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EXISTENCE AND MULTIPLICITY RESULTS FOR AN ELLIPTIC PROBLEM INVOLVING MIXED
LOCAL AND NONLOCAL OPERATOR

KHEIREDDINE BIROUD!* AND ABDERRAHIM ZAGANE?

ABSTRACT. In this work, we consider the following mixed local-nonlocal quasilinear ellipic problem

—Apu+ (=A)pu = Af(u) inQ,
(Px) w > 0 inQ,
u = 0 inRN\ Q,

where @ C RV is a bounded regular domain in RY with0 < s <1 < p < N and f : R — R is a continuous
function, that have a finite number of zeroes, changing sign between them. The main goal of this paper is to prove
the existence and multiplicity of positive solutions for such problems by using variational methods.

1. INTRODUCTION

The aim of this paper is to discuss the existence and multiplicity of positive solutions to the following
mixed local-nonlocal quasilinear ellipic problem

—Apu+ (=A)yu = Af(u) inQ,
(1.1) u > 0 in Q,
u = 0 in RV \ Q,

where @ C RY be a bounded regular domain with 0 < s < 1 < p < N and f : R — R is continuous
functions which changes sign and fulfill some suitable hypotheses that will be presice later.

Here Apu = div(|Vu[P~?Vu) is standard p — Laplace operator and (—A)3 denotes the so-called fractional
p—Laplacian operator, is defined as,

500N u(z) — u()[P~* (u(x) — u(y))
(=A)ju(z) =PV o o — g d

)

where PV. denotes the principal value. For more details and properties of the fractional Laplacian, the
interested reader is referred to [10,32].
Problems driven by following operator

Lps() = =0p() + (=4)5()
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have raised a certain interest in the last few years, for example in connection with the study of optimal
animal foraging strategies (see for example [33]). For other applications in the differente fields generated
by mixed operators, we refer readers [14, 35,45,47] and references therein.

Recently, several investigations have concentrated to the mixed local and non-local operator from dif-
ferents view, like the regularity theory, maximum principle, boundary Harnack principle, existence and
non-existence results, calculus of variations, shape of optimization and eigenvalue problems see for in-
stance, [6-9,11-13,16,17,25,26,29,30,34,39,41,44,48,50] and the references therein.

Throughout this paper, we assume the following assumptions:

(H1) fisa continuous function such that f(0) > 0, and there are
O<ar<bi<as<..<bp_1<anm

the zeroes of f, such that

{ £<0  in(ay, by),

[>0 in(bg,ars1);
(Ha) [ f(t)dt > 0, Vk € {1,2, ...... m— 1}.

Before starting our main results, we begin by recalling some well known results related to our problem.
Notice that when operator £, ; is replaced by p — Laplacian operator in problem (P),, we have that

—Apu = Af(u) InQ,
(1.2) u > 0 in Q,
u = 0 in 992,

where p > 1 and A is real positive parameter.

In the case of semilinear problem corresponding to p = 2, it's was considered in [46] where the authors
have showed the existence and multilicity of positive solutions to problem (1.2) under the hypothesis (#1)
and (#2), by using variational and topological methods and arguments with lower and upper solutions
(see also [15,24,28]). The quasilinear case that is for p € (1, c0), authors in [43] extented the results obtained
in [46].

In [19] the authors generalize the results obtained [43,46] to delicate case of the p, ¢ — Laplacian operator
that is

—Apu— Ay = Af(u) inQ,
(1.3) u > 0 in Q,
u = 0 in 09,

where the existence and multiplicity of positive solutions have been showed by using variational methods.

The case of ¢ — Laplacian, it's was treated in [49], where the considered problem

L4 { —div(¢(|Vu))Vu) = Af(u) inQ,

u = 0 in 092,
¢ is C! function fulfilling some suitable conditions. The authors have obtained the same results as in [46]
even if ¢ is not reflexive, (see also [20]).

Recently, Problem (1.1) has been treated by another type of operator, notably for a doubly anisotropic
operator; see [40]. We refer the readers also, [18,21,23,27,31,36,42,51,52] for more general context and the
references therein.

Needless to say, the references mentioned above do not exhaust the rich literature on the subject.

The main goal of this work is to establish the existence and multiplicity results for the mixed problem
(1.1) under the hypothesis (1) and (#2) by using variational methods. Although it is worth to mention
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that the presence of the nonlocal operator in the mixed equation cannot be neglected and such nonlocal
affect is one of the main obstacle, see [7]. To overcome this difficulty, we simultaneously employ the theory
developed for the p — Laplacian and fractional p — Laplacian operators to study the mixed problem (1.1).
As far as we aware, our main results are new even in the semilinear case p = 2.

