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VARIATIONAL AND NUMERICAL ANALYSIS FOR AN ELECTRO-VISCOELASTIC UNILATERAL
CONTACT PROBLEM WITH ADHESION

RACHID GUETTAF∗ AND AREZKI TOUZALINE

ABSTRACT. In this paper we investigate a mathematical model for the unilateral contact between an electro-
viscoelastic body and a conductive foundation. The Signorini conditions are used to model the contact, and
adhesion between the contact surfaces is also taken into account. We establish the existence and uniqueness of a
weak solution to this problem. Furthermore, we propose a fully discrete numerical scheme to approximate the
solution, and we present and prove the main result concerning the estimation of errors.

1. INTRODUCTION

Contact problems involving deformable bodies are widely encountered in both industrial applications
and everyday life, particularly in the case of piezoelectric materials that exhibit an interaction between me-
chanical and electrical properties. When these materials possess elastic or viscoelastic characteristics, they
are referred to as electro-elastic or electro-viscoelastic materials (see [3, 12]). The complexities arising from
the different behavior laws associated with such materials necessitate the development of new models. The
study of contact processes within the framework of variational inequalities has received considerable atten-
tion in research, see [7, 11, 13]. To obtain a thorough understanding of variational and numerical analysis
related to adhesive material models and piezoelectric effect models, both with and without friction., read-
ers are encouraged to reference the provided citations [1, 2, 5, 6, 10] and the additional works mentioned
within.

Our main concern in this paper is the investigation of an electro-viscoelastic material in quasistatic con-
tact with a deformable conductive foundation. The contact is assumed to be frictionless and is governed
by the frictionless Signorini conditions. We use the adhesion field as an additional dependent variable,
similar to [8, 9], whose evolution is modeled by an ordinary differential equation. Then, we proceed to
derive a variational formulation, denoted as Problem (PV ), for the mechanical problem and establish the
existence and uniqueness of a weak solution under appropriate regularity assumptions on the provided
data. Furthermore, a significant addition of this study is the numerical approximation of the weak solution
for the suggested problem. By utilizing a fully discrete approximation of the problem (PV ), we define the
problem (PV hk), which admits a unique solution. Subsequently, under appropriate regularity conditions,
we provide valuable error estimates to ensure the convergence of the algorithm.
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The remaining sections of the paper are organized as follows. In section 2, we state the mechanical
model, introduce some notations, and establish a variational formulation. Section 3 is devoted to giving
the result concerning the existence and uniqueness of the solution. Finally, in section 4, we perform the
numerical analysis of the problem (PV ), and prove the main result of error estimation and convergence.

2. THE MODEL AND ITS VARIATIONAL FORMULATION

Denote by Sd the space of second order symmetric tensors on Rd(d = 2, 3), while ‘.’ and ‖.‖ represent
respectively, the inner product and the Euclidean norm on Sd and Rd. We use the usual notation for the
normal components and the tangential parts of vectors and tensors, respectively, given by vν = v.ν = viνi,
vτ = v − vνν, σν = σν.ν and στ = σν − σνν.

Assume a bounded Lipschitz domain Ω ⊂ Rd (d = 2, 3) occupied by a piezoelectric body. The boundary
Γ of Ω is partitioned into three disjoint measurable parts, namely Γ1, Γ2, Γ3, such that meas (Γ1) > 0.
Additionally, it is partitioned into two disjoint measurable parts, denoted as Γa and Γb on other hand, such
thatmeas (Γa) > 0 and Γ3 ⊂ Γb. Let [0, T ], T > 0 the time interval of interest. The body under consideration
is subjected to volume forces with a density of f0, tractions with a density of f2 on Γ2, an electric charge
with a density of q0 on Ω and a surface electric charge with a density of qb on Γb. The body is clamped on
Γ1 and the electric potential vanishes on Γa. On Γ3, we assume that the body is in adhesive frictionless
unilateral contact with a reactive and conductive foundation. We denote by u = (ui) the displacement field,
D = (D1, ..., Dd) the electric displacement, and σ = σij is the stress tensor. The equilibrium equations
governing the displacement and electric displacement can be expressed as follows:

div σ = −f
0

in Ω× (0, T ) ,(2.1)

Div D = −q0 in Ω× (0, T ) ,(2.2)

The behavior of electro-viscoelastic materials is described by the following constitutive law

σ = Aε(u̇) + Fε(u)− E∗E(ϕ) in Ω× (0, T ) ,(2.3)

D = Eε(u) + CE(ϕ) in Ω× (0, T ) ,(2.4)

where ε (u) = (εij (u)) , εij (u) = 1
2 (∂jui + ∂iuj). A and F are the viscosity and elasticity operators, re-

spectively, E is the piezoelectric tensor, E∗ is its transpose. E(ϕ) = −∇ϕ is the electric field, and C is the
permittivity tensor. According to the physical setting we prescribe boundary conditions.

u = 0 on Γ1 × (0, T ) , σν = f2 on Γ2 × (0, T ) ,(2.5)

ϕ = 0 on Γa × (0, T ) , Dν = qb on Γb × (0, T ) ,(2.6)

D · v = ψ(uv − g)φL(ϕ− ϕ
Γ
) on Γ3 × (0, T ).(2.7)

In (2.7) ψ is a Lipschitz continuous function, and ϕL is the truncation function

ϕL(s) =


−Lϕ if s < −Lϕ
−s if − Lϕ ≤ s ≤ Lϕ
Lϕ if s > Lϕ

where Lϕ is a positive constant.
On Γ3, we use the Signorini’s conditions with non-zero gap and adhesion,

(2.8)
uν ≤ g,

(
σν + p(uν)− γνβ2Rν(uν)

)
≤ 0,(

σν + p(uν)− γνβ2Rν(uν)
)

(uν − g) = 0.

