Pan-American Journal of Mathematics 3 (2024), 5 https://doi.org/10.28919/cpr-pajm/3-5 © 2024 by the authors

ON A CERTAIN CLASS OF BI-UNIVALENT FUNCTIONS IN CONNECTION WITH GEGENBAUER POLYNOMIALS

RASHEED OLAWALE AYINLA^{1,*} AND AYOTUNDE OLAJIDE LASODE²

ABSTRACT. Recent direction of studies shows that there is a kin connection between regular functions and orthogonal polynomials. In this paper, we study a new class of regular and bi-univalent functions that involve the familiar Gegenbauer polynomials. Some achieved results include some early coefficient bounds and the upper estimates for the Fekete-Szegö inequalities with real and complex parameters.

1. Introduction and Preliminaries

The study of orthogonal polynomials came into existence in the late 19th century through the study of continued fractions by Pafnuty Lvovich Chebyshev [13,33]. These set of polynomials have been very useful in the solution of many differential equations [13], Fourier series [15], random matrix theory, least square approximations of a function, interpolation, and quadrature [14]; and in many numerical computations, inferences and interpretations. In addition, some orthogonal polynomials such as the Zernike polynomials and Rogers-Szegö polynomials have been considered for some curves in the complex plane and in particular, the unit circle.

Explorations in geometric function theory show that regular functions have kin connections with orthogonal polynomials. Actually, some purposeful investigations have been carried out on regular functions in connection with the Legendre polynomials [12], Laguerre polynomials [35], Chebyshev polynomials [7], Jacobi polynomials [10], Horadam polynomials [32], Hermite polynomials [1], and Gegenbauer polynomials [26]. For more instances, see [2,3,5,9,22–25,29].

Specifically, let the generating function of the Gegenbauer polynomials be defined by

(1.1)
$$\mathfrak{G}_{\alpha}(t,z) = \frac{1}{(1 - 2tz + z^2)^{\alpha}}$$

where $\alpha \in \mathbb{R} - \{0\}$ is a constant, $t \in [-1,1]$ and |z| < 1. Thus, for fixed t we have the Taylor's series representation of (1.1) as

(1.2)
$$\mathfrak{G}_{\alpha}(t,z) = \sum_{m=0}^{\infty} C_m^{\alpha}(t) z^m,$$

E-mail addresses: rasheed.ayinla@kwasu.edu.ng, lasode_ayo@yahoo.com.

Submitted on November 18, 2023.

2020 Mathematics Subject Classification. Primary 30C45; Secondary 30C55.

Key words and phrases. Regular function, Gegenbauer polynomials, coefficient bounds, Fekete-Szegö inequality, subordination.

*Corresponding author.

1

 $^{^{1}}$ Department of Mathematics and Statistics, Kwara State University, P.M.B. 1530, Malete, Nigeria

²DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILORIN, P.M.B. 1515, ILORIN, NIGERIA

where $C_m^{\alpha}(t)$ $(m \ge 0)$ are known as Gegenbauer polynomials of degree m. Now, suppose $\alpha = 0$, then (1.1) is set as

$$\mathfrak{G}_m^0(t) = 1 - \log(1 - 2tz + z^2) = \sum_{m=0}^{\infty} C_m^0(t)z^m.$$

We note that the recurrent relation for Gegenbauer polynomials can also be expressed as

(1.3)
$$C_m^{\alpha}(t) = \frac{1}{m} \left[2t(m+\alpha-1)C_{m-1}^{\alpha}(t) - (m+2\alpha-2)C_{m-2}^{\alpha}(t) \right]$$

while some early values are presented as

(1.4)
$$\begin{cases} C_0^{\alpha}(t) = 1, \\ C_1^{\alpha}(t) = 2\alpha t, \\ C_2^{\alpha}(t) = 2\alpha (1+\alpha)t^2 - \alpha, \\ C_3^{\alpha}(t) = -2\alpha (1+\alpha)t + \frac{4}{3}\alpha (1+\alpha)(2+\alpha)t^3. \end{cases}$$

From (1.4), we note that

- (1) if $\alpha = 1$, then we will obtain the well-known Chebyshev polynomials and
- (2) if $\alpha = \frac{1}{2}$, then we will obtain the well-known Legendre polynomials.

For more details on Gegenbauer polynomials see [2,22,26].

