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ON A CERTAIN CLASS OF BI-UNIVALENT FUNCTIONS IN CONNECTION WITH
GEGENBAUER POLYNOMIALS

RASHEED OLAWALE AYINLA1,∗ AND AYOTUNDE OLAJIDE LASODE2

ABSTRACT. Recent direction of studies shows that there is a kin connection between regular functions and or-
thogonal polynomials. In this paper, we study a new class of regular and bi-univalent functions that involve the
familiar Gegenbauer polynomials. Some achieved results include some early coefficient bounds and the upper
estimates for the Fekete-Szegö inequalities with real and complex parameters.

1. INTRODUCTION AND PRELIMINARIES

The study of orthogonal polynomials came into existence in the late 19th century through the study of
continued fractions by Pafnuty Lvovich Chebyshev [13,33]. These set of polynomials have been very useful
in the solution of many differential equations [13], Fourier series [15], random matrix theory, least square
approximations of a function, interpolation, and quadrature [14]; and in many numerical computations,
inferences and interpretations. In addition, some orthogonal polynomials such as the Zernike polynomials
and Rogers-Szegö polynomials have been considered for some curves in the complex plane and in particu-
lar, the unit circle.

Explorations in geometric function theory show that regular functions have kin connections with orthog-
onal polynomials. Actually, some purposeful investigations have been carried out on regular functions in
connection with the Legendre polynomials [12], Laguerre polynomials [35], Chebyshev polynomials [7],
Jacobi polynomials [10], Horadam polynomials [32], Hermite polynomials [1], and Gegenbauer polynomi-
als [26]. For more instances, see [2, 3, 5, 9, 22–25, 29].

Specifically, let the generating function of the Gegenbauer polynomials be defined by

(1.1) Gα(t, z) =
1

(1− 2tz + z2)α

where α ∈ R − {0} is a constant, t ∈ [−1, 1] and |z| < 1. Thus, for fixed t we have the Taylor’s series
representation of (1.1) as

(1.2) Gα(t, z) =

∞∑
m=0

Cαm(t)zm,
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where Cαm(t) (m > 0) are known as Gegenbauer polynomials of degree m. Now, suppose α = 0, then (1.1)
is set as

G0
m(t) = 1− log(1− 2tz + z2) =

∞∑
m=0

C0
m(t)zm.

We note that the recurrent relation for Gegenbauer polynomials can also be expressed as

(1.3) Cαm(t) =
1

m

[
2t(m+ α− 1)Cαm−1(t)− (m+ 2α− 2)Cαm−2(t)

]
while some early values are presented as

(1.4)


Cα0 (t) = 1,

Cα1 (t) = 2αt,

Cα2 (t) = 2α(1 + α)t2 − α,
Cα3 (t) = −2α(1 + α)t+ 4

3α(1 + α)(2 + α)t3.

From (1.4), we note that

(1) if α = 1, then we will obtain the well-known Chebyshev polynomials and
(2) if α = 1

2 , then we will obtain the well-known Legendre polynomials.

For more details on Gegenbauer polynomials see [2, 22, 26].
In this study, let N = {1, 2, 3, . . .}, N0 = N ∪ {0}, C is the complex numbers’ field, and let

U := {z : z ∈ C and |z| < 1}

be the unit disk. Let A represent the class of complex-valued functions that are regular (holomorphic or
analytic) in the unit disk and let S represent the class of regular and univalent functions in U; so that
functions in S are normalized by the conditions F (0) = F ′(0) − 1 = 0 and are of the Taylor’s series
representation

(1.5) F (z) = z + a2z
2 + a3z

3 + · · ·+ amz
m + · · · , z ∈ U.