(2.9) β̇ = −
[
β(γν(Rνuν)2)− εa

]
+

on Γ3 × (0, T ) .
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In the provided equations, the function g ≥ 0 represents the gap between Γ3 and the foundation. p and
−γνβ2Rν(uν) are the normal contact functions, while γν denotes a given adhesion which dependent on
x ∈ Γ3. Rν is a truncation operator defined by:

Rν(s) =


L if s < L

−s if − L ≤ s ≤ 0

0 if s > L

where L > 0 is the characteristic length of the bond.
In addition, we assume that the contact is frictionless:

(2.10) στ = 0 on Γ3 × (0, T ),

To complete, we prescribe the following initial condition

(2.11) u(0) = u0, β(0) = β0.

To summarize, we consider the following problem:

Problem (P ). Find a displacement field u : Ω×[0, T ]→ Rd, a stress field σ : Ω×[0, T ]→ Sd, an electric potential
ϕ : Ω× [0, T ]→ R, an electric displacement field D : Ω× [0, T ]→ Rd and a bonding field β : Γ3× [0, T ]→ R such
that (2.1)-(2.11) hold.

To establish a variational formulation of Problem (P ), we need additional notations and preliminaries.
For T > 0 and a real Hilbert space X , we use the usual notation for the spaces Lp(0, T ;X), p ∈ [0,∞],
W k,p(0, T ;X), k = 1, 2 and the spaces of continuous functions C ([0, T ] ;X), C1 ([0, T ] ;X).
We will use the real Hilbert spaces:

H = L2 (Ω)
d
, Q =

{
τ = (τij) , τij = τji ∈ L2 (Ω)

}
,

H1 =
{
u = (ui) |ui ∈ H1(Ω)

}
, Hd = {σ ∈ Q |div σ ∈ H } ,

endowed with the respective inner products:

(u, v)H =
∫

Ω
uividx, 〈σ, τ〉Q =

∫
Ω
σijτijdx,

(u, v)H1
= 〈u, v〉H + (ε(u), ε(v))Q , (σ, τ)Hd = 〈σ, τ〉Q + (div σ, divτ)H .

We recall that the following Green’s formula holds:

(2.12) 〈σ, ε (v)〉Q + (div σ, v)H =

∫
Γ

σν.vda ∀v ∈ H1.

To accommodate the condition (2.5), we will seek the displacement fields within the space

V = {v ∈ H1 : v = 0 a.e. on Γ1} .

Since meas(Γ1) > 0, there is a constant CΩ > 0 such that ‖ε (v)‖Q > CΩ ‖v‖H1
for any v ∈ V and V is a

Hilbert space with the inner product (u, v)V = (ε(u), ε(v))Q and the associated norm ‖.‖V . For v ∈ H1 we
use the same symbol v for its trace on Γ. From the Sobolev trace theorem, there is a constant dΩ > 0 such
that

(2.13) ‖v‖(L2(Γ3))d 6 dΩ ‖v‖V ∀v ∈ V.

Considering the Signorini’s condition, we define the closed convex set of admissible displacements as fol-
lows:

Uad = {v ∈ V : vν ≤ g a.e. on Γ3} .
For the electric field, we require the following two Hilbert spaces:

W = {ξ ∈ H1 |ξ = 0 a.e on Γa } , Wa =
{
D = (Di)

∣∣Di ∈ L2(Ω), Div D ∈ L2(Ω)
}
,
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endowed respectively with the inner products

(ξ, φ)W = (∇ξ,∇φ)H , (D,E)Wa = (D,E)H + (Div D,Div E)L2(Ω) .

Since meas(Γa) > 0, then the Friedrichs-Poincaré inequality holds, that there exists a constant CF > 0 such
that:

(2.14) ‖∇ξ‖W ≥ CF ‖ξ‖H1(Ω) ∀ξ ∈W.

Moreover, if D ∈Wd is a sufficiently regular, the following Green’s formula holds:

(2.15) (D,∇ξ)H + (Div D, ξ)L2(Ω) =

∫
Γb

Dν.ξda ∀ξ ∈W.

We will also use the Banach space of fourth-order tensors

Q∞ = {E = (Eijkh) ; Eijkh = Ejikh = Ekhij ∈ L∞ (Ω)} ,

endowed with the norm ‖E‖Q∞ = max
0≤i,j,k,h≤d

‖Eijkh‖L∞(Ω) .

Finally, we introduce the space of bonding field denoted by B, given by

B =
{
β : [0, T ] −→ L2(Γ3); 0 ≤ β (t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3

}
.

