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LYAPUNOV EXPONENTIAL STABILITY OF THE SHALLOW WATER EQUATIONS IN
TRAPEZOIDAL CHANNEL

SEYDOU SORE1,∗, BABACAR MBAYE NDIAYE2, AND YACOUBA SIMPORE1

ABSTRACT. This paper solves the problem of the exponential stability in L2-norm of Saint-Venant equations lin-
ear hyperbolic system for a non-prismatic and non-rectangular channel. We consider the general case of systems
containing not only both arbitrary friction and spatially varying slopes but also spatially varying channel dimen-
sions (width and lateral slope), leading to non-uniform stationary states. An explicit quadratic Lyapunov function
is constructed as a weighting function for steady-state small perturbations. We then show that local exponential
stability of Saint-Venant equations linear system for a trapezoidal channel can be guaranteed in the L2-norm by
an appropriate choice of boundary feedback control. Finally, we give explicitly that control.

1. INTRODUCTION

The one-dimensional form of Saint-Venant’s equation is one of the most widely used models in engineer-
ing for simulating shallow water flow. They are originally derived from Barré de Saint-Venant [1], [2], [3]
in 1871. Despite their apparent simplicity, they capture a wealth of physical behavior that makes them
fundamental tools for practical applications, notably regulating canals for agricultural management and
regulating navigable rivers. Among others, the problem of developing control instruments for regulating
water level and flow in open hydraulic systems has long been studied [26], [16], [20], [26].

The Saint-Venant equations constitute a nonlinear 2× 2 1-D hyperbolic system. The stabilization of such
systems by proportional or output boundary control have been studied for decades, one can cite for instance
the pioneering work of Li and Greenberg [21] for a system of two homogeneous equations considered in
the framework of the C1 norm . This was later generalized by [16], [28], [22] to general nonhomogeneous
systems and [6] in the framework of the H2 norm. To our knowledge, the first result concerning the bound-
ary stabilization of the Saint-Venant equations in themselves goes back to 1999 with [10] for the stability of
the homogeneous linearizedsystem and its extension to the nonlinear homogeneous system in [11] , using
proportional boundary conditions. Later, in 2008, using a semigroup approach and the method of the char-
acteristics, the stabilization of the nonlinear homogeneous equations was achieved for sufficiently small
friction and slope [20], [29] . The same type of result was shown in [9] using a Lyapunov approach while [8]
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dealt with the inhomogeneous Saint-Venant equations in the particular case where the steady-states are uni-
form. It is essential to note that Lyapunov approach, the quadratic Lyapunov function, is another method
introduced in 1999 by Coron et al. [11] that guarantee the exponential stability of linear and nonlinear homo-
geneous hyperbolic systems when the boundary conditions satisfy an appropriate sufficient dissipativity
property. Such boundary conditions are the so-called static boundary feedback control and lead to feed-
backs that only depend on the measures at the boundaries. Other results exists using different boundary
conditions for instance PI controls ( [6], Chapter 8), [19], [5], [32], [31], [23] , full-state feedbacks resulting
of a backstepping approach [15] (see [18], [17] for its application on variant systems based on the Saint-
Venant equations) or stabilization by internal control [14] . In 2017, the Lyaponov method succeeded in
stabilizing the inhomogeneous Saint-Venant equations for arbitrarily large friction but without slope [7],
and only recently for every cross-sectional profile and every slope or friction [25], [24]. However, the stabil-
ity of the Saint-Venant equations for trapezoidal channels has rarely been studied and described in detail,
although it is mathematically very interesting and necessary for a realistic description of flow behavior.
This corresponds to a variety of physical situations, such as in the case of water flow, where changes in
channel dimensions, such as bottom width and side inclination. In this case of non-rectangular and non-
prismatic channels, channel dimensions such as bottom width andside slope are assumedto vary linearly
along length, making the approach more complicated. It is important to note that in engineering, the trape-
zoidal channel is preferred because it offers less resistance to flow and is easier to construct than the circular
channel which the perfect channel.

