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MEASURE ON A LATTICE OF INFINITE TUPLES OF REAL NUMBERS

NORRIS SOOKOO

ABSTRACT. We consider the analogue of measure on a ring of sets, by defining a lattice-measure on a lattice-ring
of elements of a lattice of infinite tuples of real numbers. We obtain various results about the convergence of
sequences of tuples in the lattice with respect to the lattice-measure and use these results to show that the limit of
a convergent sequence in a lattice sigma-ring is also in the lattice sigma-ring under certain conditions.

1. INTRODUCTION

In classical Measure Theory, measures are defined on rings of sets. These measures have been exten-
sively studied, but comparatively little study has been done on measures on lattices. A type of measure
called a modular measure has been investigated. Guiseppina Barbieri [3] proved an extension theorem for
modular measures on lattice ordered algebras and used this theorem to obtain analogues of the Nikodym
theorem and other theorems. Avallone and Vitolo [1] obtained results about a modular measure on a
pseudo-D-lattice, and Avallone, De Simone and Vitolo [2] proved a Caratheodory type extension theorem
for σ-additive exhaustive modular measures on σ-continuous pseudo-D-lattices.

The concept of a modular measure is significantly different from the concept of a measure in classical
Measure Theory. However, we define a measure called a lattice-measure or l-measure on a lattice of infinite
tuples of real numbers in such a way that it has many similarities to a measure defined on a ring of subsets
of a set. In order to do this, we utilize the concept of a lattice-ring, which was introduced by Sookoo [5]. A
lattice-ring is the analogue of a ring of sets as defined in the study of measures in Functional Analysis, and
a lattice sigma-ring is the analogue of a sigma-ring. We define and study an l-measure on a lattice ring, as
well as an l-measure on a lattice sigma-ring. In so doing, we investigate relationships between the lattice
structure and the l-measure and obtain properties of the l-measure.

Convergence in measure of functions has been investigated and continues to be of interest. Recent stud-
ies on this topic include work done by Unver and Sagiroglu [6] and by Wilczynski [7]. We study conver-
gence in measure for sequences of lattice elements, establishing that for certain such sequences, we can
construct sequences that converge in measure to the upper bound of the original sequence, where each
tuple of a sequence so constructed is made up of coordinate elements from possibly different tuples of the
original sequence. Our approach in establishing most of these results is to consider the k-th coordinate of
the infinite tuples, for each fixed, arbitrary natural number k. In doing so, we work with sequences of real
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numbers, and apply the methods of Real Analysis to establish convergence or whatever is required to prove
the result in question.

These results are utilized in proving Theorem 5.2, the main theorem of the paper, which states that if a
sequence of elements of a lattice-ring S converges in measure to some limit, then the limit also must be in
S, provided that the sequence satisfies certain conditions. This is done by first establishing the result for
sequences for which the values in each coordinate position are either monotone increasing or monotone
decreasing.

The main aim of this paper is to investigate measures on lattices, starting with a lattice of tuples of real
numbers, with the intention of stimulating the further development of the study of measures on lattices in
general.

2. DEFINITIONS AND NOTATION

We will use the following notation:
R = the set of real numbers,
N = the set of natural numbers,
U = {(a1, a2, ...) | ai ∈ R, ai ≥ 0,∀i ∈ N}
0̄ or (0, 0, ...) = the zero element of U.
āi = (ai1, ai2, ...) for any element of U denoted by āi
(ā− b̄)i = the ith component of ā− b̄, for ā, b̄ ∈ U
µ is the function defined on U by

µ(ā) =

∞∑
i=1

ai

for any element ā ∈ U, where ā = (a1, a2, ...).
Definition 2.1 to Definition 2.4 are similar to definitions in [5].

Definition 2.1. A partial ordering on U is given by

ā ≤ b̄⇐⇒ ai ≤ bi,∀i ∈ N

for any elements ā, b̄ ∈ U, where ā = (a1, a2, ...) and b̄ = (b1, b2, ...).

Definition 2.2. Subtraction is defined on U as follows:
Given elements ā, b̄ ∈ U, where ā = (a1, a2, ...) and b̄ = (b1, b2, ...)

ā− b̄ = c̄

where ∀i ∈ N

ci =

ai − bi, if ai ≥ bi
0, if ai < bi

and
c̄ = (c1, c2, ...)

Definition 2.3. An l-ring or lattice ring of lattice elements is a non-empty subset R of U 3 for any two
elements ā and b̄ of R, ā ∨ b̄ ∈ R and ā− b̄ ∈ R.