For the study of Problem (P ), we impose the following assumptions on the data :

Operators A, F , as well as the tensors C, E , and E∗ satisfy the following hypotheses:

(2.16)


(a) A = (aijkl) : Ω× Sd −→ Sd, aijkl = aijlk = alkij ∈ L∞ (Ω) , and
there exists MA > 0 such that: ‖A(x, ξ1)−A(x, ξ2)‖ ≤MA ‖ξ1 − ξ2‖
∀ξ1, ξ2 ∈ Sd a.e. in Ω,

(b) there exists mA > 0 such that: Aξ.ξ > mA |ξ|2 ∀ξ ∈ Sd a.e. in Ω,

(2.17)


(a) F = (bijkl) : Ω× Sd −→ Sd, bijkl = bijlk = blkij ∈ L∞ (Ω) , and
there exists MF > 0 such that: ‖F(x, ξ1)−F(x, ξ2)‖ ≤MF ‖ξ1 − ξ2‖
∀ξ1, ξ2 ∈ Sd a.e. in Ω,

(b) there exists mF > 0 such that: Fξ.ξ > mF ‖ξ‖2 ∀ξ ∈ Sd a.e. in Ω,

(2.18)


(a) C = (cij) : Ω× Rd −→ Rd, cij = cji ∈ L∞(Ω),

(b) there exists mC > 0 such that: cij(x)EiEj > mC ‖E‖2 ,
∀ξ ∈ Sd a.e. in Ω.

(2.19) E = (eikj), eijk = eikj ∈ L∞(Ω), Eσ.v = σ.E∗υ ∀σ ∈ Sd, v ∈ Rd.

Furthermore, we assume that the normal compliance function p : Γ3 × R −→ R+ satisfies:

(2.20)


(a) The function x→ p(x, r) is measurable on Γ3 and is zero for all r ≤ 0

(c) there exists Mp > 0, such that:
|p(x, r1)− p(x, r2)| ≤Mp |r1 − r2| ∀r1, r2 ∈ R a.e. in Γ3.

As an example, the function p(r) = [r]+ satisfies condition (2.20).
Additionally, we assume that adhesion coefficients satisfy

(2.21) γν ∈ L∞ (Γ3) , εa ∈ L2 (Γ3) , γν , εa > 0 a.e. on Γ3,
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we suppose that:

(2.22)
f

0
∈ C

(
[0, T ] ;L2 (Ω)

d
)
, f2 ∈ C

(
[0, T ] ;L2 (Γ2)

d
)
,

q0 ∈ C
(

[0, T ] ;L2 (Ω)
d
)
, qb ∈ C

(
[0, T ] ;L2 (Γb)

d
)
,

the initial data u0 and β0 satisfy

(2.23) u0 ∈ Uad, β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3,

and the surface electrical conductivity function ψ : Γ3 × R −→ R+ satisfies

(2.24)


(a) The function x→ ψ(x, r) is measurable on Γ3 and is zero for all r ≤ 0

and there exists Lψ > 0, such that: |ψ(x, r)| ≤ Lψ ∀r ∈ R, a.e. in Γ3,

(c) there exists mψ > 0, such that: |ψ(x, r1)− ψ(x, r2)| ≥ mψ |r1 − r2| ,
a.e. in Γ3,

Finally, the potential ϕ
Γ

and the gap function g satisfy

(2.25) ϕΓ ∈ L2
(
0, T ;L2(Γ3)

)
, g ∈ L2(Γ3), g ≥ 0 a.e. on Γ3.

Using the representation theorem of Riesz-Fréchet, for all t ∈ [0, T ], we define the elements f(t) ∈ V and
q(t) ∈W as follows

(2.26) (f(t), v)V =

∫
Ω

f
0
(t).vdx+

∫
Γ2

f2(t).vda ∀v ∈ V,

(2.27) (q(t), ξ)V =

∫
Ω

q0(t).ξdx+

∫
Γ2

qb(t).ξda ∀ξ ∈W.

To simplify the writing, we denote by, a : V × V → R, b : V × V → R, c : W ×W → R and e : V ×W → R

a(u, v) = (Aε(u), ε(v))Q; b(u, v) = (Fε(u), ε(v))Q,

c(ϕ, ξ) = (C∇ϕ,∇ξ))H ; e(v, ξ) = (Eε(v),∇ξ)H = (E∗∇ξ, ε(v))Q,

We note that according to equations (2.16)-(2.19), the forms a, b and c are strongly monotone and Lipschitz
continuous.
Let us denote by ja : L∞ (Γ3)× V0 × V −→ R and je : V ×W →W respectively the functionals given by

ja(β, u, v) =

∫
Γ3

(p(uν)− γνβ2Rν(uν)vν)da,(2.28)

je(u, ϕ, ξ) =

∫
Γ3

ψ(uv − g)φL(ϕ− ϕ
Γ
)ξda.(2.29)

If u, σ , ϕ and D are regular and satisfy the equations and conditions (2.1)-(2.11), the Green’s formula (2.12)
and (2.15) enable us to derive the following variational formulation for problem P.

Problem (PV ). Find a displacement field u ∈ C ([0, T ] ;V ), an electric potential ϕ ∈ C ([0, T ] ;W ) and a bonding
field β ∈W 1,∞ (0, T ;L2 (Γ3)

)
∩B, such that

u(t) ∈ Uad for all t ∈ [0, T ] and

(2.30)
a(u̇(t), v − u(t)) + b(u(t), v − u(t)) + e (v − u(t), ϕ(t))

+ja(β(t), u(t), v − u(t)) = (f(t), v − u̇(t))V ∀v ∈ Uad, t ∈ [0, T ],

(2.31) b (ϕ(t), ξ)H − e (u(t), ξ)H + je(u, ϕ, ξ) = (q(t), ξ)W ∀ξ ∈W, t ∈ [0, T ],
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(2.32) β̇(t) = −
[
β(t)

(
γν(Rνuν(t))2

)
− εa

]
+
, a.e. t ∈ [0, T ],

(2.33) u(0) = u0, β(0) = β0.