Our contribution in this paper is that we successfully construct an explicit Lyapunov control function to
control the local exponential stability in the L2-norm of the linear Saint-Venant equations with static bound-
ary feedbacks, to analyze the situation not only in the case where the friction and the slope is arbitrary, but
also the dimensions of the channel. This enables us to design robust static feedback controllers to ensure
exponential stability of the nonlinear system steady states. In particular, we deal with the case where the
slope, width of the bottom and the lateral slope may vary with respect to the space variable . This is all
the more important as not only is the slope likely to vary in a river but also the width of its bottom and
the lateral slope, even sometimes over short distances. In the case where the width of the bottom is taken
constant and the lateral slope zero we recover the case of the rectangular channel. This particular case of
rectangular channel was solved in [12].

The organization of the paper is as follows. In Section 2, we give a description of the nonlinear Saint-
Venant equations. In Section 3, the steady-state and the linearisation of the nonlinear system is firstly
studied for a trapezoidal section. We then stady the exponential stability of the linearized system by con-
structing a quadratic Lyapunov function that enables us to get the exponential stability of the system by
properly choosing the boundary feedback controls.

2. THE SAINT-VENANT MODEL

The most general version of 1D Saint-Venant equations with arbitrary varying slope, section profile and
friction model is given by the following system [1] :

(2.1)


∂tA+ ∂x(AV ) = 0,

∂t(AV ) + ∂x(V 2A) + gA∂xH(A, x) = gA
(
S0 − Sf (A, V, x)

)
,

where A is the cross-sectional area of the water in the channel, V is the velocity, H(A, x) is the water
depth, g is the gravity acceleration, S0 is the channel slope, Sf is the friction slope, it is usually defined
by semi-empirical formulae proposed by hydraulic engineers in the late nineteenth or early twentieth
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centuries. In general, it only depends on the fluid quantities. One of the most popular is Sf = k
V 2

A
, where

k is a constant friction coefficient.

For a trapezoidal section, the area is given by

(2.2) A(A, x) = bH +mH2,

where b = b(x) is the channel width at the bottom and m = m(x) is the inverse slope of the channel walls.
Given that H > 0 and m± 0, we deduce the following relations from (2.2)

(2.3) H(A, x) =

√
b2 + 4mA− b

2m

Using (2.3), the system (2.1) can now be written as

(2.4)


∂tA+ ∂xAV = 0,

∂tV + V ∂xV +
g√

b2 + 4mA
∂xA = g(S0 − Sf ),

3. EXPONENTIAL STABILITY FOR THE L2-NORM IN A TRAPEZOIDAL CHANNEL

3.1. Steady-state and linearisation. A steady-state is a constant state A∗, V ∗ which satisfies the relation

(3.1)


A∗V ∗ = Q∗,

V ∗∂xV
∗ +

g√
b∗2 + 4m∗A∗

∂xA
∗ = g(S0 − k

V ∗2

A∗ ),

where Q∗ ≥ 0 is any given constant set point and corresponds to the flow rate.

Remark 3.1. We are interested in physical stationary states therefore we suppose that A∗ > 0 and V ∗ > 0.
Furthermore, We are interested on the steep slope regime as it is the most challenging situation to stabilize.
In this regime, A∗ tends to increase while V ∗ decreases and consequently the system moves away from the

limit of the fluvial regime defined by the critical point where
gA∗

√
b∗2 + 4m∗A∗

= V ∗2, in this case, we have

(3.2) S0 > k
V ∗2

A∗

Using (3.1), we get that V ∗ satisfies

(3.3) ∂xV
∗ =

gV ∗(S0 − k
V ∗2

A∗ )

V ∗2 − gA∗
√
b∗2 + 4m∗A∗

Observe that the steady-states are therefore not necessarily uniform. We also suppose that the flow is in
the fluvial regime. In this case the Froude number is strictly less than 1 (see [27] for instance) and the
system needs to have a prescribed boundary condition at x = 0 and a boundary condition at x = L to

be well-posed. Since for each initial condition
(
A∗(0), V ∗(0)

)
satisfying

gA∗(0)√
b∗2(0) + 4m∗(0)A∗(0)

> V ∗2(0),

there exists a unique maximal solution to (3.1), and this maximal solution exists as soon as the following
condition is satisfied

(3.4)
gA∗

√
b∗2 + 4m∗A∗

> V ∗2.
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For the linearization of the system, we define the perturbation functions a and v as

(3.5) a(t, x) = A(t, x)−A∗(x), and v(t, x) = V (t, x)− V ∗(x).