Definition 2.4. An lσ-ring is a non-empty subset S of U 3
(1) If ā, b̄ ∈ S, then ā− b̄ ∈ S
(2) If āi ∈ S, ∀i ∈ N, then

∨∞
i−1 āi ∈ S

The definitions below are analogues of definitions from classical Measure Theory [c.f.[4]].
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Definition 2.5. A function η defined on a subset E of U is called additive if for any two elements ā and b̄ in
E 3 ā ∨ b̄ is also in E and ā ∧ b̄ = 0̄,

η(ā ∨ b̄) = η(ā) + η(b̄)

Definition 2.6. A function η defined on a subset E of U is called finitely additive if

η(ā1 ∨ ā2 ∨ ... ∨ ān) =

n∑
i=1

η(āi)

for any finite set {ā1, ā2, ..., ān} of distinct elements of U satisfying the condition that for any two distinct
elements i, j ∈ {1, 2, ..., n}, āi ∧ āj = 0̄.

Definition 2.7. A function η defined on a subset E of U is called countably additive if

η

( ∞∨
i=1

āi

)
=

∞∑
i=1

η(āi)

for any countably set {ā1, ā2, ...} of distinct elements of U satisfying the condition that for any two distinct
elements i, j ∈ N, āi ∧ āj = 0̄.

Definition 2.8. A lattice-measure or l-measure is an extended, real-valued, non-negative and countably
additive function η defined on an l-ring R 3 η(0̄) = 0, where 0̄ is the zero element of the lattice.

Definition 2.9. If η is an l-measure on the l-ring R, then an element ē of the l-ring R is said to have finite
measure if η(ē) <∞.

Definition 2.10. A hereditary set E of elements of U is a subset of U that has the property that if f̄ ∈ E and
ē ≤ f̄ , then ē is also an element of E.

Definition 2.11. IfE is any set of lattice elements, then the hereditary lσ-ring generated by E is the smallest
hereditary lσ-ring containing E. It is denoted by lH(E).

Definition 2.12. An extended, real-valued function µ∗ defined on a set E of lattice elements is subadditive
if

µ∗(a ∨ b) ≤ µ∗(a) + µ∗(b),∀a, b ∈ E 3 a ∨ b ∈ E.

Definition 2.13. An extended, real-valued function µ∗ defined on a set E of lattice elements is finitely
subadditive if for any finite subset {ā1, ā2, ..., ān} of E 3

∨n
i=1 āi ∈ E,

µ∗

(
n∨
i=1

āi

)
≤

n∑
i=1

µ∗(āi)

Definition 2.14. An extended, real-valued function µ∗ defined on a set E of lattice elements is countably
subadditive if for any countable subset {āi} of E 3

∨∞
i=1 āi ∈ E,

µ∗

( ∞∨
i=1

āi

)
≤
∞∑
i=1

µ∗(āi)

Definition 2.15. A function η on a set E ⊆ U is monotone increasing if

η(ē) ≤ η(f̄),∀ē, f̄ ∈ E 3 ē ≤ f̄

Definition 2.16. A function η on a set E ⊆ U is monotone decreasing if

η(ē) ≥ η(f̄),∀ē, f̄ ∈ E 3 ē ≤ f̄
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Definition 2.17. A function η on a set E ⊆ U is subtractive if

η(f̄ − ē) = η(f̄)− η(ē)

∀ē, f̄ ∈ E 3 ē ≤ f̄ and f̄ − ē ∈ E.

Definition 2.18. A sequence {ēj}; j = 1, 2, ... in U is said to converge in measure to an element v̄ of U if,
given ε > 0,∃ a natural number M 3

max{µ(ēj − v̄), µ(v̄ − ēj)} < ε,∀j > M

3. PROPERTIES OF L-MEASURES

The following theorem is obvious.

Theorem 3.1. Let R be an l-ring of elements of U. Then µ is an l-measure on R.

The following theorem is the analogue of Theorem A, page 37, [4].

Theorem 3.2. µ is monotone and subtractive.

Proof. Clearly, µ is monotone. We now show that µ is also subtractive. Let ē, f̄ ∈ U 3 ē ≤ f̄ where
ē = (e1, e2, ...), f̄ = (f1, f2, ...). Then

µ(f̄ − ē) = µ(f1 − e1, f2 − e2, ...)(3.1)

=

∞∑
i=1

(fi − ei)(3.2)

=

∞∑
i=1

fi −
∞∑
i=1

ei(3.3)

= µ(f̄)− µ(ē)(3.4)

�

The following theorem is the analogue of Theorem B, page 37, [4].

Theorem 3.3. Let S be an lσ-ring of elements of U and let ē0 ∈ S. If {ēn} is a sequence of elements of S 3 ē0 ≤∨∞
i=1 ēi, where each component of

∨∞
i=1 ēi is finite, then µ(ē0) ≤

∑∞
i=1 µ(ēi).