3. EXISTENCE AND UNIQUENESS OF SOLUTION

In this section, we establish the existence and uniqueness of the weak formulation (Problem (PV )). The
following theorem provides the main result.

Theorem 3.1. Assume that the assumptions (2.1)–(2.25) hold. Then, the problem (PV ) has a unique solution
(u, ϕ, β). Moreover, the solution satisfies

(3.1)
u ∈ C1([0, T ] ;V ),

ϕ ∈ C([0, T ] ;W ),

β ∈W 1,∞(0, T ;L∞(Γ3)) ∩B.

Proof. In order to prove Theorem 3.1, we provide a proof by defining intermediate problems and demon-
strating their unique solvability. Subsequently, we construct a contraction mapping such that its unique
fixed point corresponds to the weak solution of the problem (P ).
To begin, let l ∈ C([0, T ] ;V ) and consider the following intermediate problem:

Problem (P 1
l ). Find ul ∈ C([0, T ] ;X) such that

(3.2)
a(u̇l(t), v − ul(t)) + (l(t), v − ul(t))V×V = (f(t), v − ul(t))V
∀v ∈ Uad, t ∈ [0, T ].

ul(0) = u0.

For this first problem, we have the following result.

Lemma 3.2. Problem (P 1
l ) has a unique solution ul ∈ C1([0, T ] ;V ).

Proof. Let us denote the operator ã : V −→ V such that (ãu, v) = a(u, v). Since ã is a strongly monotone
and Lipschitz continuous operator on V , it is invertible and its inverse a−1 is also a strongly monotone and
Lipschitz continuous operator. Therefore, using the regularity (2.18), we can conclude that there exists a
unique function ul which satisfies

(3.3)
wl ∈ C([0, T ] ;X).

ãwl(t) + l(t) = f(t), ∀t ∈ [0, T ].

Let ul : [0, T ] −→ V defined by ul(t) = u0 +
t∫

0

wl(s)ds. Then, ul is the unique solution to the problem,

and it also belongs to the set Uad ∩ C1([0, T ] ;V ). �

In the next step, we use the solution ul ∈ C1([0, T ] ;V ) obtained in Lemma 3.2 to formulate an interme-
diate problem for the electrical potential.

Problem (P 2
l ). Find ϕl ∈ C([0, T ] ;W ) such that

(3.4)
c (ϕl(t), ξ)− e (ul(t), ξ) + je(ul(t), ϕl(t), ξ) = (q(t), ξ)W

∀ξ ∈W, t ∈ [0, T ].

We establish the following lemma.
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Lemma 3.3. Problem (P 2
l ) has a unique solution ϕl ∈ C([0, T ] ;W ).

Proof. We define the operator Ψ : W −→W by

〈Ψ(t)ϕ, ξ〉 = c (ϕ(t), ξ)− e (ul(t), ξ) + je(ul(t), ϕ(t), ξ).

For ϕ1, ϕ2 ∈W, by using (2.18), (2.19), (2.24) and (2.29), we show

(3.5) 〈Ψ(t)ϕ1 −Ψ(t)ϕ2, ϕ1 − ϕ2〉 ≥ mC ‖ϕ1 − ϕ2‖2 ,

and there exist C > 0 such that

(3.6) 〈Ψ(t)ϕ1 −Ψ(t)ϕ2, ξ〉 ≤ C ‖ϕ1 − ϕ2‖2W ‖ξ‖W .

The inequalities (3.5) and (3.6) show that operator Ψ(t) is strongly monotone and Lipschitz continuous on
W . Therefore, there exists a unique element ϕl(t) ∈W which satisfies(3.4).

For t1, t2 ∈ [0, T ], we use (2.13), (2.18), (2.19), (2.24) (2.29) and the Lipschitz continuity of the functions ψ
and ϕ to establish the following estimate:

(3.7) ‖ϕl(t1)− ϕl(t2)‖W ≤ C (‖ul(t1)− ul(t2)‖V + ‖q(t1)− q(t2)‖W )

Since ul ∈ C1([0, T ];V ) and C([0, T ];W ), it implies that ϕl ∈ C([0, T ] ;W ), which concludes the proof.�
Proceeding to the next step, we once again use the previously obtained solution ul obtained in Lemma

3.2, and we consider the following Cauchy problem.

Problem (P 3
l ) Find a bonding field βl : [0, T ] −→ L∞(Γ3) such that:

(3.8) β̇l(t) = −
[
βl(t)

(
γν(Rνulν(t))2

)
− εa

]
+

a.e. t ∈ [0, T ],

(3.9) βl(0) = β0.

We have:

Lemma 3.4. Problem (P 3
l ) has a unique solution βl which satisfies

βl ∈W 1,∞([0, T ] ;L∞(Γ2)) ∩B.