Using (3.5) in (2.4) and taking into account the relations (3.1) and (2.3) we obtain the linearization of the
system (2.4) around the steady state as follows:

(3.6)

(
a

v

)
t

+

 V ∗ A∗

g√
b∗2 + 4m∗A∗

V ∗

(a
v

)
x

+

V ∗
x A∗

x

f∗w V ∗
x + 2gk

V ∗

A∗

(a
v

)
= 0,

where f∗w is defined by

(3.7) f∗w = gk
V ∗2

A∗2
+

2m∗gA∗V ∗2(S0 − k
V ∗2

A∗ )(
V ∗2
√
b∗2 + 4m∗A∗ − gA∗

)(
b∗2 + 4m∗A∗

) ,
3.2. Exponential stability of the linearized system. In this section, we study the exponential stability of
the linearized system (3.6) about a steady-state (A∗, V ∗)T for the L2-norm.

We assume that both ends of the channel are equipped with hydraulic controls (gates, pumps, mobile
spillways, etc.) that allow to assign the values of the flow-rate. On-line measurements of the water levels
at both ends h(t, 0) and h(t, L) are assumed to be available for feedback control since the cross-sectional
area of the water in the channel depends on the water depth. Obviously, instead of the flow-rates, we may
as well consider the velocities v(t, 0) and v(t, L) as being the control actions. Therefore we introduce the
following boundary conditions: the following boundary conditions:

(3.8) v(t, 0) = k0a(t, 0), v(t, L) = k1a(t, L),

Conditions (3.8) are linear feedback static control laws with the tuning parameters k0 and k1.
The initial condition is given as follows

(3.9) a(0, x) = a0(x), v(0, x) = v0(x),

where (a0, v0)T ∈ L2((0, L);R2). The Cauchy problem (3.6), (3.8) and (3.9) is well-posed (see [6], Appendix
A). Note that the exponential stability of the linearized system is now a problem of null-stabilization for a
and v.
The main result we establish is the following.

Theorem 3.2. The linear Saint-Venant system in trapezoidal channel (3.6), (3.8) and (3.9) is exponentially stable for
the L2-norm provided that the boundary conditions satisfy

(3.10) k0 ∈
(

−g
V ∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)

,−V
∗(0)

A∗(0)

)
,

and

(3.11) k1 ∈ R\
[

−g
V ∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)

,−V
∗(L)

A∗(L)

]
.

In order to prove Theorem 1, we use a direct Lyapunov approach where the time derivative of the Lya-
punov function can be madevstrictly negative definite by an appropriate choice of thevboundary condi-
tions, thus we introduce the following lemma.



Pan-Amer. J. Math. 3 (2024), 9 5

Lemma 3.3. For the linearized Saint-Venant system (3.6), (3.8) and (3.9), if the boundary conditions satisfy

k0 ∈
(

−g
V ∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)

,−V
∗(0)

A∗(0)

)
,

and

k1 ∈ R\
[

−g
V ∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)

,−V
∗(L)

A∗(L)

]
Then there are constants α1 > 0, α > 0 and g1 ∈ C1

(
[0, L]→ (0,+∞)

)
, g2 ∈ C1

(
[0, L]→ (0,+∞)

)
such that the

following control Lyapunov function candidate

(3.12) V (a, v) =

∫ L

0

(
g1 + g2

)(
g

A∗
√
b∗2 + 4m∗A∗

h2 + 2
g1 − g2

g1 + g2

√
g

A∗
√
b∗2 + 4m∗A∗

vh+ v2

)
dx

verifies:

(3.13) V (a, v) ≥ α1

(
‖a‖2L2(0,L)+‖v‖

2
L2(0,L)

)
for any (a, v) ∈ L2((0, L);R2), where L2(0, L) denotes L2((0, L);R). If in addition, (a, v)T is a solution of the
system (3.6), (3.8) and (3.9), we have

(3.14)
d

dt
(V (a(t, ·), v(t, ·))) ≤ −αV (a(t, ·), v(t, ·)).

Proof. Let us denote

M1(w∗) =

 V ∗ A∗

g√
b∗2 + 4m∗A∗

V ∗

 .

Under the subcritical condition (3.4), the matrix M1(w∗) has two real distinct eigenvalues λ1 and −λ2

with

(3.15) λ1(x) =

√
gA∗

√
b∗2 + 4m∗A∗

+ V ∗(x) > 0, λ2(x) =

√
gA∗

√
b∗2 + 4m∗A∗

− V ∗(x) > 0.