Proof. Let
∨∞
i=1 ēi = (ê1, ê2, ...).

Then

µ(ē0) =

∞∑
i=1

e0i(3.5)

≤
∞∑
i=1

sup{e1i, e2i, ...}(3.6)

=

∞∑
i=1

êi(3.7)

≤
∞∑
i=1

(
eki +

ε

2i

)
, for some k ∈ N(3.8)

≤
∞∑
i=1

 ∞∑
j=1

eji +
ε

2i

(3.9)
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=

∞∑
i=1

∞∑
j=1

eji +

∞∑
i=1

ε

2i
(3.10)

=

∞∑
j=1

∞∑
i=1

eji + ε

∞∑
i=1

1

2i
(3.11)

=

∞∑
j=1

µ(ēj) + ε(3.12)

Since ε is arbitrary

µ(ē0) =

∞∑
i=1

µ(ēi)

�

Theorem 3.4. Let ā, b̄ ∈ U. Then

µ(ā ∨ b̄) = µ(ā− b̄) + µ(ā ∧ b̄) + µ(b̄− ā)

Proof. Let i ∈ N. We consider the ith components of ā and b̄.
Case 1 ai ≥ bi

(ā ∨ b̄) = ai(3.13)

(ā− b)i = ai − bi(3.14)

(ā ∧ b̄)i = bi(3.15)

(b̄− ā)i = 0(3.16)

Therefore, (ā ∨ b̄)i = (ā− b̄)i + (ā ∧ b̄)i + (b̄− ā)i(3.17)

Case 2 ai < bi

(ā ∨ b̄)i = bi(3.18)

(ā− b̄)i = 0(3.19)

(ā ∧ b̄)i = ai(3.20)

(b̄− ā)i = bi − ai(3.21)

Therefore, (ā ∨ b̄)i = (ā− b̄)i + (ā ∧ b̄)i + (b̄− ā)i(3.22)

From the above we can see that

µ(ā ∨ b̄) = µ(ā− b̄) + µ(ā ∧ b̄) + µ(b̄− ā)

�

Theorem 3.5. Let ā, b̄ ∈ N. Then

µ[(ā− b̄) ∨ (b̄− ā)] = µ(ā− b̄) + µ(b̄− ā)

Proof. We will show that ∀i ∈ N

[(ā− b̄) ∨ (b̄− ā)]i = (ā− b̄)i + (b̄− ā)i
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We consider all possible conditions on the relative sizes of ai and bi.
Case 1 ai ≥ bi

[(ā− b̄) ∨ (b̄− ā)]i = āi − b̄i(3.23)

(ā− b̄)i + (b̄− ā)i = ai − bi(3.24)

(3.25)

Case 2 ai < bi

[(ā− b̄) ∨ (b̄− ā)]i = bi − ai(3.26)

(ā− b̄)i + (b̄− ā)i = bi − ai(3.27)

Hence ∀i ∈ N

[(ā− b̄) ∨ (b̄− ā)]i = (ā− b̄)i + (b̄− ā)i(3.28)

µ[(ā− b̄) ∨ (b̄− ā)] =

∞∑
i=1

[(ā− b̄) ∨ (b̄− ā)]i(3.29)

=

∞∑
i=1

[(a− b)i + (b− a)i](3.30)

= µ(ā− b̄) + µ(b̄− ā)(3.31)

�

The next theorem was suggested by part of Theorem A, page 42, [4].

Theorem 3.6. let R be an l-ring of elements of the lattice (U,≤) and let µe be the function on lH(R) defined by

µe(ā) = inf
{
µ(b̄) | b̄ ∈ R, ā ≤ b̄

}
,∀ā ∈ lH(R)

Then µe is countably subadditive.

Proof. Let {āi} be a sequence in lH(R). Given ε > 0, for each i ∈ N,∃b̄i ∈ R 3 āi ≤ b̄i and

µ(b̄i) ≤ µe(āi) +
ε

2i

Now

µe (∨∞i=1āi) = inf
{
µ(b̄) | b̄ ∈ R,∨∞i=1āi ≤ b̄

}
(3.32)

≤ µ
(
∨∞i=1b̄i

)
, since ∨∞i=1 āi ≤ ∨∞i=1b̄i(3.33)

≤
∞∑
i=1

µ(b̄i)(3.34)

because if the first coordinate of ∨∞i=1b̄i tends to the limit L as n → ∞, then the contribution to µ
(
∨∞i=1b̄i