Proof. Consider the mapping Φ : [0, T ]× L2(Γ3) −→ L2(Γ3) defined by

Φl(t, β) = −
[
β
(
γν(Rνulν(t))2

)
− εa

]
+

For all t ∈ [0, T ] and β ∈ L2(Γ3), it follows from the properties of the operator Rν that Φβ is Lipschitz
continuous with respect to its second argument, uniformly in time. Additionally, for any β ∈ B, the function
t → Φβ(t, β) belongs to L∞(0, T ;L2(Γ3)). Thus, by using a version of Cauchy-Lipschitz theorem (see[5]),
Problem (P 3

l ) possesses a unique solution βl ∈W 1,∞(0, T ;L∞(Γ3)). Since the restriction 0 ≤ ββ ≤ 1 a.e. on
Γ3 is included in the variational problem PV , it follows that β belongs to B, which completes the proof of
Lemma 3.4. �

Now, for all l∈ C([0, T ] ;V ), we note by ul the solution of problem (P 1
l ) provided in Lemma 3.2, by ϕl the

solution of the problem (P 2
l ) provided in Lemma 3.3 and by βl the solution of the problem (P 3

l ) provided in
Lemma 3.4. In addition, we apply the Riesz representation theorem to define the operator Λ : [0, T ] −→ V

(3.10) (Λl(t), v)V×V = b (ul(t), v) + e (v, ϕl(t)) + ja(βl(t), ul(t), v) ∀v ∈ V, t ∈ [0, T ].

For this operator, we have the following lemma

Lemma 3.5. The operator Λ admits a unique fixed point l∗ ∈ C([0, T ] ;V ).
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Proof. For i = 1, 2, let denote uli , ϕli and βli , the solutions to previous intermediate problems with
li ∈ C([0, T ] ;V ). For all t ∈ [0, T ], it follows from (3.2) that

a (u̇l1(t)− u̇l2(t), u̇l1(t)− u̇l2(t)) + (l2(t)− l1(t), u̇l1(t)− u̇l2(t)) = 0,

using the properties (2.16), we find

(3.11) ‖u̇l1(t)− u̇l2(t)‖V ≤ C ‖l1(t)− l2(t)‖V , ∀t ∈ [0, T ].

Since ‖ul1(t)− ul2(t)‖V ≤
t∫

0

‖u̇l1(s)− u̇l2(s)‖V ds, it follows from inequality (3.11)

(3.12) ‖ul1(t)− ul2(t)‖V ≤ C ‖l1(t)− l2(t)‖V , ∀t ∈ [0, T ].

Also, using similar arguments to (3.7), we find

(3.13) ‖ϕl(t1)− ϕl(t2)‖W ≤ C ‖ul(t1)− ul(t2)‖V
Writing (3.8) with βl = βl1 and with βl = βl2 , and using the assumption on the properties of the operators
Rν , we can perform some elementary calculations to demonstrate the existence of a constant C > 0 such
that

(3.14)
‖βl1(t)− βl2(t)‖L2(Γ3) ≤ C

(∫ t
0
‖βl1(s)− βl2(s)‖L2(Γ3) ds

+
∫ t

0
‖ul1(s)− ul2(s)‖L2(Γ3)d ds

)
.

Using the conditions (2.13) and applying a Gronwall-type argument, we find

(3.15) ‖βl1(t)− βl2(t)‖V ≤ C
t∫

0

‖ul1(s)− ul2(s)‖V ds.

On the other hand, we have the following equality

(3.16)
(Λl1(t)− Λl2(t), v)V×V = b (ul1(t)− ul2(t), v) + e (v, ϕl1(t)− ϕl2(t))

+ja(βl1(t), ul1(t), v)− ja(βl2(t), ul2(t), v) ∀v ∈ V.

Keeping in mind (2.19), (2.20) and (2.28), there exists a constant C > 0 such that:

(3.17)
‖Λl1(t)− Λl2(t)‖V ≤ C

(
‖ϕl1(t)− ϕl2(t)‖Q + ‖ul1ν (t)− ul2ν (t)‖L2(Γ3)

+
∥∥β2

l1
(t)Rν(ul1ν(t))− β2

l2
(t)Rν(ul2ν(t))

∥∥
L2(Γ3)

)
.

Hence, using (2.13) and the properties of the operator Rν , it follows that

(3.18)
‖Λl1(t)− Λl2(t)‖V ≤ C

(
‖ul1(t)− u2(t)‖V + ‖ϕl1(t)− ϕl2(t)‖Q

+ + ‖βl1(t)− βl2(t)‖L2(Γ3)

)
.

Now, combine (3.18), (3.15), (3.7), and (3.12), we obtain:

‖Λl1 − Λl2‖C([0,T ];Q) ≤ C
t∫

0

‖l1(s)− l2(s)‖V ds.

By iteration, we deduce that for any positive integer n :

‖Λnl1 − Λnl2‖C([0,T ];V ) ≤
CnTn

n!
‖l1 − l2‖C([0,T ];V ) .
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Then, for a positive integer n sufficiently large, it follows that Λ is a contraction on the space C([0, T ] ;V ).
Therefore, by the Banach fixed point theorem, we deduce that Λ has a unique fixed point l∗ .
For t1, t2 ∈ [0, T ] , using similar arguments to the proof of (3.18), we find

(3.19)
‖Λl(t1)− Λl(t2)‖V ≤ C (‖ul(t1)− ul(t2)‖V
+ ‖ϕl(t1)− ϕl(t2)‖Q + ‖βl(t1)− βl(t2)‖L2(Γ3)

)
,

since ul ∈ C1([0, T ];V ), ϕl ∈ C(0, T ;W ) and βl ∈W 1,∞(0, T ;L2(Γ3)) we deduce from inequality (3.19) that
l∗ = Λl∗ ∈ C([0, T ] ;V ) which completes the proof of Lemma 3.5.�

Now, we have all the necessary ingredients to conclude the proof of Theorem 3.1. Let l∗ denote the
unique fixed point of the operator Λ, and let u∗, ϕ∗, β∗ be the respective solutions to problems (P 1

l∗ ), (P 2
l∗)

and (P 3
l∗) i.e. u∗ = ul∗ , ϕ∗ = ϕl∗ and β∗ = βl∗ .