In this study, let $\mathbb{N} = \{1, 2, 3, \ldots\}$, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, \mathbb{C} is the complex numbers' field, and let

$$\mathfrak{U} := \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$$

be the unit disk. Let $\mathfrak A$ represent the class of complex-valued functions that are regular (holomorphic or analytic) in the unit disk and let $\mathfrak S$ represent the class of regular and univalent functions in $\mathfrak U$; so that functions in $\mathfrak S$ are normalized by the conditions F(0)=F'(0)-1=0 and are of the Taylor's series representation

(1.5)
$$F(z) = z + a_2 z^2 + a_3 z^3 + \dots + a_m z^m + \dots, \quad z \in \mathfrak{U}.$$

In [19], Lewin made history by introducing the class of bi-univalent functions of the form (1.5) and demonstrated that the upper bound of coefficient a_2 for every bi-univalent function is less than 1.51. Later, authors in [8,21,34] demonstrated that $|a_2| \leq \sqrt{2}$, $|a_2| \leq 1\frac{1}{3}$ and $|a_2| \leq 1.485$, respectively. Presently, we note that the bounds $|a_m|$ ($m=3,4,\ldots$) for the whole class of *bi-univalent functions* are apparently yet unsolved. Duren [11] established that every bi-univalent function always has inverse function F^{-1} defined by

$$F^{-1}(F(z)) = z, \quad z \in \mathfrak{U}, \quad F(F^{-1}(\omega)) = \omega, \ \omega: |\omega| < r_0(F) \quad \text{ and } \quad r_0(F) \geqslant 0.25;$$

where some calculations show that

(1.6)
$$F^{-1}(\omega) = \omega - a_2\omega^2 + (2a_2^2 - a_3)\omega^3 - (5a_2^3 - 5a_2a_3 + a_4)\omega^4 + \dots = \mathfrak{F}(\omega).$$

A function $F \in \mathfrak{S}$ is said to be *bi-univalent* (or *bi-schlicht*) in $\mathfrak U$ if both F and its inverse function $\mathfrak F$ are univalent in $\mathfrak U$. We represent by $\mathfrak B$ the class of regular and bi-univalent functions in $\mathfrak U$. The class $\mathfrak B$ is non-void since we have some instances of functions

$$F(z) = z$$
, $F(z) = z(1-z)^{-1}$, $F(z) = \log(1-z)^{-1}$,

and others in it. We refer readers to the works in [7,8,16-18,28-31] for more details on history, properties and definitions of some existing subclasses of \mathfrak{B} .

Let

$$X(z) = x_1 z + x_2 z^2 + x_3 z^3 + \dots \in \Omega$$

be a regular function where Ω is the class of Schwarz functions such that for $z \in \mathfrak{U}$, X(0) = 0 and |X(z)| < 1. Suppose $F_1, F_2 \in \mathfrak{A}$, then $F_1 \prec F_2$ if and only if $F_1(z) = F_2(X(z))$ for $z \in \mathfrak{U}$. Should F_2 be univalent in \mathfrak{U} , then $F_1(z) \prec F_2(z)$ if and only if $F_1(0) = F_2(0)$ and $F_1(\mathfrak{U}) \subset F_2(\mathfrak{U})$. Note that the notation ' \prec ' means subordination.

In [27] (see also [4,6]), the Sălăgean differential operator \mathfrak{D}^n ($n \in \mathbb{N}_0$) for F in (1.5) is defined by

$$\begin{cases}
\mathfrak{D}^{0}F(z) = F(z) &= z + a_{2}z^{2} + a_{3}z^{3} + \dots + a_{m}z^{m} + \dots \\
\mathfrak{D}^{1}F(z) = zF'(z) &= z + 2a_{2}z^{2} + 3a_{3}z^{3} + \dots + ma_{m}z^{m} + \dots \\
\mathfrak{D}^{2}F(z) = z(\mathfrak{D}^{1}F(z))' &= z + 2^{2}a_{2}z^{2} + 3^{2}a_{3}z^{3} + \dots + m^{2}a_{m}z^{m} + \dots \\
\vdots &\vdots &\vdots \\
\mathfrak{D}^{n+1}F(z) = z(\mathfrak{D}^{n}F(z))' &= z + 2^{n+1}a_{2}z^{2} + 3^{n+1}a_{3}z^{3} + \dots + m^{n+1}a_{m}z^{m} + \dots
\end{cases}$$

2. Relevant Lemmas

Let $\mathfrak P$ be the class of regular functions whose real parts are positive in $\mathfrak U$ so that $\xi(z)\in \mathfrak P$ has series representation

$$\xi(z) = 1 + b_1 z + b_2 z^2 + b_3 z^3 + \dots + b_m z^m + \dots, \quad z \in \mathfrak{U}$$

normalized such that $\xi(0)=1$ and $\Re \mathfrak{e}\,\xi(z)>0$. To establish our results, we shall need the following lemmas.

Lemma 2.1 ([11]). If $\xi(z) \in \mathfrak{P}$, then $|b_m| \leq 2, \ \forall m \in \mathbb{N}$.

Lemma 2.2 ([20]). If $\xi(z) \in \mathfrak{P}$, then $2b_2 = b_1^2 + (4 - b_1^2)p$, where $|p| \leq 1$.