The paper is organized as follows. In the next section we give some preliminaries dealing with func-
tional setting associated to our problem, like the concepts of solutions, some functional inequalities and
useful lemmas are included that will be needed along of the paper. Section 3 is devoted to showing some
preliminary results that will be useful for the proofs of our main results. In Section 4, we prove the existence
and multiplicity result of solutions for Problem (1.1) by using Ekeland variational principle. The paper is
ended with some concluding remarks.

2. THE FUNCTIONAL SETTING AND TOOLS

In this section we collect some well-known results on fractional Sobolev spaces and give some tools that
will be used in the proofs of our main results.

Let Q C RY be an arbitrary open-bounded set with N > 2 and 0 < s < 1 < p < oo be the real numbers.
The fractional Sobolev space is defined by,

WeP(Q) = {u € LP(Q): /Q A dedy < —l—oo}.

W#P(Q) is Banach space equipped with the norm,

1
u(@) — u(y)[ v
(][ 2 (Q) <|U|LP(Q) Jr/Q o dedy

Notice that, the space W*P(R") is defined analogously.

If we assume that,  is bounded regular domain of RY, we can define W;"? () is the set of functions

defined as,
WP (@) = {ue W EY) su=0 inkY\ 0}
and
D i)’
||uHWsp Q) = (//DS2 |m—y|N+pS s AT dy) )
where

Do = (BY x BY)\ (B¥\ Q) x BV \ ).
Both W*?(Q) and W;"* () are reflexive Banach spaces, see [4,32] for more details.

The Sobolev space WP () with 1 < p < oo, is defined as the Banach space of locally integrable weakly
differentiable functions u : 2 — RY endowed with norm

[ullwrr @) = [[ullze ) + 1 VullLe @)

The space W'P(RY) is defined analogously as W'7().
To study mixed local and nonlocal problems, we use the following space

WP (Q) = {u eWHPRN):u=0 inRY\ Q}

equipped with norm

)P »
(2.1) HuHW1 P(Q) = (/ |Vu|pda:+/RN /RN |ac— |N+ps ———————dxdy
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Notice that, W ** (), |\.||W01,p(9)) is reflexive Banach space for 1 < p < oo, see for example [5].

Next, we have the following result where the proof can be find in [16].

Lemma 2.1. Let Q C RY be bounded Lipschitz domain and 0 < s < 1 < p < oo, then, there exists a constant
C = C(N,p, s) such that,

(2.2) [[ullwsr ) < Cllullwie), Yue whr(Q).
We need also the following result, see [16] for more details.

Lemma 2.2. Under the same hypothesis of the previous lemma, then, there exists a constant C = C'(N, p, s, Q) such
that,

y)P
2.3) /RN /RN |x_y|N+p8 e dady < C | [VulPds, Yu € WP ().

Remark 2.3. It clear that from the previous inequality and the norm of space VVO1 P(Q) defined in (2.1) is
equivalent to

2.4) (D[ ( / wm)
Q

For the following Sobolev embedding, see, for example, [37].

Lemma 2.4. The embedding operators

LiQ) forqe(l,p*], ifpe(1,N)
Wy P(Q) =< LIQ)  forqe[l,00), ifp=N,
L>(9) ifp>N

are continuous. Also, the above embeddings are compact, except for ¢ = p* = %/ ifl<p<N.
We define the notion of zero of Dirichlet boundary condition as follows,
Definition 2.5. We say that « < 0 on 09, if u = 0 in RY \ Q and for every € > 0, we have that,
(u— )y € Wi (Q).
We say that, u = 0 on 01}, if u in nonnegative and u < 0 on 0S2.
Now, we need to precise the sense of the weak solution for the problem (1.1).
Definition 2.6. We say that u € W,"’(2) is a energy solution to (1.1), if
v>0 inQu=0 onRY\Q, and for every ¢ € Wol’p(Q), we have that

WP~ (u(x) — u(y))(6(z) — $(y)
(2.5) //JDQ |z — y|N+ps dxdy

+ Jo IVulP~2VuVedr = /\/ f(u)pd.
Q
Next, we state also the following algebraic inequality where the proof can be found in [22],

Lemma 2.7. Let 1 < p < oc. Then for any &1, &, € RY, there exists a constant positive C := C(p) such that

&1 — &

2. —2 _ S ]
26 el el G &) = O e
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3. SOME USEFUL LEMMAS

In this section we show two preliminary results that will be used in the proof of the existence theorem.

Let us start by following result

Lemma 3.1. Let s € (0,1) and 1 < p < N. Assume that g € C(R) be a continuous function and By > 0 be such
that

g(a) 2 0 lfa S (_00750)7
<0 ifa€ By, +0).