Then, by (3.2), (3.4), (3.8) and (3.9), we conclude that the triple (u∗, ϕ∗, β∗) is a solution to Problem (PV ).
The uniqueness of this solution follows directly from the uniqueness of the fixed point of the operator Λ,

and regularities (3.1) follow from Lemmas 3.2, 3.3 and 3.4. �

4. NUMERICAL APPROACH

In this section, we employ the finite element method to introduce a fully-discrete scheme that provides
an approximation for the solution of Problem (PV ). The parameter of discretization is denoted by h > 0

, and we consider T h as a regular finite element partition of the domain Ω, which is compatible with the
boundary partition of Γ. To approximate the displacement field u, the electric potential ϕ, and the bonding
field β, we introduce finite element spaces V h ⊂ V , Wh ⊂W , and Bh ⊂ L2(Γ3) respectively.defined by

(4.1)
V h =

{
vh ∈

[
C(Ω)

]d
; vhpTr ∈ [P1(Tr)]

d
, Tr ∈ T h, vh = 0 on Γ1

}
,

Wh =
{
ψh ∈ C(Ω); vhpTr ∈ P1(Tr), Tr ∈ T h, ϕh = 0 on Γa

}
,

Bh =
{
βh ∈ L2(Γ3); βhpγ ∈ R, γ ∈ T hΓ3

}
,

where P1(Tr) represents the space of polynomials of global degree at most 1 in Tr.
It should be noted that T hΓ3

is the partition induced by the triangulation T h. Additionally, let PBh :

L2(Γ3) −→ Bh be the orthogonal projection operator on Bh. Furthermore, we define Uhad as the discrete
convex set of admissible displacement given by Uhad = Uad ∩ V h.

To discretize the time derivatives, we utilize a uniform partition of [0, T ] denoted as 0 = t0 < t1 < ... <

tN = T. Let k = T/N be the time step. For a continuous function w(t), we denote wn = w(tn) to represent
the values of w at the discrete time points. For a sequence (wn)

N
n=0, we introduce the finite differences

δwn = (wn − wn−1)/kn.
Next, we introduce the finite differences

(4.2) uhkn =

n∑
j=1

kjδu
hk
j + uh0 , ϕ

hk
n =

n∑
j=1

kjδϕ
hk
j + ϕh0 , β

hk
n =

n∑
j=1

kjδβ
hk
j + βh0 , n ≥ 1.

Here, no summation is assumed over a repeated index. Using the backward Euler scheme, the fully-discrete
approximation of Problem (PV ) is the following.

Problem (PV hk). Find uhk =
(
uhkn
)N
n=0
⊂ Uhad, ϕhk =

(
ϕhkn

)N
n=0
⊂ Wh, and βhk =

(
βhkn
)N
n=0
⊂ L2(Γ3),

such that, for all n = 1, 2, ..., N

(4.3)
a(δuhkn , vh − uhkn ) + b(uhkn , vh − uhkn ) + e(vh − uhkn , ϕhkn )

+ja(βhkn , uhkn , vh − uhkn ) = (fn, v
h − uhkn ),

(4.4) c(ϕhkn , ξh)− e(uhkn , ξh) + je(u
hk
n , ϕhkn , ξh) = (qn, ξ

h),
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(4.5) δβhkn = −PBh
[
βhkn−1(γνRν

(
uhk(n−1)ν

)
)2 − εa

]
+
,

uhk0 = uh0 ,(4.6)

βhk0 = βh0 .(4.7)

where uh0 and βh0 are suitable approximations of u0 and β0 respectively.
We denote by ϕhk0 = ϕh0 the unique solution of (4.4) in Problem (PV h) for n = 0, and (uhkn , ϕhkn , βhkn )

denote the solutions of
(
PV hk

)
, respectively. By employing the same arguments as in the proof of Theorem

3.1, we conclude that the Problem (PV hk) possesses a unique solution (uhkn , ϕhkn , βhkn ).
To prove the convergence of the scheme, we have the following error estimate result.

Lemma 4.1. Let the assumptions of Theorem 3.1 hold. Under the following regularity conditions:

u ∈ W 2,1(0, T ;V ) ∩ C([0, T ];H2(Ω)d),(4.8)

σ ∈ C([0, T ] ;H1(Ω)d×d) ∩W 1,1(0, T ;Q),(4.9)

β ∈ W 2,1(0, T ;L2(Γ3)) ∩ C1([0, T ] ;H1(Γ3)),(4.10)

β0 ∈ H1(Γ3),(4.11)

there exists a positive constant C > 0, independent of parameters h and k, such that for vh = (vhj )Nj=1 ∈ Uhad,

ξh = (ξhj )Nj=1 ∈Wh,

(4.12)

max
1≤n≤N

{‖un − uhkn ‖V + ‖ϕn − ϕhkn ‖W + ‖βn − βhkn ‖Q}

≤ C max
1≤n≤N

inf
vh∈V h
ξh∈Wh

βh∈Bh

{
‖vh − un‖V + ‖ξh − ϕn‖W + ‖vh − unν‖

1
2

L2(Γ3) + h+ k
}

We now proceed to estimate the numerical errors on the displacement field, where we apply in some
inequalities Young’s inequality ab ≤ δa2 + 1

4δ b
2.