Proposition 2.3. *The implication of Lemma 2.2 is that for*

(2.1)
$$\begin{cases} \xi(z) = 1 + b_1 z + b_2 z^2 + b_3 z^3 + \cdots \\ \zeta(\omega) = 1 + c_1 \omega + c_2 \omega^2 + c_3 \omega^3 + \cdots \end{cases} \} \in \mathfrak{P},$$

$$2b_2 = b_1^2 + p(4 - b_1^2) \\ 2c_2 = c_1^2 + q(4 - c_1^2) \end{cases} \implies 2(b_2 - c_2) = (4 - b_1^2)(p - q)$$

for some p, q such that $|p|, |q| \leq 1$ and $|b_1|, |c_1| \in [0, 2]$.

3. The Main Results

Definition 3.1. Henceforth, let

(3.1)
$$\begin{cases} \beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ 0 \leqslant \mu \leqslant 1, \ n \in \mathbb{N}_0, \ t \in \left(\frac{1}{2}, 1\right], \ \alpha \in \mathbb{R} - \{0\}, \\ \mathfrak{F}(\omega) = F^{-1}(\omega) \text{ in (1.6)}, \ \mathfrak{D}^{n+1}F(z) \text{ in (1.7) and } \mathfrak{G}_{\alpha}(t, z) \text{ in (1.1)}, \end{cases}$$

then a function $F \in \mathfrak{B}$ is said to be a member of class $\mathfrak{B}^n(\beta, \mu; \mathfrak{G})$ if it satisfies the geometric conditions:

$$(3.2) (1 - e^{-2\beta i}\mu^2 z^2) \frac{\mathfrak{D}^{n+1}F(z)}{z} \prec \mathfrak{G}_{\alpha}(t,z)$$

and

(3.3)
$$(1 - e^{-2\beta i} \mu^2 \omega^2) \frac{\mathfrak{D}^{n+1} \mathfrak{F}(\omega)}{\omega} \prec \mathfrak{G}_{\alpha}(t, \omega).$$

Remark 3.2. If we set $\alpha = 1$ and represent the Chebyshev polynomials of the second kind by $\mathfrak{C}_n(t)$, then class $\mathfrak{B}^n(\beta, \mu; \mathfrak{G})$ will reduce to class $\mathfrak{B}^n(\beta, \mu; \mathfrak{C})$ studied by Ayinla and Opoola [7, Definition 3.1].

The following are the main results.

Theorem 3.3. *If* $F \in \mathfrak{B}^n(\beta, \mu; \mathfrak{G})$ *, then*

$$\begin{split} |a_2| &\leqslant \sqrt{\frac{2\alpha^2t^3 + \mu^2|\alpha|t^2}{|3^{n+1}\alpha t^2 + 2^{2n}(2t - 2t^2 - 2\alpha t^2 + 1)|}} \\ |a_3| &\leqslant \frac{\alpha^2t^2}{2^{2n}} + \frac{2|\alpha|t}{3^{n+1}} \\ |a_4| &\leqslant \frac{5\alpha^2t^2}{2^n \cdot 3^{n+1}} + \frac{|\alpha|t}{2^{2n+1}} + \frac{2|\alpha|t + 2|\alpha|t^2 + 2\alpha^2t^2 + |\alpha|}{2^{2n+1}} \\ &\quad + \frac{4|\alpha|t^2 + 4\alpha^2t^2 + 2|\alpha| + 2\alpha^2t + \frac{8}{3}|\alpha|t^3 + 4\alpha^2t^3 + \frac{4}{3}|\alpha|^3t^3}{2^{2n+2}} + \frac{2\mu^2|\alpha|t}{2^{2n+2}} \end{split}$$

where the declarations in (3.1) hold.

Proof. Let $F \in \mathfrak{B}^n(\beta, \mu; \mathfrak{G})$, then application of the subordination technique implies that (3.2) and (3.3) will transform to

(3.4)
$$(1 - e^{-2\beta i} \mu^2 z^2) \frac{\mathfrak{D}^{n+1} F(z)}{z} = \mathfrak{G}_{\alpha}(t, X(z))$$

and

(3.5)
$$(1 - e^{-2\beta i}\mu^2\omega^2) \frac{\mathfrak{D}^{n+1}\mathfrak{F}(\omega)}{\omega} = \mathfrak{G}_{\alpha}(t, Y(\omega))$$

where $\omega, z \in \mathfrak{U}$,

$$X(z) = x_1 z + x_2 z^2 + x_3 z^3 + \cdots Y(\omega) = y_1 \omega + y_2 \omega^2 + y_3 \omega^3 + \cdots$$
 \rightarrow \(\text{\ti}\text{\texi{\text{\texi{\text{\texi{\text{\ti}\tittitt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\texi}\text{\text{\texi{\text{\text{\ti}\text{\text{\texi}\text{\texi{\texi{\texi{\texi{\texi{\texi{\ti}\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi}\t

X(0) = Y(0) = 0, and $|X(z)|, |Y(\omega)| < 1$. It is well-known that for ξ and ζ in (2.1),