Ifu € W, P() is a weak solution of

{—Apu—&—(—A)‘;u = g(u) inQ,

3.1
G- u = 0  inRV\Q.

Thenu > 0a.ein Q, u € L>(Q) and ||ul| ) < o

Proof. Letu € W, ”(£2) be the weak solution to problem (3.1). Choosing u ™ as test function to problem (3.1),

we get
— p—2 _ - —u-
3.2) / V-~ |Pdz +/ / Ju(z) — u(y)[P~*(u(z) IZ]LJ(FE/))(U () —u (y))dxdy _ / g(u)u-da.
Q RN JRN |z — y|NHps Q

So, from Lemma 3.1 in [38], we get
(3.3) lu(z) — u(y) [P~ (u(z) — u(y))(u™ (x) —u~(y)) >0, forall (z,y) € RN x RY.

Using (3.2) and (3.3), we obtain

/ |Vu|Pdz §/ g(u)udz,
QN{u<0} Qn{u<0}
so, by using the definition of g, g(u)u < 0 when u < 0, we have / |VulPdz < 0, and therefore
QN{u<0}

necessarily the set 2 N {u < 0} is a null measure, hence, we have that u > 0 a.e in Q.
On the other hand, to show that u is bounded, we use o™ = (u — y) " as test function in problem (3.1), we

have
_ p—2 _ + ot
[ [ )= ) ) )
Do |z — y|Ntps
+/ |VulP"2VuVetdr = / g(u)ptdz.
Q Q
So,
[vetras < [ gweta
Q Q
which yields
/ |V (u— Bo)" |Pdx < / g(u)(u — Bo)dx < 0.
Q Qn{u>Bo}
Hence (u — 8y)" = 0 and we conclude that u < 3y a.e in . As desired. O
We now consider, for each k£ € {2, ...... , m}, the truncation of f given by

f(0) ifa <0,
fela) =< fla) if0<a<a,
0 if a > ag;
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For each > 0, let us consider the functional .J ;, defined as follows

O gty |
J, P ——————dxdy — \ | F] d
vt = [ v > [ [ O gy [ Fioa,

where F (o fo fr(t)dt. Let us denote by C, j, the set of critical points of .Jj j.

Notice that J) j is the energy functional of the following problem

—Apu+(=A)yu = Afg(u) nQ,

(P)k u > 0 in €,
u = 0 in RV \ Q,

and its weak solutions are the critical points of the functional J ;.

A direct consequence of the previous lemma is the following result

Lemma 3.2. Let s € (0,1)and 1 < p < N. u € Cyy, if, and only if, w is a nonnegative weak solution of the problem
(P)g and u € L>(Q2) with ||u|| (o) < ax. Consequently, u is a nonnegative weak solution of problem (1.1).
4. EXISTENCE AND MULTIPLICITY RESULTS
In this section we study the existence and multiplicity of positive solutions to Problem (1.1) under the

hypothesis (#1) and (H2).

Let us start by following result,

Theorem 4.1. Foreachk € {1,2,......m — 1}, problem (P )y, possesses a nonnegative solution w = uy y, for every
A > 0 with HU)\’]‘;”LOC(Q) < ag.

Proof. A direct consequence of Lemma 3.1, we have that ||ux ||~ ) < ak.

Since f}, is bounded function we have that
mk\t| </ mido < Fk / Mydo < Mk|t|

therefore, by using Hoder and Sobolev inequalities, it follows that
v /
I () / |VulPdz + — /RN /RN \x— N+p8 ———dxdy — i (w)dx

> f||u|\wlp(m kacnuuww(m

Now, by using the fact ||u| \Wé,p (@) — +0o, weget J — +00, and the coercivity of Jj  follows. Moreover

from (4.1), implies that .Jy ;. is bounded from below in W, *(£2) and so we have

Jfo = inf  Jyi.
Wo'? ()

Since J), i is continuous (indeed J) 1 is of C' 1,which implies J, j is lower semi-continuous. So, by using
Ekeland Variational Principle we get the existence {u,,} such that

Tak(un) = JE and J} 4 (un) — 0in (Wy P ().
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Since {u,}isa (PS’)J;;O sequence of J) i, so, by using the fact that J, j, is coercive, the boundedness of {u,}
in W, * () follows. Hence, by applying Lemma 2.4, we get subsequence {u,, } such that

(4.2) u, — u, weakly in W, 7 (Q),

(4.3) Un, — u, strongly in LI(Q) forevery 1 < g < p”,
and

(4.4) un(x) = u(z), a.ein Q.