Add (4.3) and (2.30) with v = uhkn at t = tn, we find

(4.13)
a(δuhkn , vh − uhkn ) + a(u̇n, u

hk
n − un) + b(uhkn , vh − uhkn ) + b(un, u

hk
n − un)

+e(vh − uhkn , ϕhkn ) + e(uhkn − un, ϕn) + ja(βn, un, u
hk
n − un)

+ja(βhkn , uhkn , vh − uhkn ) = (fn, v
h − uhkn ) + (fn, u

hk
n − un)

Using the relation,

b(un − uhkn , un − uhkn ) = b(un, un − vh)− b(uhkn , un − vh) + b(un, v
h − uhkn )

−b(uhkn , vh − uhkn ),

and the fact that the functional ja is linear with respect to the last argument, we obtain

(4.14)
b(un − uhkn , un − uhkn ) = Rn(vh, un) + a(δuhkn − u̇n, vh − uhkn )

+b(uhkn − un, vh − un) + e(vh − uhkn , ϕhkn − ϕn) + ja(βhkn , uhkn , vh − uhkn )

−ja(βn, un, v
h − uhkn )− (fn, v

h − un),

where

(4.15)
Rn(vh, un) = a(u̇n, v

h − un) + b(un, v
h − un) + e(vh − un, ϕn)

+ja(βn, un, v
h − un)− (fn, v

h − un)

We then proceed in estimating error on the displacement field based on the equation (4.14). First, denote

σn = Aε(u̇n) + Fε(un)− E∗E(ϕn)
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Taking into account the relation (4.9) which implies that σν ∈ C([0, T ] ;L2(Γ3)), then using Green’s formula
and the boundary conditions (2.8) and (2.10), it follows that

(4.16)

∣∣Rn(vh, u̇n)
∣∣ ≤ ∫

Γ3

∣∣(σnν + p(unν)− γνβ2
nRν(unν)

)
(vhν − unν)

∣∣ da
≤ C‖vh − unν‖L2(Γ3),

here and below C is a generic positive constant not dependent on n.
Next, by using (2.20) and the properties of the operator Rν , we find

|ja(βhkn , uhkn , vh − uhkn )− ja(βn, un, v
h − uhkn )|

≤ C
(
‖βn − βhkn ‖2L2(Γ3) + ‖un − uhkn ‖2V

)
‖vh − uhkn ‖2V ,

and therefore

(4.17)
|ja(βhkn , uhkn , vh − uhkn )− ja(βn, un, v

h − uhkn )|
C
(
‖βn − βhkn ‖2L2(Γ3) + ‖un − uhkn ‖2V + ‖vh − uhkn ‖2V

)
Taking into account ‖vh−uhkn ‖ ≤ ‖vh−un‖+‖un−uhkn ‖, by combining (4.14)-(4.17) and using (2.16), (2.17)
and (2.19), we conclude that

(4.18)
mF‖un − uhkn ‖2V ≤ C

{
‖vh − unν‖L2(Γ3)+ ‖u̇n − δuhkn ‖2V

+‖un − uhkn ‖2V + ‖ϕn − ϕhkn ‖2W + ‖βn − βhkn ‖2L2(Γ3) + ‖vh − un‖2V
}
.

Now to obtain an error estimate on the electric potential, taking (2.31) at time t = tn with ξ = ξh and
subtracting it to (4.4) to get

(4.19) c(ϕn − ϕhkn , ξh)− e(un − uhkn , ξh) + je(un, ϕn, ξ
h)− je(uhkn , ϕhkn , ξh) = 0.

Writing (4.19) with the test function ξh = ϕn − ϕhkn and with ξh = ϕn − ξh, yields to the equality

(4.20)
c(ϕn − ϕhkn , ϕn − ϕhkn )− e(un − uhkn , ϕn − ϕhkn ) + je(un, ϕn, ϕn − ϕhkn )

−je(uhkn , ϕhkn , ϕn − ϕhkn ) = c(ϕn − ϕhkn , ϕn − ξh)− e(un − uhkn , ϕn − ξh)

+je(un, ϕn, ϕn − ξh)− je(uhkn , ϕhkn , ϕn − ξh),

After performing some algebraic manipulation, we can rewrite the expression in the following form:

(4.21)
c(ϕn − ϕhkn , ϕn − ϕhkn ) = c(ϕn − ϕhkn , ϕn − ξh) + e(un − uhkn , ξh − ϕhkn )

+je(un, ϕn, ϕn − ξh)− je(uhkn , ϕhkn , ϕn − ξh)− je(un, ϕn, ϕn − ϕhkn )

+je(u
hk
n , ϕhkn , ϕn − ϕhkn ).