(3.6)
$$X(z) = \left(\frac{\xi(z) - 1}{\xi(z) + 1}\right) = \frac{1}{2} \left[b_1 z + \left(b_2 - \frac{b_1^2}{2}\right) z^2 + \left(\frac{b_1^3}{2^2} - b_1 b_2 + b_3\right) z^3 + \cdots\right]$$

and

(3.7)
$$Y(\omega) = \left(\frac{\zeta(\omega) - 1}{\zeta(\omega) + 1}\right) = \frac{1}{2} \left[c_1 \omega + \left(c_2 - \frac{c_1^2}{2} \right) \omega^2 + \left(\frac{c_1^3}{2^2} - c_1 c_2 + c_3 \right) \omega^3 + \cdots \right]$$

so that by some calculations we have

$$(3.8) \quad \mathfrak{G}_{\alpha}(t,X(z)) = 1 + \frac{1}{2}C_{1}^{\alpha}(t)b_{1}z + \left[\frac{1}{2}C_{1}^{\alpha}(t)\left(b_{2} - \frac{b_{1}^{2}}{2}\right) + \frac{1}{4}C_{2}^{\alpha}(t)b_{1}^{2}\right]z^{2} + \left[\frac{1}{2}C_{1}^{\alpha}(t)\left(b_{3} - b_{1}b_{2} + \frac{b_{1}^{3}}{4}\right) + \frac{1}{2}C_{2}^{\alpha}(t)b_{1}\left(b_{2} - \frac{b_{1}^{2}}{2}\right) + \frac{1}{8}C_{3}^{\alpha}(t)b_{1}^{3}\right]z^{3} + \cdots$$

and

$$(3.9) \quad \mathfrak{G}_{\alpha}(t,Y(\omega)) = 1 + \frac{1}{2}C_{1}^{\alpha}(t)c_{1}\omega + \left[\frac{1}{2}C_{1}^{\alpha}(t)\left(c_{2} - \frac{c_{1}^{2}}{2}\right) + \frac{1}{4}C_{2}^{\alpha}(t)c_{1}^{2}\right]\omega^{2}$$

$$+ \left[\frac{1}{2}C_{1}^{\alpha}(t)\left(c_{3} - c_{1}c_{2} + \frac{c_{1}^{3}}{4}\right) + \frac{1}{2}C_{2}^{\alpha}(t)c_{1}\left(c_{2} - \frac{c_{1}^{2}}{2}\right) + \frac{1}{8}C_{3}^{\alpha}(t)c_{1}^{3}\right]\omega^{3} + \cdots$$

Using (1.7) with some calculations, then the LHS of (3.4) simplifies to

$$(3.10) \quad (1 - e^{-2\beta i}\mu^2 z^2) \frac{\mathfrak{D}^{n+1} F(z)}{z}$$

$$= 1 + 2^{n+1} a_2 z + (3^{n+1} a_3 - e^{-2\beta i}\mu^2) z^2 + (4^{n+1} a_4 - 2^{n+1} e^{-2\beta i}\mu^2 a_2) z^3 + \cdots$$

and using (1.6) and (1.7) in (3.5) shows that LHS of (3.5) gives

$$(3.11) \quad (1 - e^{-2\beta i}\mu^2\omega^2) \frac{\mathfrak{D}^{n+1}\mathfrak{F}(\omega)}{\omega}$$

$$= 1 - 2^{n+1}a_2\omega + [3^{n+1}(2a_2^2 - a_3) - e^{-2\beta i}\mu^2]\omega^2 - [4^{n+1}(5a_2^3 - 5a_2a_3 + a_4) - 2^{n+1}e^{-2\beta i}\mu^2a_2]\omega^3 + \cdots$$

If we compare the coefficients in (3.8), (3.9), (3.10), and (3.11); then it can easily be seen that

(3.12)
$$2^{n+1}a_2 = \frac{1}{2}C_1^{\alpha}(t)b_1,$$

(3.13)
$$3^{n+1}a_3 - e^{-2\beta i}\mu^2 = \frac{1}{2}C_1^{\alpha}(t)\left(b_2 - \frac{b_1^2}{2}\right) + \frac{1}{4}C_2^{\alpha}(t)b_1^2,$$

$$(3.14) 4^{n+1}a_4 - 2^{n+1}e^{-2\beta i}\mu^2a_2 = \frac{1}{2}C_1^{\alpha}(t)\left(b_3 - b_1b_2 + \frac{b_1^3}{4}\right) + \frac{1}{2}C_2^{\alpha}(t)b_1\left(b_2 - \frac{b_1^2}{2}\right) + \frac{1}{8}C_3^{\alpha}(t)b_1^3,$$

