ⊂ X be a closed and convex subset, U ⊂ Ω be a weakly open
set, and such that 0 ∈ U. Let A,C : X −→ X be nonlinear operators satisfying Condition (H2) and B : Uw −→ X

be a strongly continuous operator such that:

(1) A and C are D-Lipschitzian with functions ΦA and ΦC respectively,
(2) B is condensing and S(Uw) is bounded,
(3) S(Uw) is bounded, and

∥∥B(Uw)
∥∥ ΦA(r) + ΦC(r) < (1− δ) r, r > 0, for some δ ≥ ‖A(S(Uw))‖.

Then, either

(A1) A(x) ·B(x) + C(x) = x has a solution, or
(A2) there exist x ∈ ∂Ω(U) and λ ∈ (0, 1) such that A

(
x
λ

)
·B(x) + C

(
x
λ

)
= x

λ .

Proof. According to Theorem 3.9, it is enough to claim that S define a condensing mapping on Uw. Indeed,
let M be a bounded subset of Uw with β(M) > 0. Taking into account that X is a RWC-Banach algebra, in
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view of Lemma 2.12, it follows from Inclusion

S(M) ⊂ A(S(M)) ·B(M) + C(S(M))

that

β (S(M)) ≤ ‖B(M)‖ β (A (S(M))) + ‖A(S(Uw)‖β(B(M)) + β (C (S(M)))

≤
∥∥B(Uw)

∥∥ ΦA (β (S(M))) + ‖A(S(Uw)‖β(M) + ΦC (β (S(M))) .

In view of our assumptions, we get

δβ(S(M)) < ‖A(S(Uw)‖β(M) ≤ δβ(M),

which achieves our claim and completes the proof. �

Remark 3.13. Corollary 3.12 extends Theorem 3.5 in [2] to RWC-Banach algebras. In contrast to Theorem 3.5

in [2], the operator A in our results needs not be regular nor weakly compact and B in our results needs not
be weakly compact.

4. APPLICATION TO CHANDRASEKHAR INTEGRAL EQUATIONS

Let (E , ‖ · ‖) be a Banach algebra satisfying the condition (P) and X := C(J, E) be the Banach algebra of
all continuous functions from J into E endowed with the sup-norm ‖ · ‖∞ defined by

‖f‖∞ = sup
t∈J
‖f(t)‖, f ∈ X .

Consider the following Chandrasekhar integral equation in X :

x(t) = (Ξ1x)(t)

[(
γ(t) +

∫ σ(t)

0

t

t+ s
κ(s, x(µ(s)))ds

)
· u

]
+ (Ξ2x)(t),(4.1)

for t ∈ J, where J := [0, 1], u is a fixed vector of E such that u 6= 0 and x = x(t) is an unknown function.
The problem (4.1) will be studied under the following conditions:

(A1) Ξ1,Ξ2 : X −→ X are Lipschitzian with Lipschitz constants α1 and α2, resp., and satisfy Condition
(H2),

(A2) the functions σ, µ : J −→ J and γ : J −→ R are continuous,
(A3) the mapping κ : J ×E −→ R is weakly sequentially continuous with respect to the second variable,
(A4) there exists r > 0 such that |κ(s, x)| ≤ m(s) ∈ L1(J) for all s, x ∈ J × E such that ‖x‖∞ ≤ r, and

c =

∫ 1

0

m(s)

t+ s
ds.

Define the operators A,C : E → E and B : Br → E by:
(Ax)(t) = (Ξ1x)(t)

(Bx)(t) =

(
γ(t) +

∫ σ(t)

0

t

t+ s
κ(s, x(µ(s)) ds

)
· u

(Cx)(t) = (Ξ2x)(t).

Theorem 4.1. Assume that (A1)− (A4) hold. Let Ω = Br and U be a weakly open subset of Ω such that 0 ∈ U. In
addition, suppose that

λA
(x
λ

)
·B(x) + λC

(x
λ

)
6= x

for all λ ∈ (0, 1) and x ∈ ∂Ω(U). Then the Chandrasekhar Integral Equation (4.1) has a solution in Ω.
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Proof. In view of Theorem 2.2 in [13], X is a RWC-Banach algebra. We shall prove that A,B and C satisfy
all conditions of Corollary 3.4. For this purpose, we need three steps:
(i) From assumption (A1), it follows that A and C are Lipschitzian with Lipschitz constants α1 and α2, re-
spectively.
(ii) The operator B is strongly continuous. Indeed, let {xn}∞n=1 ⊂ Uw such that xn ⇀ x ∈ Uw. By Do-
brakov’s theorem we infer that

xn(t) ⇀ x(t), for each t ∈ J.
Let t ∈ J, we have

(4.2) ‖Bxn(t)−Bx(t)‖ ≤ ‖u‖
∫ 1

0

t

t+ s
|κ(s, xn(s))− κ(s, x(s))| ds.

Since x 7→ κ(t, x) is sequentially weakly continuous, then

κ(s, xn(s))→ κ(s, x(s)), for all s ∈ J.

Using the dominated convergence theorem and taking the supremum over t, we get

B(xn)→ B(x).