We define the characteristic coordinates as follows

(3.16) ξ1 = v + h

√
g

A∗
√
b∗2 + 4m∗A∗

and ξ2 = v − h
√

g

A∗
√
b∗2 + 4m∗A∗

,

with the inverse coordinate transformation

h =
ξ1 − ξ2

2

√
A∗√b∗2 + 4m∗A∗

g
and v =

ξ1 + ξ2
2

.

With these definitions and notations, the linearized Saint-Venant equations (3.6) are written in characteristic
form:

(3.17)

(
ξ1

ξ2

)
t

+

(
λ1 0

0 −λ2

)(
ξ1

ξ2

)
x

−

(
γ1 δ1

γ2 δ2

)(
ξ1

ξ2

)
= 0,



Pan-Amer. J. Math. 3 (2024), 9 6

where

γ1(x) = −

(
S0 − k

V ∗2

A∗

)√
gA∗

(
b∗2 + 4m∗A∗

)
2

(
V ∗
√√

b∗2 + 4m∗A∗ +
√
gA∗

) ,

δ1(x) =

(
S0 − k

V ∗2

A∗

)√
gA∗

(
b∗2 + 4m∗A∗

)
2

(
V ∗
√√

b∗2 + 4m∗A∗ −
√
gA∗

) ,

γ2(x) = −1

2

[(
2gA∗

V ∗ −
√
gA∗

√
b∗2 + 4m∗A∗

)
k
V ∗2

A∗2

+

gV ∗
(
b∗2 + 4m∗A∗

)3/4

− 2m∗A∗V ∗2
√
gA∗(

V ∗2
√
b∗2 + 4m∗A∗ − gA∗

)(
b∗2 + 4m∗A∗

)3/4

(
S0 − k

V ∗2

A∗

)]
,

δ2(x) = −1

2

[(
2gA∗

V ∗ +

√
gA∗

√
b∗2 + 4m∗A∗

)
k
V ∗2

A∗2

+

gV ∗
(
b∗2 + 4m∗A∗

)3/4

+ 2m∗A∗V ∗2
√
gA∗(

V ∗2
√
b∗2 + 4m∗A∗ − gA∗

)(
b∗2 + 4m∗A∗

)3/4

(
S0 − k

V ∗2

A∗

)]
.

For the flow in the steep slope fluvial regime we notice that γ1 and δ2 are negative.

From (3.16) and (3.8), we obtain the following boundary conditions for system (3.17)

(3.18)

(
ξ1(t, 0)

ξ2(t, L)

)
=

(
0 m0

m1 0

)
︸ ︷︷ ︸

K

(
ξ1(t, L)

ξ2(t, 0)

)
,

where

(3.19) m0 =
k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0) +

√
g

k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)−√g

, m1 =
k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L) +

√
g

k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)−√g

Let us denote

ξ =

(
ξ1

ξ2

)
, Λ =

(
λ1 0

0 −λ2

)
, M =

(
γ1 δ1

γ2 δ2

)
and |Λ| =

(
λ1 0

0 λ2

)
,

and introduce the following candidate Lyapunov function :

(3.20) V =

∫ L

0

ξTP (x)ξdx.

The weighting matrix P (x) is defined as follows:
P (x)

∆
= diag

{
P1e

−τx, P2e
τx
}

, with τ > 0 and P1, P2 ∈ C1
(
[0, L]→ (0,+∞)

)
two real positive functions.
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The time derivative of V along the solutions of (3.20) is

V̇ =

∫ L

0

(
∂tξ

TP (x)ξ + ξTP (x)∂tξ

)
dx

=

∫ L

0

(
− ∂xξTΛP (x)ξ − ξTP (x)Λ∂xξ + ξTMTP (x)ξ + ξTP (x)Mξ

)
dx.

(3.21)

Then, integrating by parts, we obtain:

V̇ = −
[
ξTΛP (x)ξ

]L
0

+

∫ L

0

ξT
(
− τ |Λ|P (x) +MTP (x) + P (x)M

)
ξdx

In order to complete the proof, we have to find a matrix P = diag
{
P1, P2

}
such that ξT

(
MT (0)P (0) +

P (0)M(0)
)
ξ is a negative semi definite quadratic form and to find the range of admissible values of the

tuning k0 and k1 such that the boundary conditions are dissipative (ρ(K) < 1 where ρ(K) = ‖∆K∆−1‖ is
the norm for the matrix K and ∆ = diag

{√
P1λ1,

√
P2λ2

}
) (see [13]).