(3.15)
$$-2^{n+1}a_2 = \frac{1}{2}C_1^{\alpha}(t)c_1,$$

(3.16)
$$3^{n+1}(2a_2^2 - a_3) - e^{-2\beta i}\mu^2 = \frac{1}{2}C_1^{\alpha}(t)\left(c_2 - \frac{c_1^2}{2}\right) + \frac{1}{4}C_2^{\alpha}(t)c_1^2,$$

and

$$(3.17) \quad -4^{n+1} \left(5a_2^3 - 5a_2a_3 + a_4\right) + 2^{n+1}e^{-2\beta i}\mu^2 a_2$$

$$= \frac{1}{2}C_1^{\alpha}(t)\left(c_3 - c_1c_2 + \frac{c_1^3}{4}\right) + \frac{1}{2}C_2^{\alpha}(t)c_1\left(c_2 - \frac{c_1^2}{2}\right) + \frac{1}{8}C_3^{\alpha}(t)c_1^3.$$

Addition of (3.12) and (3.15) shows that

$$(3.18) b_1 = -c_1 and b_1^2 = c_1^2$$

and the addition of the squares of (3.12) and (3.15) shows that

(3.19)
$$2^{2n+5}a_2^2 = (C_1^{\alpha}(t))^2(b_1^2 + c_1^2).$$

Putting (3.18) into (3.19) shows that

(3.20)
$$b_1^2 = \frac{2^{2n+4}a_2^2}{(C_1^{\alpha}(t))^2} \implies a_2^2 = \frac{b_1^2(C_1^{\alpha}(t))^2}{2^{2n+4}}.$$

On the other hand, the addition of (3.13) and (3.16); and the substitution for b_1^2 from (3.20) show that

$$a_2^2 = \frac{(C_1^\alpha(t))^3(b_2+c_2) + 4e^{-2\beta i}\mu^2(C_1^\alpha(t))^2}{4\cdot 3^{n+1}(C_1^\alpha(t))^2 + 2^{2n+4}(C_1^\alpha(t) - C_2^\alpha(t))}$$

so using (1.4) gives

$$a_2^2 = \frac{\alpha^2 t^3 (b_2 + c_2) + 2\alpha t^2 e^{-2\beta i} \mu^2}{2 \cdot 3^{n+1} \alpha t^2 + 2^{2n+1} (2t - 2t^2 - 2\alpha t^2 + 1)}$$

and the application of Lemma 2.1 in the inequality

$$|a_2|^2 \leqslant \frac{\alpha^2 t^3 |b_2 + c_2| + 2\mu^2 |\alpha| t^2 |e^{-2\beta i}|}{2|3^{n+1}\alpha t^2 + 2^{2n}(2t - 2t^2 - 2\alpha t^2 + 1)|}$$

yields the desired result.

If we subtract (3.16) from (3.13), then we have

(3.21)
$$a_3 = a_2^2 + \frac{C_1^{\alpha}(t)(b_2 - c_2)}{2^2 \cdot 3^{n+1}}$$

so that by substituting for a_2^2 in (3.21) from (3.20) gives

(3.22)
$$a_3 = \frac{(C_1^{\alpha}(t))^2 b_1^2}{2^{2n+4}} + \frac{C_1^{\alpha}(t)(b_2 - c_2)}{2^2 \cdot 3^{n+1}}$$

and

$$|a_3| \leqslant \frac{(C_1^{\alpha}(t))^2 |b_1|^2}{2^{2n+4}} + \frac{|C_1^{\alpha}(t)| |b_2 - c_2|}{2^2 \cdot 3^{n+1}}$$

so that putting (1.4) into (3.23) and using Lemma 2.1 yield the desired result.

To find the bound on a_4 , we subtract (3.17) from (3.14) to get

$$a_4 = \frac{5 \cdot 2^n (C_1^{\alpha}(t))^2 (b_2 - c_2) b_1}{2^{2n+5} \cdot 3^{n+1}} + \frac{C_1^{\alpha}(t) (b_3 - c_3)}{2^{2n+4}} - \frac{[C_1^{\alpha}(t) - C_2^{\alpha}(t)] (b_2 + c_2) b_1}{2^{2n+4}} + \frac{[C_1^{\alpha}(t) - 2C_2^{\alpha}(t) + C_3^{\alpha}(t)] b_1^3}{2^{2n+5}} + \frac{C_1^{\alpha}(t) e^{-2\beta i} \mu^2 b_1}{2^{2n+3}}$$

and

$$(3.24) \quad |a_4| \leqslant \frac{5 \cdot 2^n (C_1^{\alpha}(t))^2 |b_2 - c_2| |b_1|}{2^{2n+5} \cdot 3^{n+1}} + \frac{|C_1^{\alpha}(t)| |b_3 - c_3|}{2^{2n+4}} + \frac{|C_1^{\alpha}(t) - C_2^{\alpha}(t)| |b_2 + c_2| |b_1|}{2^{2n+4}} + \frac{|C_1^{\alpha}(t) - 2C_2^{\alpha}(t) + C_3^{\alpha}(t)| |b_1|^3}{2^{2n+5}} + \frac{|C_1^{\alpha}(t)| |e^{-2i\beta}| \mu^2 |b_1|}{2^{2n+3}}$$

so that putting (1.4) into (3.24) and using Lemma 2.1 yield the desired result.