(iii) Now we prove that B(Uw) is relatively weakly compact. By definition,

B(Uw) := {B(x), x ∈ Uw}.

For all t ∈ J, we have
B(Uw)(t) = {(B(x))(t), x ∈ Uw}.

We claim that B(Uw)(t) is sequentially relatively weakly compact in E . To see this, let {xn, n ∈ N} be any
sequence in Uw, we have (B(xn))(t) = rn(t) · u, where

rn(t) =

(
γ(t) +

∫ σ(t)

0

t

t+ s
κ(s, xn(µ(s)) ds

)
.

It is clear that {rn(t), n ∈ N} is a bounded, real sequence, so, by the Bolzano Weirstrass Theorem, there is a
renamed subsequence such that

rn(t) −→ r(t) in R,

which implies
rn(t) · u −→ r(t) · u in R,

and, consequently,
(Bxn)(t) −→ r(t) · u in E .

Hence, we conclude that B(Uw)(t) is sequentially relatively compact in E , then B(Uw)(t) is sequentially
relatively weakly compact. Now, we have to prove that B(Uw) is weakly equicontinuous on J. Let ε > 0,

x ∈ Uw, x∗ ∈ E∗, t, t′ ∈ J such that |t− t′| ≤ ε.

‖x∗(B(x)(t)−B(x)(t′))‖ ≤ |x∗(u)|(|γ(t)− γ(t′)|)

+ |x∗(u)|

∣∣∣∣∣
∫ σ(t)

0

t

t+ s
κ(s, x(s))ds−

∫ σ(t)

0

t

t+ s
κ(s, x(s))ds

∣∣∣∣∣
≤ |x∗(u)|(|γ(t)− γ(t′)|)

+ |x∗(u)|

∣∣∣∣∣
∫ σ(t)

σ(t′)

t

t+ s
κ(s, x(s))ds+

∫ σ(t′)

0

t

t+ s
− t′

t′ + s
κ(s, x(s))ds

∣∣∣∣∣
≤ |x∗(u)|(|γ(t)− γ(t′)|)
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+ |x∗(u)|

(∫ σ(t)

σ(t′)

t

t+ s
|κ(s, x(s))|ds+

∫ σ(t′)

0

∣∣∣∣ t

t+ s
− t′

t′ + s

∣∣∣∣ |m(s)|ds

)
≤ |x∗(u)|(|γ(t)− γ(t′)|)

+ |x∗(u)|

(∫ σ(t)

σ(t′)

t

t+ s
|κ(s, x(s))|ds+ |t− t′|

∫ 1

0

|m(s)|
t+ s

ds

)
≤ (l1(γ, ε) + l2(σ, ε) + l3(m, ε)) |x∗(u)|,

where

l1(γ, ε) := sup {|γ(t)− γ(t′)|, t, t′ ∈ J, |t− t′| ≤ ε} ,

l2(σ, ε) := sup

{∫ σ(t)

σ(t′)

t

t+ s
|κ(s, x(s))|ds, t, t′ ∈ J, |t− t′| ≤ ε, x ∈ Uw

}
,

and

l3(m, ε) := sup

{
|t− t′|

∫ 1

0

|m(s)|
t+ s

ds, t, t′ ∈ J, |t− t′| ≤ ε
}
.

Taking into account our assumptions and in view of the uniform continuity of the functions γ and σ, it
follows that l1(γ, ε) −→ 0, l2(σ, ε) −→ 0 and l3(m, ε) −→ 0 when ε −→ 0. Hence, the application of the
Arzelà-Ascoli Theorem leads to have that B(Uw) is sequentially relatively weakly compact in X . Now, the
Eberlein-Smulian Theorem yields that B(Uw) is relatively weakly compact. On the other hand, in view of
assertion (1) in Remark 3.11, we deduce that S(Uw) is bounded.

The desired conclusion follows from a direct application of Corollary 3.4. The proof is complete. �

REFERENCES

[1] R.P. Agarwal, N. Hussain, M.A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral
equations. Abstr. Appl. Anal. 2012 (2012), 245872. https://doi.org/10.1155/2012/245872.

[2] A.A. Ali, A. Ben Amar, Measures of weak noncompactness, nonlinear Leray-Schauder alternatives in Banach algebras satisfying
condition (P) and an application. Quaest. Math. 39 (2016), 319–340. https://doi.org/10.2989/16073606.2015.1070378.

[3] T. Aoki, Calcul exponentiel des opérateurs microdifferentiels d’ordre infini. I, Ann. Inst. Fourier (Grenoble) 33 (1983), 227–250.
https://doi.org/10.5802/aif.947.

[4] I.K. Argyros, Quadratic equations and applications to Chandrasekhars and related equations. Bull. Austral. Math. Soc. 32 (1985),
275–292. https://doi.org/10.1017/s0004972700009953.

[5] O. Arino, S. Gautier, J.P. Penot, A fixed point theorem for sequentially continuous mappings with applications to ordinary differ-
ential equations. Funkc. Ekvacioj 27 (1984), 273–279. https://doi.org/10.2989/16073606.2015.1070378.
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