In [19], Lewin made history by introducing the class of bi-univalent functions of the form (1.5) and
demonstrated that the upper bound of coefficient a2 for every bi-univalent function is less than 1.51. Later,
authors in [8,21,34] demonstrated that |a2| 6

√
2, |a2| 6 1 1

3 and |a2| 6 1.485, respectively. Presently, we note
that the bounds |am| (m = 3, 4, . . .) for the whole class of bi-univalent functions are apparently yet unsolved.
Duren [11] established that every bi-univalent function always has inverse function F−1 defined by

F−1(F (z)) = z, z ∈ U, F (F−1(ω)) = ω, ω : |ω| < r0(F ) and r0(F ) > 0.25;

where some calculations show that

(1.6) F−1(ω) = ω − a2ω2 + (2a22 − a3)ω3 − (5a32 − 5a2a3 + a4)ω4 + · · · = F(ω).

A function F ∈ S is said to be bi-univalent (or bi-schlicht) in U if both F and its inverse function F are
univalent in U. We represent by B the class of regular and bi-univalent functions in U. The class B is
non-void since we have some instances of functions

F (z) = z, F (z) = z(1− z)−1, F (z) = log(1− z)−1,

and others in it. We refer readers to the works in [7, 8, 16–18, 28–31] for more details on history, properties
and definitions of some existing subclasses of B.

Let
X(z) = x1z + x2z

2 + x3z
3 + · · · ∈ Ω

be a regular function where Ω is the class of Schwarz functions such that for z ∈ U,X(0) = 0 and |X(z)| < 1.
Suppose F1, F2 ∈ A, then F1 ≺ F2 if and only if F1(z) = F2(X(z)) for z ∈ U. Should F2 be univalent in U,
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then F1(z) ≺ F2(z) if and only if F1(0) = F2(0) and F1(U) ⊂ F2(U). Note that the notation ’≺’ means
subordination.

In [27] (see also [4, 6]), the Sǎlǎgean differential operator Dn (n ∈ N0) for F in (1.5) is defined by

(1.7)



D0F (z) = F (z) = z + a2z
2 + a3z

3 + · · ·+ amz
m + · · ·

D1F (z) = zF ′(z) = z + 2a2z
2 + 3a3z

3 + · · ·+mamz
m + · · ·

D2F (z) = z(D1F (z))′ = z + 22a2z
2 + 32a3z

3 + · · ·+m2amz
m + · · ·

...
...

...
Dn+1F (z) = z(DnF (z))′ = z + 2n+1a2z

2 + 3n+1a3z
3 + · · ·+mn+1amz

m + · · · .

2. RELEVANT LEMMAS

Let P be the class of regular functions whose real parts are positive in U so that ξ(z) ∈ P has series
representation

ξ(z) = 1 + b1z + b2z
2 + b3z

3 + · · ·+ bmz
m + · · · , z ∈ U

normalized such that ξ(0) = 1 and Re ξ(z) > 0. To establish our results, we shall need the following
lemmas.

Lemma 2.1 ( [11]). If ξ(z) ∈ P, then |bm| 6 2, ∀m ∈ N.

Lemma 2.2 ( [20]). If ξ(z) ∈ P, then 2b2 = b21 + (4− b21)p, where |p| 6 1.

Proposition 2.3. The implication of Lemma 2.2 is that for

(2.1)
ξ(z) = 1 + b1z + b2z

2 + b3z
3 + · · ·

ζ(ω) = 1 + c1ω + c2ω
2 + c3ω

3 + · · ·

}
∈ P,

2b2 = b21 + p(4− b21)

2c2 = c21 + q(4− c21)

}
=⇒ 2(b2 − c2) = (4− b21)(p− q)

for some p, q such that |p|, |q| 6 1 and |b1|, |c1| ∈ [0, 2].