Remark 3.4. If we set $\alpha = 1$ in Theorem 3.3, then we will arrive at the results of Ayinla and Opoola [7, Theorem 3.2].

Theorem 3.5. *If* $F \in \mathfrak{B}^n(\beta, \mu; \mathfrak{G})$ *, then for a real value* ρ *,*

$$|a_3 - \rho a_2^2| \leqslant \begin{cases} \frac{2|\alpha|t}{3^{n+1}} & when \quad 0 \leqslant |\Upsilon(\rho)| \leqslant \frac{1}{3^{n+1}} \\ 2|\alpha|t|\Upsilon(\rho)| & when \quad |\Upsilon(\rho)| \geqslant \frac{1}{3^{n+1}} \end{cases}$$

where

$$\Upsilon(\rho) = \frac{\alpha t (1 - \rho)}{2^{2n+2}}.$$

Proof. Using (3.19) and (3.22) implies that

$$a_{3} - \rho a_{2}^{2} = \frac{(C_{1}^{\alpha}(t))^{2}(b_{1}^{2} + c_{1}^{2})}{2^{2n+5}} + \frac{C_{1}^{\alpha}(t)(b_{2} - c_{2})}{2^{2} \cdot 3^{n+1}} - \rho \frac{(C_{1}^{\alpha}(t))^{2}(b_{1}^{2} + c_{1}^{2})}{2^{2n+5}}$$

$$= \frac{C_{1}^{\alpha}(t)(b_{2} - c_{2})}{2^{2} \cdot 3^{n+1}} + \frac{(1 - \rho)(C_{1}^{\alpha}(t))^{2}(b_{1}^{2} + c_{1}^{2})}{2^{2n+5}}$$

$$= \frac{C_{1}^{\alpha}(t)}{2^{2}} \left\{ \frac{(b_{2} - c_{2})}{3^{n+1}} + \frac{(1 - \rho)C_{1}^{\alpha}(t)(b_{1}^{2} + c_{1}^{2})}{2^{2n+3}} \right\}$$
(3.25)

so that

$$(3.26) |a_3 - \rho a_2^2| \leqslant \frac{|C_1^{\alpha}(t)|}{2^2} \left\{ \frac{|b_2 - c_2|}{3^{n+1}} + |b_1^2 + c_1^2||\Upsilon(\rho)| \right\}$$

for

$$\Upsilon(\rho) = \frac{(1-\rho)C_1^{\alpha}(t)}{2^{2n+3}}.$$

So, using (1.4) and Lemma 2.1 yields the desired result.

Theorem 3.6. *If* $F \in \mathfrak{B}^n(\beta, \mu; \mathfrak{G})$, then for a complex value ϱ ,

$$|a_3 - \varrho a_2^2| \leqslant \begin{cases} \frac{2|\alpha|t}{3^{n+1}} & when \quad |1 - \varrho| \in \left[0, \frac{2^{2^{n+1}}}{3^{n+1}|\alpha|t}\right) \\ \frac{\alpha^2 t^2 |1 - \varrho|}{2^{2^n}} & when \quad |1 - \varrho| \in \left[\frac{2^{2^{n+1}}}{3^{n+1}|\alpha|t}, 0\right). \end{cases}$$

Proof. Using (3.18) in (3.25) yields

$$a_3 - \varrho a_2^2 = \frac{C_1^{\alpha}(t)(b_2 - c_2)}{2^2 \cdot 3^{n+1}} + \frac{2b_1^2(1 - \varrho)(C_1^{\alpha}(t))^2}{2^{2n+5}}$$

so that the application of Proposition 2.3 gives

(3.27)
$$a_3 - \varrho a_2^2 = \frac{C_1^{\alpha}(t)(4 - b_1^2)(p - q)}{2^3 \cdot 3^{n+1}} + \frac{b_1^2(1 - \varrho)(C_1^{\alpha}(t))^2}{2^{2n+4}}.$$

Now without any restriction, let $b = b_1$ and by Lemma 2.1 we know that $b \in [0, 2]$. Also, for simplicity reason, let P = |p| < 1 and Q = |q| < 1; and with some rearrangement, (3.27) simplifies to

$$|a_3 - \varrho a_2^2| \leqslant |1 - \varrho| \frac{b^2 |C_1^{\alpha}(t)|^2}{2^{2n+4}} + \frac{|C_1^{\alpha}(t)|(4 - b^2)}{2^3 \cdot 3^{n+1}} (P + Q) = \Psi(P, Q).$$