On the other hand, we have that

(4.5) (Jak(un), @) = o(1),
for every ¢ € W, *(Q).
Thus, by choosing ¢ := (u,, — u) in (4.5), we get

[ [ )= ) )el) — )
Dq

|z —y|NHPe

+ /Q |V, P2V, Vo (x)ds — /\/Q Jr(un)p(z)der = o(1),

which gives
(4.6)

/] (lun(@) = un ()P~ (un (@) = wn(y)) — [u(@) — w(P~> (@) - u(y) ) ($(2) - $1))

o= o

+ / /DQ u(z) — u@)[P* (u(z) — uy))(e(@) — ¢(y)) dxdy + /Q \VulP~?VuVe(z)ds

|z —y|NHes
+/ (\Vun|p72Vun - |Vu|p72Vu)V<pda? - )\/ S (un)p(z)dx = o(1).
Q Q
Consequently, by using (4.2), we get

4.7) /Q |VuP~2VuVe(r)dr = o(1),
s [ ] 1) =) )= 0D g, 1,
and

(4.9) (Iun(ﬂﬁ) — un ()P (un () = un(y)) — |ula) — uly)[P~>(u(z) - U(y))) (o(x) —(y)) = 0,
Combining with (4.6)-(4.9) and using Lemma 2.7 for p > 2, it holds that

_ p < —
(4.10) c||Vuy, VUHW(}"’(Q) <o(1) +)\M;€/Q(un u)dz,
so, by invoking (4.3), we conclude that

up, — u, strongly in Wy (Q).

The same result can be obtained for 1 < p < 2, by using in a similar way Lemma 2.7 in the case 1 < p < 2,
which end the proof. O

We are now going to state and prove our second existence result.
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Theorem 4.2. Let s € (0,1) and 1 < p < N. Assume that (H1) and (Hsz) hold. Then, there exists \* > 0, such
that for every A € (\*, +00) problem (1.1) possesses at least (m — 1) nonnegative weak solutions w,; with

ui € WEP(Q) N L°(Q) and a; < ||us]| p (0 < aip1, Vie{1727 ...... ,m—1}.

Proof. Let u € W,”(Q) be a solution to problem (P, ), then by using Lemma 3.1, we get u € L>(f2) and
0<u<ag_aeinf,so, fr—1(u) = f(u) and hence u is also a solution to (1.1).

To show the last part of the theorem, we claim that, for each k € {2, ....,m}, there exists A\;, > 0 such that
for all A > X\, we have uy » ¢ Cy ;—1 where

J)\,k(uk,)\) = iIllf J,\)k(v).
veW P(Q2)

In first, for § > 0, let us consider the open set
Q5 = {x €Q, dist(z,00) < 5}
and

ar = F(ag) — max |F(t)] = F(ag) — Ch,

O<t<ar—1

so, by invoking hypothesis (#), it holds that a;, > 0.

On the other hand, let ws € C°(Q) such that 0 < ws < aj, and ws = a, so, we have that
/ F(’LU5) Z / F(ak) — QC;C‘Q(;L
Q Q
Therefore, for each u € Wol P(Q) such that 0 < u < ay_1, we obtain
(11) [ Fwn) — [ P = algl - 200
Q Q
Hence, by choosing § > 0 such that

Ve = ak|Q| — 20“95‘ >0,

we have
1
Iae(ws) — Iap—1(unp—1) = = [ (|Vws|? — |Vu —1|") dx
Q
p _ P
// (lwa fﬁi(z)' _Juae—1(2) j&k;l(yﬂ ) dedy
(4.12) Dq |17 - y‘ P |17 - y‘ P

) / (Fu(ws) — Fi(unpr)

|w5 —ws(y)[? 1
p — — —
o |Vws|Pdx + — //DQ |x — y[Ntps AVk p||w5||wol,p(9) Y-

where in the last 1nequa11ty we have used (4.11). Therefore, by choosing large enough in (4.12), it holds
that

Ine(ws) — Ixp—1(urk—1) <0,
and for w = ws, we derive that
(4.13) Inie(urg) < Ip(w) < Iyp(urp—1).

Consequently by using Lemma 3.2 and the previous inequelity, we get u) , and uy ;_1 are two distinct
solutions to Problem (1.1).
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Now, we claim that
ap—1 < ||urkl|pe=@) < ak.
To do this, we assume by contradiction
0<uyk <ag—1,
so, we necessarily would have that
Ine—1(urp—1) < Inp(urie) = I k(uri),

which is a contradiction with (4.13) and claim follows. Hence the result follows. O

5. CONCLUDING REMARKS

In this section we give some remarks related to our problem.
Under the hypothesis (), and (H)s :

e We can generalize all the results obtained here to the following to nonlocal quasilinear elliptic problem
(=A)ju = Af(u) inQ,
0 in Q,
0 in RV \ Q,

V

where s € (0,1) and 1 < p < &,

¢ By some minor modifcations, we can obtain similar results for nonlocal problem of the form

(ZA)tu+ (=A)2u = Af(u) inQ,

u > 0 in 2,
0 in RV \ Q,

u

where s1, s € (0,1) withs; < spand 1 <p < g
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