3. THE MAIN RESULTS

Definition 3.1. Henceforth, let

(3.1)

{
β ∈

(
−π2 ,

π
2

)
, 0 6 µ 6 1, n ∈ N0, t ∈

(
1
2 , 1
]
, α ∈ R− {0},

F(ω) = F−1(ω) in (1.6), Dn+1F (z) in (1.7) and Gα(t, z) in (1.1),

then a function F ∈ B is said to be a member of class Bn(β, µ;G) if it satisfies the geometric conditions:

(3.2) (1− e−2βiµ2z2)
Dn+1F (z)

z
≺ Gα(t, z)

and

(3.3) (1− e−2βiµ2ω2)
Dn+1F(ω)

ω
≺ Gα(t, ω).

Remark 3.2. If we set α = 1 and represent the Chebyshev polynomials of the second kind by Cn(t), then
class Bn(β, µ;G) will reduce to class Bn(β, µ;C) studied by Ayinla and Opoola [7, Definition 3.1].

The following are the main results.



Pan-Amer. J. Math. 3 (2024), 5 4

Theorem 3.3. If F ∈ Bn(β, µ;G), then

|a2| 6

√
2α2t3 + µ2|α|t2

|3n+1αt2 + 22n(2t− 2t2 − 2αt2 + 1)|

|a3| 6
α2t2

22n
+

2|α|t
3n+1

|a4| 6
5α2t2

2n · 3n+1
+
|α|t

22n+1
+

2|α|t+ 2|α|t2 + 2α2t2 + |α|
22n+1

+
4|α|t2 + 4α2t2 + 2|α|+ 2α2t+ 8

3 |α|t
3 + 4α2t3 + 4

3 |α|
3t3

22n+2
+

2µ2|α|t
22n+2

where the declarations in (3.1) hold.

Proof. Let F ∈ Bn(β, µ;G), then application of the subordination technique implies that (3.2) and (3.3) will
transform to

(3.4) (1− e−2βiµ2z2)
Dn+1F (z)

z
= Gα(t,X(z))

and

(3.5) (1− e−2βiµ2ω2)
Dn+1F(ω)

ω
= Gα(t, Y (ω))

where ω, z ∈ U,

X(z) = x1z + x2z
2 + x3z

3 + · · ·
Y (ω) = y1ω + y2ω

2 + y3ω
3 + · · ·

}
∈ Ω,

X(0) = Y (0) = 0, and |X(z)|, |Y (ω)| < 1. It is well-known that for ξ and ζ in (2.1),

(3.6) X(z) =

(
ξ(z)− 1

ξ(z) + 1

)
=

1

2

[
b1z +

(
b2 −

b21
2

)
z2 +

(
b31
22
− b1b2 + b3

)
z3 + · · ·

]
and

(3.7) Y (ω) =

(
ζ(ω)− 1

ζ(ω) + 1

)
=

1

2

[
c1ω +

(
c2 −

c21
2

)
ω2 +

(
c31
22
− c1c2 + c3

)
ω3 + · · ·

]
so that by some calculations we have

(3.8) Gα(t,X(z)) = 1 +
1

2
Cα1 (t)b1z +

[
1

2
Cα1 (t)

(
b2 −

b21
2

)
+

1

4
Cα2 (t)b21

]
z2

+

[
1

2
Cα1 (t)

(
b3 − b1b2 +

b31
4

)
+

1

2
Cα2 (t)b1

(
b2 −

b21
2

)
+

1

8
Cα3 (t)b31

]
z3 + · · ·

and

(3.9) Gα(t, Y (ω)) = 1 +
1

2
Cα1 (t)c1ω +

[
1

2
Cα1 (t)

(
c2 −

c21
2

)
+

1

4
Cα2 (t)c21

]
ω2

+

[
1

2
Cα1 (t)

(
c3 − c1c2 +

c31
4

)
+

1

2
Cα2 (t)c1

(
c2 −

c21
2

)
+

1

8
Cα3 (t)c31

]
ω3 + · · · .