For the matrix P, a straightforward choice is

P1 = λ1(x) > 0, P2 = λ2(x) > 0,

where λ1(x) and λ2(x) are given by (3.15). Furthermore by using (3.2) and (3.4) we obtain

(3.22) γ1 < 0, δ2 < 0 and δ2γ1λ1λ2 >
(
δ1λ1 + γ2λ2

)2
,

since then the quadratic form is

(3.23) ξT
(
MTP + PM

)
ξ = −2|γ1|λ1

[
ξ1 +

(δ1λ1 + γ2λ2

2γ1λ1

)
ξ2

]2

−
4δ2γ1λ1λ2 −

(
δ1λ1 + γ2λ2

)2
2|γ1|λ1

ξ2
2 ≤ 0.

Since ξT
(
MTP + PM

)
ξ is a negative semi definite quadratic form and

(3.24) ∆K∆−1 =

 0 m0
λ1(0)

λ2(0)

m1
λ2(L)

λ1(L)
0

 .

Then, the dissipativity condition ρ(K) < 1 is a matter to be selected m0 and m1 such that

m2
0

(
λ1(0)

λ2(0)

)2

< 1 and m2
1

(
λ2(L)

λ1(L)

)2

< 1

• m2
0

λ2
1(0)

λ2
2(0)

< 1⇒
(
m0

λ1(0)

λ2(0)
− 1

)(
m0

λ1(0)

λ2(0)
+ 1

)
< 0

⇒
(k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0) +

√
g

k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)−√g

×

√
gA∗(0)√

b∗2(0) + 4m∗(0)A∗(0)
+ V ∗(0)√

gA∗(0)√
b∗2(0) + 4m∗(0)A∗(0)

− V ∗(0)

− 1

)

(k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0) +

√
g

k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)−√g

×

√
gA∗(0)√

b∗2(0) + 4m∗(0)A∗(0)
+ V ∗(0)√

gA∗(0)√
b∗2(0) + 4m∗(0)A∗(0)

− V ∗(0)

+ 1

)
< 0
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⇒
(k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0) +

√
g

k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)−√g

×
√
gA∗(0) +

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)V ∗(0)

√
gA∗(0)−

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)V ∗(0)

− 1

)
(k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0) +

√
g

k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)−√g

×
√
gA∗(0) +

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)V ∗(0)

√
gA∗(0)−

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)V ∗(0)

+ 1

)
< 0

⇒
2k0A

∗(0)V ∗(0)
√
b∗2(0) + 4m∗(0)A∗(0) + 2gA∗(0)(

k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)−√g

)(
√
gA∗(0)−

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)V ∗(0)

)
2k0
√
gA∗(0)

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0) + 2

√
g
√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)V ∗(0)(

k0

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)−√g

)(
√
gA∗(0)−

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)V ∗(0)

) < 0

⇒ 4A∗(0)
√
gA∗(0)

√
A∗(0)

√
b∗2(0) + 4m∗(0)A∗(0)

(
k0V

∗(0)
√
b∗2(0) + 4m∗(0)A∗(0) + g

)
(
k0A

∗(0) + V ∗(0)

)
< 0

⇒
(
k0V

∗(0)
√
b∗2(0) + 4m∗(0)A∗(0) + g

)(
k0A

∗(0) + V ∗(0)

)
< 0

⇒ k0 ∈
(
− g

V ∗(0)
√
b∗2(0) + 4m∗(0)A∗(0)

,−V
∗(0)

A∗(0)

)
,

we have also

• m2
1

λ2
2(L)

λ2
1(L)

< 1⇒
(
m1

λ2(L)

λ1(L)
− 1

)(
m1

λ2(L)

λ1(L)
+ 1

)
< 0

⇒
(k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)−√g

k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L) +

√
g
×

√
gA∗(L)√

b∗2(L) + 4m∗(L)A∗(L)
− V ∗(L)√

gA∗(L)√
b∗2(L) + 4m∗(L)A∗(L)

+ V ∗(L)

− 1

)