Since $P, Q \in [0, 1]$, then

$$\max\{\Psi(P,Q)\} = \Psi(1,1) = |1 - \varrho| \frac{b^2 |C_1^{\alpha}(t)|^2}{2^{2n+4}} + \frac{|C_1^{\alpha}(t)|(4 - b^2)}{2^2 \cdot 3^{n+1}}$$

and with some simplifications we have

(3.28)
$$\Psi(1,1) = \frac{|C_1^{\alpha}(t)|}{3^{n+1}} + \frac{|C_1^{\alpha}(t)|^2}{2^{2n+4}} \left\{ |1 - \varrho| - \frac{2^{2n+2}}{3^{n+1}|C_1^{\alpha}(t)|} \right\} b^2 = \Phi(b).$$

Also, since $b \in [0, 2]$, then

$$\Phi'(b) = \frac{|C_1^{\alpha}(t)|^2}{2^{2n+3}} \left\{ |1 - \varrho| - \frac{2^{2n+2}}{3^{n+1}|C_1^{\alpha}(t)|} \right\} b$$

shows that there is a critical point at b = 0, hence for $\Phi'(b) < 0$,

$$|1 - \varrho| \in \left[0, \frac{2^{2n+2}}{3^{n+1}|C_1^{\alpha}(t)|}\right).$$

This means that $\Phi(b)$ is strictly a decreasing function of $|1 - \varrho|$, hence from (3.28)

(3.29)
$$\max\{\Phi(b): b \in [0,2]\} = \Phi(0) = \frac{|C_1^{\alpha}(t)|}{3^{n+1}}.$$

Also for $\Phi(b) \geqslant 0$,

$$|1 - \varrho| \in \left[\frac{2^{2n+2}}{3^{n+1} |C_1^{\alpha}(t)|}, 0 \right)$$

which implies that $\Phi(b)$ is an increasing function of $|1 - \varrho|$, hence from (3.28),

(3.30)
$$\max\{\Phi(b): b \in [0,2]\} = \Phi(2) = \frac{|1-\varrho||C_1^\alpha(t)|^2}{2^{2n+2}}.$$

Thus, putting (3.29) and (3.30) together and using (1.4) give the desired result.

4. CONCLUSION

In this investigation, we studied a certain class of regular functions in relation to the subordination principle and the well-known Gegenbauer polynomials. This class consists of regular and bi-univalent functions that are defined in the unit disk. Some achieved results include some early coefficient bounds and the upper estimates for the Fekete-Szegö inequalities with real and complex parameters. The obtained results extend that of Ayinla and Opoola [7] and others.