Using (1.7) with some calculations, then the LHS of (3.4) simplifies to

(3.10) (1− e−2βiµ2z2)
Dn+1F (z)

z

= 1 + 2n+1a2z + (3n+1a3 − e−2βiµ2)z2 + (4n+1a4 − 2n+1e−2βiµ2a2)z3 + · · ·
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and using (1.6) and (1.7) in (3.5) shows that LHS of (3.5) gives

(3.11) (1− e−2βiµ2ω2)
Dn+1F(ω)

ω

= 1− 2n+1a2ω + [3n+1(2a22 − a3)− e−2βiµ2]ω2 − [4n+1(5a32 − 5a2a3 + a4)− 2n+1e−2βiµ2a2]ω3 + · · · .

If we compare the coefficients in (3.8), (3.9), (3.10), and (3.11); then it can easily be seen that

(3.12) 2n+1a2 =
1

2
Cα1 (t)b1,

(3.13) 3n+1a3 − e−2βiµ2 =
1

2
Cα1 (t)

(
b2 −

b21
2

)
+

1

4
Cα2 (t)b21,

(3.14) 4n+1a4 − 2n+1e−2βiµ2a2 =
1

2
Cα1 (t)

(
b3 − b1b2 +

b31
4

)
+

1

2
Cα2 (t)b1

(
b2 −

b21
2

)
+

1

8
Cα3 (t)b31,

(3.15) −2n+1a2 =
1

2
Cα1 (t)c1,

(3.16) 3n+1(2a22 − a3)− e−2βiµ2 =
1

2
Cα1 (t)

(
c2 −

c21
2

)
+

1

4
Cα2 (t)c21,

and

(3.17) − 4n+1(5a32 − 5a2a3 + a4) + 2n+1e−2βiµ2a2

=
1

2
Cα1 (t)

(
c3 − c1c2 +

c31
4

)
+

1

2
Cα2 (t)c1

(
c2 −

c21
2

)
+

1

8
Cα3 (t)c31.

Addition of (3.12) and (3.15) shows that

(3.18) b1 = −c1 and b21 = c21

and the addition of the squares of (3.12) and (3.15) shows that

(3.19) 22n+5a22 = (Cα1 (t))2(b21 + c21).

Putting (3.18) into (3.19) shows that

(3.20) b21 =
22n+4a22
(Cα1 (t))2

=⇒ a22 =
b21(Cα1 (t))2

22n+4
.

On the other hand, the addition of (3.13) and (3.16); and the substitution for b21 from (3.20) show that

a22 =
(Cα1 (t))3(b2 + c2) + 4e−2βiµ2(Cα1 (t))2

4 · 3n+1(Cα1 (t))2 + 22n+4(Cα1 (t)− Cα2 (t))

so using (1.4) gives

a22 =
α2t3(b2 + c2) + 2αt2e−2βiµ2

2 · 3n+1αt2 + 22n+1(2t− 2t2 − 2αt2 + 1)

and the application of Lemma 2.1 in the inequality

|a2|2 6
α2t3|b2 + c2|+ 2µ2|α|t2|e−2βi|

2|3n+1αt2 + 22n(2t− 2t2 − 2αt2 + 1)|
yields the desired result.

If we subtract (3.16) from (3.13), then we have

(3.21) a3 = a22 +
Cα1 (t)(b2 − c2)

22 · 3n+1
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so that by substituting for a22 in (3.21) from (3.20) gives

(3.22) a3 =
(Cα1 (t))2b21

22n+4
+
Cα1 (t)(b2 − c2)

22 · 3n+1

and

(3.23) |a3| 6
(Cα1 (t))2|b1|2

22n+4
+
|Cα1 (t)||b2 − c2|

22 · 3n+1

so that putting (1.4) into (3.23) and using Lemma 2.1 yield the desired result.
To find the bound on a4, we subtract (3.17) from (3.14) to get

a4 =
5 · 2n(Cα1 (t))2(b2 − c2)b1

22n+5 · 3n+1
+
Cα1 (t)(b3 − c3)