(k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)−√g

k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L) +

√
g
×

√
gA∗(L)√

b∗2(L) + 4m∗(L)A∗(L)
− V ∗(L)√

gA∗(L)√
b∗2(L) + 4m∗(L)A∗(L)

+ V ∗(L)

+ 1

)
< 0
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⇒
(k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)−√g

k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L) +

√
g
×
√
gA∗(L)−

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)V ∗(L)

√
gA∗(L) +

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)V ∗(L)

− 1

)
(k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)−√g

k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L) +

√
g
×
√
gA∗(L)−

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)V ∗(L)

√
gA∗(L) +

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)V ∗(L)

+ 1

)
< 0

⇒
−2k1A

∗(L)V ∗(L)
√
b∗2(L) + 4m∗(L)A∗(L)− 2gA∗(L)(

k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L) +

√
g

)(
√
gA∗(L) +

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)V ∗(L)

)
2k1
√
gA∗(L)

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)− 2

√
g
√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)V ∗(L)(

k1

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L) +

√
g

)(
√
gA∗(L) +

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)V ∗(L)

) < 0

⇒ −4A∗(L)
√
gA∗(L)

√
A∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)

(
k1V

∗(L)
√
b∗2(L) + 4m∗(L)A∗(L) + g

)
(
k1A

∗(L) + V ∗(L)

)
< 0

⇒
(
k1V

∗(L)
√
b∗2(L) + 4m∗(L)A∗(L) + g

)(
k1A

∗(L) + V ∗(L)

)
≥ 0

⇒ k1 ∈ R\
[

−g
V ∗(L)

√
b∗2(L) + 4m∗(L)A∗(L)

,−V
∗(L)

A∗(L)

]
.

Let us define

(3.25) g1
∆
= λ1e

−τx, g2
∆
= λ2e

τx,

for any (h, v) ∈ L2((0, L);R2), consider the result of the change of variable as in (3.16) and (3.25), we have

V =

∫ L

0

ξTP (x)ξdx

=

∫ L

0

(
ξ1 ξ2

)(P1e
−τx 0

0 P2e
τx

)(
ξ1

ξ2

)
dx

=

∫ L

0

P1e
−τxξ2

1 + P2e
τxξ2

2dx

=

∫ L

0

λ1e
−τxξ2

1 + λ2e
τxξ2

2dx
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=

∫ L

0

λ1e
−τx
(
v + h

√
g

A∗
√
b∗2 + 4m∗A∗

)2

+ λ2e
τx

(
v − h

√
g

A∗
√
b∗2 + 4m∗A∗

)2

dx

=

∫ L

0

(
g1 + g2

)(
g

A∗
√
b∗2 + 4m∗A∗

h2 + 2
g1 − g2

g1 + g2

√
g

A∗
√
b∗2 + 4m∗A∗

vh+ v2

)
dx.

Thus, we get the expression of Lyapunov function candidate as in (3.12). Moreover, According to the result
(3.23), there exists α > 0 such that we get (3.14). The proof of Lemma 1 is completed. �

Using Lemma 1, we shall finally prove Theorem 3.1 that is now straightforward.

Proof. of Theorem 1 If the boundary conditions (3.10)-(3.11) are satisfied, according to Lemma 1, there exist
a constant α > 0 and a candidate control Lyapunov function V defined by (3.12) such that if (a, v)T is a
solution of the system (3.6), (3.8) and (3.9), we have

(3.26)
d

dt
(V (a(t, ·), v(t, ·))) ≤ −αV (a(t, ·), v(t, ·))

in the distribution sense which implies the exponential stability of the linearized system (3.6), (3.8) and (3.9)
for the L2-norm �

4. CONCLUSION

In this paper, we adopt the exponential stabilization technique of Ababacar Diagne et al. [13] to address
the problem of the exponential stability of the Saint-Venant equations in a trapezoidal channel whose ends
are equipped with physical devices where controls acting as feedback are implemented. The boundary con-
ditions of the system are linked to these devices and an explicit boundary condition has been given which
guarantees the exponential stability of the linear system in L2-norm. To this end, we first linearized the
nonlinear system to obtain a corresponding linearized system for the case of a trapezoidal channel. Then,
we studied this linearized system and proved the exponential stability result in theL2 norm by constructing
a quadratic Lyapunov function. Finally, we obtained explicitly a requirement of the appropriate boundary
conditions to obtain this stability.
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