REFERENCES

- [1] I. Al-Shbeil, A. Cătaş, H.M. Srivastava, N. Aloraini, Coefficient estimates of new families of analytic functions associated with *q*-Hermite polynomials, Axioms 12 (2023) 52. https://doi.org/10.3390/axioms12010052.
- [2] A. Amourah, A.G. Al-Amoush, M. Al-Kaseasbeh, Gegenbauer polynomials and bi-univalent functions, Palestine J. Math. 10 (2021), 625–632.
- [3] I.T. Awolere, A.T. Oladipo, Coefficients of bi-univalent functions involving pseudo-starlikeness associated with Chebyshev polynomials, Khayyam J. Math. 5 (2019), 140–149. https://doi.org/10.22034/kjm.2019.81231.
- [4] R.O. Ayinla, On some new results of a subclass of univalent functions, Researchjournali's J. Math. 4 (2017), 1–6.
- [5] R.O. Ayinla, Estimates of Fekete-Szegő functional of a subclass of analytic and bi-univalent functions by means of Chebyshev polynomials, J. Progr. Res. Math. 8 (2021), 48–54.
- [6] R.O. Ayinla, T.O. Opoola, New result for strongly starlike functions, Appl. Math. 8 (2017), 324–328. https://doi.org/10.4236/am. 2017.83027.
- [7] R.O. Ayinla, T.O. Opoola, Initial coefficient bounds and second Hankel determinant for a certain class of bi-univalent functions using Chebyshev polynomials, Gulf J. Math. 14 (2023), 160–172. https://doi.org/10.56947/gjom.v14i1.1092.
- [8] D.A. Brannan, J.G. Clunie (Eds.), Aspects of contemporary complex analysis, in: Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, July 1–20, 1979, Academic Press, New York, 1980.
- [9] S. Bulut, N. Magesh, On the sharp bounds for a comprehensive class of analytic and univalent functions by means of Chebyshev polynomials, Khayyam J. Math. 2 (2016), 194–200. https://doi.org/10.22034/kjm.2017.43707.
- [10] B.C. Carlson, Expansion of analytic functions in Jacobi series, SIAM J. Math. Anal. 5 (1974), 797–808. https://doi.org/10.1137/0505076.
- [11] P.L. Duren, Univalent Functions, Springer-Verlag Inc., New York, 1983.
- [12] A. Ebadian, N.E. Cho, E.A. Adegani, S. Bulut, T. Bulboacă, Radii problems for some classes of analytic functions associated with Legendre polynomials of odd degree. J. Inequal. Appl. 2020 (2020), 178. https://doi.org/10.1186/s13660-020-02443-4.
- [13] M. Foupouagnigni, An introduction to Orthogonal Polynomials. In: Foupouagnigni, M., Koepf, W. (eds) Orthogonal Polynomials. AIMSVSW 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. (2020). https://doi.org/10. 1007/978-3-030-36744-2_1.
- [14] W. Gautschi, Orthogonal polynomials: applications and computation, Acta Numerica. 5 (1996), 45–119. https://doi.org/10.1017/s0962492900002622.
- [15] D. Jackson, Fourier series and orthogonal polynomials, Publications, New York, 2004.
- [16] A.O. Lasode, Estimates for a generalized class of analytic and bi-univalent functions involving two q-operators, Earthline J. Math. Sci. 10 (2022), 211–225. https://doi.org/10.34198/ejms.10222.211225.
- [17] A.O. Lasode, T.O. Opoola, On a generalized class of bi-univalent functions defined by subordination and q-derivative operator, Open J. Math. Anal. 5 (2021), 46–52. https://doi.org/10.30538/psrp-oma2021.0092.
- [18] A.O. Lasode, T.O. Opoola, Hankel determinant of a subclass of analytic and bi-univalent functions defined by means of subordination and *q*-differentiation, Int. J. Nonlinear Anal. Appl. 13 (2022), 3105–3114. https://doi.org/10.22075/IJNAA.2022.24577. 2775.
- [19] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68. https://doi.org/10.1090/ S0002-9939-1967-0206255-1.
- [20] R.J. Libera, E.J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), 225–230. https://doi.org/10.1090/S0002-9939-1982-0652447-5.
- [21] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Ration. Mech. Anal. 32 (1969), 100–112. https://doi.org/10.1007/BF00247676.
- [22] E.A. Oyekan, Gegenbauer polynomials for certain subclasses of Bazilevič functions associated with a generalized operator defined by convolution, Gulf J. Math. 14 (2023), 77–88. https://doi.org/10.56947/gjom.v14i2.967.
- [23] E.A. Oyekan, S.O. Aderibola, New results on the Chebyshev polynomial bounds for classes of univalent functions, Asia Pac. J. Math. 7 (2020), 12–22. https://doi.org/10.28924/APJM/7-24.
- [24] E.A. Oyekan, I.T. Awolere, Polynomial bounds for bi-univalent functions associated with the probability of generalized distribution defined by generalized polylogarithms via Chebyshev polynomials, Coast J. Fac. Sci. Technol., Okitipupa. 2 (2020), 222–224.
- [25] E.A. Oyekan, A.O. Lasode, Estimates for some classes of analytic functions associated with Pascal distribution series, error function, Bell numbers and *q*-differential operator, Nigerian J. Math. Appl. 32 (2022), 163–173.
- [26] E.A. Oyekan, T. A. Olatunji and A. O. Lasode, Applications of (p,q)-Gegenbauer polynomials on a family of bi-univalent functions, Earthline J. Math. Sci. 12 (2023), 271–284. https://doi.org/10.34198/ejms.12223.271284.
- [27] G.S. Sălăgean, Subclasses of univalent functions, Lect. Notes Math. 1013 (1983), 362–372. https://doi.org/10.1007/BFb0066543.

- [28] T.G. Shaba, Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator, Turk. J. Ineq. 4 (2020), 50–58.
- [29] T.G. Shaba, A.K. Wanas, Coefficient bounds for a new family of bi-univalent functions associated with (U, V)-Lucas polynomials, Int. J. Nonlinear Anal. Appl. 13 (2022), 615–626. https://doi.org/10.22075/IJNAA.2021.23927.2639.
- [30] H.M. Srivastava, S.S. Eker, R.M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Fac. Sci. Math. Univ. Niš, Serbia, 29 (2015), 1839–1845. https://doi.org/10.2298/FIL1508839S.
- [31] H.M. Srivastava, A.K. Mishra, P. Gochhayt, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009.
- [32] S.R. Swamy, E.A. Oyekan, P.O. Adepoju, A.O. Lasode, A subclass of Bazilevič functions associated with combination of Opoola and Swamy operators and satisfying subordinate condition, Ann. Math. Comp. Sci. 17 (2023), 1–9.
- [33] G. Szegö, On certain special sets of orthogonal polynomials, Proc. Amer. Math. Soc. 1 (1950), 731–737.
- [34] D.L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A. 5 (1984), 559-568.
- [35] A.K. Wanas, A.A. Lupaş, Applications of Laguerre polynomials on a new family of bi-prestarlike functions, Symmetry 14 (2022), 645. https://doi.org/10.3390/sym14040645.