Denote J = je(un, ϕn, ϕn − ξh)− je(uhkn , ϕhkn , ϕn − ξh)− je(un, ϕn, ϕn − ϕhkn )

+je(u
hk
n , ϕhkn , ϕn − ϕhkn )
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Using the assumptions (2.29), (2.24) and (2.29), we find

|J | =
∣∣∣∣∫

Γ3

ψ(unv − g)φL(ϕn − ϕ0)
(
ϕn − ξh

)
da

−
∫

Γ3

ψ(uhknv − g)φL(ϕhkn − ϕΓ)
(
ϕn − ξh

)
da

+

∫
Γ3

ψ(unv − g)φL(ϕn − ϕΓ
)
(
ϕn − ϕhkn

)
da

−
∫

Γ3

ψ(uhknv − g)φL(ϕhkn − ϕΓ)
(
ϕn − ϕhkn

)
da

∣∣∣∣
≤

∫
Γ3

∣∣ψ(unv − g)φL(ϕn − ϕΓ
)− ψ(uhknv − g)φL(ϕhkn − ϕΓ

)
∣∣ ∣∣(ϕn − ϕhkn )∣∣ da

+

∫
Γ3

∣∣ψ(unv − g)φL(ϕn − ϕΓ
)− ψ(uhknv − g)φL(ϕhkn − ϕΓ

)
∣∣ ∣∣(ϕhkn − ξh)∣∣ da.

Since, ψ and ϕL are Lipschitz continuous functions, we get

|J | ≤Mψ

∫
Γ3

∣∣(ϕn − ϕhkn )∣∣2 da+ LϕLψ
∫

Γ3

∣∣(un − ϕhkn )∣∣ ∣∣(un − ϕhkn )∣∣ da
+Mψ

∫
Γ3

∣∣(ϕn − ϕhkn )∣∣ ∣∣ϕhkn − ξh∣∣ da+ LϕLψ
∫

Γ3

∣∣(un − ϕhkn )∣∣ ∣∣ϕhkn − ξh∣∣ da.
Then, using (2.13), (2.14) leads to

(4.22) |J | ≤ C{‖ϕn − ϕhkn ‖2W + ‖un − uhkn ‖2V + ‖ϕn − ξh‖2W }.

By combining equations (4.22) and (4.21) and applying the properties stated in (2.17) and (2.19), it follows
after reordering the terms that

(4.23) ‖ϕn − ϕhkn ‖2W ≤ C{‖un − uhkn ‖2V + ‖ξh − ϕn‖2W }.

To obtain an error estimate on the bonding field, let βhk0 = βh0 = PBhβ0 be the orthogonal projection of β0,
then ‖β0 − βh0 ‖L2(Γ3) ≤ Ch. Under the assumptions (4.10) and (4.11), we have the following lemma

Lemma 4.2. There exist a constant C > 0, such that

(4.24) ‖βn − βhkn ‖2L2(Γ3) ≤
n−1∑
j=1

C
(
‖uj − uhkj ‖V + ‖βj − βhkj ‖L2(Γ3)

)
+ h2 + k2.

The estimate described in (4.24) has been stated and proven in [13, page 61-64] using inequalities com-
monly employed in the numerical analysis of contact problems that involve adhesion.

Since u(t) = u0 +
t∫

0

u̇(s)ds, under the regularity assumption (4.8), we have the following standard estima-

tion, see [4]

‖un − uhkn ‖2V ≤ c

n−1∑
j=1

k‖u̇j − δuhkj ‖2V + h2 + k2

 .

Now, adding inequalities (4.19) and (4.23) and taking into account the estimation (4.24), we then obtain

(4.25)

{‖un − uhkn ‖2V + ‖ϕn − ϕhkn ‖2W + ‖βn − βhkn ‖2L2(Γ3)}

≤ C

{
‖vh − unν‖L2(Γ3) + ‖vh − un‖2V + ‖ξh − ϕn‖2W +

n−1∑
j=1

k‖u̇j − δuhkj ‖2V

+
n−1∑
j=1

k
(
‖uj − uhkj ‖2V + ‖βj − βhkj ‖2L2(Γ3)

)
+ h2 + k2.

}
Applying discrete Gronwall’s inequality and the arbitrariness of vh ∈ Uhad leads to the estimate (4.12). This
concludes the proof. �
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Now, we proceed to state and prove the main result of this section.

Theorem 4.3. Let the assumptions of Theorem 3.1 and Lemma 4.1 hold. Assuming that the initial values uh0 ∈ V h,
ϕh0 ∈Wh and βh0 ∈ Qh are chosen in such a way that

(4.26) ‖u0 − uh0‖V −→ 0, ‖ϕ0 − ϕh0‖V −→ 0 and ‖β0 − βh0 ‖Q −→ 0 as h, k → 0.

Then, the fully-discrete solution converges, i.e.,

(4.27) max
1≤n≤N

{
‖u− uhkn ‖V + ‖ϕ− ϕhkn ‖W + ‖β − βhkn ‖Q

}
→ 0, as h, k → 0.

Proof. To prove Theorem 4.3, , we consider the standard finite element interpolation operator of u and ϕ,
denoted by Πhun, and Πhϕn respectively. Then, the following approximation properties hold:

(4.28)

max
1≤n≤N

inf
vh∈V h

‖vh − unν‖L2(Γ3)
≤ Ch‖u‖C([0,T ];H2(Γ3)),

max
1≤n≤N

inf
vh∈V h

‖vh − un‖V ≤ Ch‖u‖C([0,T ];H2(Γ3)),

max
1≤n≤N

inf
ξh∈Wh

‖ξh − ϕhkn ‖W ≤ Ch‖u̇‖C([0,T ];H2(Ω)),

where the constant C is independent of u, ϕ, and β. Finally, the convergence (4.27) is obtained by
combining Lemma 4.1 and (4.28). �

In this paper, using a variational method, we have established the existence and uniqueness of the
solution of the problem. Then, we introduced a fully discrete scheme to approximate the solution of
the contact problem. The exploration of numerical simulations using the same algorithm represents an
intriguing line of future research.
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