22n+4
− [Cα1 (t)− Cα2 (t)](b2 + c2)b1

22n+4

+
[Cα1 (t)− 2Cα2 (t) + Cα3 (t)]b31

22n+5
+
Cα1 (t)e−2βiµ2b1

22n+3

and

(3.24) |a4| 6
5 · 2n(Cα1 (t))2|b2 − c2||b1|

22n+5 · 3n+1
+
|Cα1 (t)||b3 − c3|

22n+4
+
|Cα1 (t)− Cα2 (t)||b2 + c2||b1|

22n+4

+
|Cα1 (t)− 2Cα2 (t) + Cα3 (t)||b1|3

22n+5
+
|Cα1 (t)||e−2iβ |µ2|b1|

22n+3

so that putting (1.4) into (3.24) and using Lemma 2.1 yield the desired result. �

Remark 3.4. If we set α = 1 in Theorem 3.3, then we will arrive at the results of Ayinla and Opoola [7,
Theorem 3.2].

Theorem 3.5. If F ∈ Bn(β, µ;G), then for a real value ρ,

|a3 − ρa22| 6


2|α|t
3n+1 when 0 6 |Υ (ρ)| 6 1

3n+1

2|α|t|Υ (ρ)| when |Υ (ρ)| > 1
3n+1

where

Υ (ρ) =
αt(1− ρ)

22n+2
.

Proof. Using (3.19) and (3.22) implies that

a3 − ρa22 =
(Cα1 (t))2(b21 + c21)

22n+5
+
Cα1 (t)(b2 − c2)

22 · 3n+1
− ρ (Cα1 (t))2(b21 + c21)

22n+5

=
Cα1 (t)(b2 − c2)

22 · 3n+1
+

(1− ρ)(Cα1 (t))2(b21 + c21)

22n+5

=
Cα1 (t)

22

{
(b2 − c2)

3n+1
+

(1− ρ)Cα1 (t)(b21 + c21)

22n+3

}
(3.25)

so that

|a3 − ρa22| 6
|Cα1 (t)|

22

{
|b2 − c2|

3n+1
+ |b21 + c21||Υ (ρ)|

}
(3.26)

for

Υ (ρ) =
(1− ρ)Cα1 (t)

22n+3
.

So, using (1.4) and Lemma 2.1 yields the desired result. �
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Theorem 3.6. If F ∈ Bn(β, µ;G), then for a complex value %,

|a3 − %a22| 6


2|α|t
3n+1 when |1− %| ∈

[
0, 22n+1

3n+1|α|t

)
α2t2|1−%|

22n when |1− %| ∈
[

22n+1

3n+1|α|t , 0
)
.

Proof. Using (3.18) in (3.25) yields

a3 − %a22 =
Cα1 (t)(b2 − c2)

22 · 3n+1
+

2b21(1− %)(Cα1 (t))2

22n+5

so that the application of Proposition 2.3 gives

(3.27) a3 − %a22 =
Cα1 (t)(4− b21)(p− q)

23 · 3n+1
+
b21(1− %)(Cα1 (t))2

22n+4
.

Now without any restriction, let b = b1 and by Lemma 2.1 we know that b ∈ [0, 2]. Also, for simplicity
reason, let P = |p| < 1 and Q = |q| < 1; and with some rearrangement, (3.27) simplifies to

|a3 − %a22| 6 |1− %|
b2|Cα1 (t)|2

22n+4
+
|Cα1 (t)|(4− b2)

23 · 3n+1
(P +Q) = Ψ(P,Q).

Since P,Q ∈ [0, 1], then

max{Ψ(P,Q)} = Ψ(1, 1) = |1− %|b
2|Cα1 (t)|2

22n+4
+
|Cα1 (t)|(4− b2)

22 · 3n+1

and with some simplifications we have

(3.28) Ψ(1, 1) =
|Cα1 (t)|
3n+1

+
|Cα1 (t)|2

22n+4

{
|1− %| − 22n+2

3n+1|Cα1 (t)|

}
b2 = Φ(b).

Also, since b ∈ [0, 2], then

Φ′(b) =
|Cα1 (t)|2

22n+3

{
|1− %| − 22n+2

3n+1|Cα1 (t)|

}
b

shows that there is a critical point at b = 0, hence for Φ′(b) < 0,

|1− %| ∈
[
0,

22n+2

3n+1|Cα1 (t)|

)
.

This means that Φ(b) is strictly a decreasing function of |1− %|, hence from (3.28)

(3.29) max{Φ(b) : b ∈ [0, 2]} = Φ(0) =
|Cα1 (t)|
3n+1

.

Also for Φ(b) > 0,

|1− %| ∈
[

22n+2

3n+1|Cα1 (t)|
, 0

)
which implies that Φ(b) is an increasing function of |1− %|, hence from (3.28),

(3.30) max{Φ(b) : b ∈ [0, 2]} = Φ(2) =
|1− %||Cα1 (t)|2

22n+2
.

Thus, putting (3.29) and (3.30) together and using (1.4) give the desired result. �

4. CONCLUSION

In this investigation, we studied a certain class of regular functions in relation to the subordination
principle and the well-known Gegenbauer polynomials. This class consists of regular and bi-univalent
functions that are defined in the unit disk. Some achieved results include some early coefficient bounds
and the upper estimates for the Fekete-Szegö inequalities with real and complex parameters. The obtained
results extend that of Ayinla and Opoola [7] and others.
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[1] I. Al-Shbeil, A. Cǎtaş, H.M. Srivastava, N. Aloraini, Coefficient estimates of new families of analytic functions associated with
q-Hermite polynomials, Axioms 12 (2023) 52. https://doi.org/10.3390/axioms12010052.

[2] A. Amourah, A.G. Al-Amoush, M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palestine J. Math. 10
(2021), 625–632.

[3] I.T. Awolere, A.T. Oladipo, Coefficients of bi-univalent functions involving pseudo-starlikeness associated with Chebyshev poly-
nomials, Khayyam J. Math. 5 (2019), 140–149. https://doi.org/10.22034/kjm.2019.81231.

[4] R.O. Ayinla, On some new results of a subclass of univalent functions, Researchjournali’s J. Math. 4 (2017), 1–6.
[5] R.O. Ayinla, Estimates of Fekete-Szegö functional of a subclass of analytic and bi-univalent functions by means of Chebyshev

polynomials, J. Progr. Res. Math. 8 (2021), 48–54.
[6] R.O. Ayinla, T.O. Opoola, New result for strongly starlike functions, Appl. Math. 8 (2017), 324–328. https://doi.org/10.4236/am.

2017.83027.
[7] R.O. Ayinla, T.O. Opoola, Initial coefficient bounds and second Hankel determinant for a certain class of bi-univalent functions

using Chebyshev polynomials, Gulf J. Math. 14 (2023), 160–172. https://doi.org/10.56947/gjom.v14i1.1092.
[8] D.A. Brannan, J.G. Clunie (Eds.), Aspects of contemporary complex analysis, in: Proceedings of the NATO Advanced Study

Institute held at the University of Durham, Durham, July 1–20, 1979, Academic Press, New York, 1980.
[9] S. Bulut, N. Magesh, On the sharp bounds for a comprehensive class of analytic and univalent functions by means of Chebyshev

polynomials, Khayyam J. Math. 2 (2016), 194–200. https://doi.org/10.22034/kjm.2017.43707.
[10] B.C. Carlson, Expansion of analytic functions in Jacobi series, SIAM J. Math. Anal. 5 (1974), 797–808. https://doi.org/10.1137/

0505076.
[11] P.L. Duren, Univalent Functions, Springer-Verlag Inc., New York, 1983.
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