)
from the first coordinate must be less than or equal to the contribution to

∑∞
i=1 µ(b̄i) from the first coordi-

nates of b̄1, b̄2, ... and if the first coordinate of ∨∞i=1b̄i is equal to the first coordinate of b̄h, for some h ∈ N,
then clearly in this case also the contribution to µ

(
∨∞i=1b̄i

)
from the first coordinate must be less than or

equal to the contribution to
∑∞
i=1 µ(b̄i) from all the first coordinates of b̄1, b̄2, ... and the same is true of the

other coordinates. Also
∞∑
i=1

µ(b̄i) ≤
∞∑
i=1

[
µe(āi) +

ε

2i

]
≤
∞∑
i=1

µe(āi) + ε
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We have shown that

µe (∨∞i=1āi) ≤
∞∑
i=1

µe(āi) + ε

Since ε is arbitrary,

µe (∨∞i=1āi) ≤
∞∑
i=1

µe(āi)

�

4. CONVERGENCE IN MEASURE

Theorem 4.1. Let {ēk} be a sequence of elements of U 3 ehi = 0 if i > m,∀h ∈ N, where m is a fixed, arbitrary
natural number. If (ê1, ê2, ...) = ē1 ∨ ē2 ∨ ... and êi is finite for each i ∈ N, then ∃ a sequence{

(ek1j1, ek2j2, ..., ekmjm, 0, 0, ...)
}

; j = 1, 2, ... which converges to (ê1, ê2, ...) in measure.

Proof. Given ε > 0, for each i ≤ m,∃ Ni ∈ N and kij ∈ N 3∣∣êi − ekiji∣∣ < ε

2i
,∀j > Ni

Let N = max{N1, N2, ..., Nm}. Then

(4.1)

max
{
µ[(ek1j1, ek2j2, ..., ekmjm, 0, 0, ...)− (ê1, ê2, ...)],

µ[(ê1, ê2, ...)− (ek1j1, ek2j2, ..., ekmjm, 0, 0, ...)]
}

=|ê1 − ek1j1|+ |ê2 − ek2j2|+ ...+ |êm − ekmjm|

<
ε

2
+

ε

22
+ ...+

ε

2m
< ε,∀j > N

Hence
{

(ek1j1, ek2j2, ..., ekmjm, 0, 0, ...)
}

; j = 1, 2, ... converges to (ê1, ê2, ...) in measure. �

Theorem 4.2. Let {ēh} be a sequence of elements of U. If ê = (ê1, ê2, ...) = ē1 ∨ ē2 ∨ ..., and µ(ê) is finite, then ∃ a
sequence {ḡj} = {(eh1j1, eh2j2, ...)}; j = 1, 2, ... which converges to (ê1, ê2, ...) in measure.

Proof. Choose a monotone-decreasing sequence {εi} which converges to zero. Given ε > 0,∃ N̂ > 0 3∑∞
i=N̂+1 êi <

ε1
2 . From the previous theorem, ∃ a sequence

{
(ek1j1, ek2j2, ..., ekN̂jN̂

, 0, 0, ...)
}

; j = 1, 2, ...

which converges to (ê1, ê2, ..., êN̂ , 0, 0, ...) in measure. Hence ∃ N1 > 0 3
µ
[
(ê1, ê2, ..., êN̂ , 0, 0, ...)− (ek1j1, ek2j2, ..., ekN̂jN̂

, 0, 0, ...)
]
< ε1

2 ,∀j > N1.

Choose J > N1 and consider (ek1J1, ek2J2, ..., ekN̂jN̂
, e1(N̂+1), e1(N̂+2), ...), which we will call

(eh111, eh212, ...). Then

(4.2)

µ[(ê1, ê2, ...)− (eh111, eh212, ...)]

=µ[(ê1, ê2, ..., êN̂ , 0, 0, ...)− (ek1j1, ek2j2, ..., ekN̂jN̂
, 0, 0, ...)]

+ µ[(0, 0, , ..., êN̂+1, êN̂+2, ...)− (0, 0, ..., e1(N̂+1), e1(N̂+2), ...)]

<
ε1
2

+
ε1
2

=ε1

Similarly ∃ a tuple (eh121, eh222, ...) 3

µ[(ê1, ê2, ...)− (eh121, eh222, ...)] < ε2
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and in general, for each p ∈ N ∃ a tuple (eh1p1, eh2p2, ...) 3

µ[(ê1, ê2, ...)− (eh1p1, eh2p2, ...)] < εp

Clearly the sequence {ḡj} = {(eh1j1, eh2j2, ...)}; j = 1, 2, ... converges to (ê1, ê2, ...) in measure. �

Theorem 4.3. Let {ēh} be a sequence of U. If ê = (ê1, ê2, ...) = ē1 ∨ ē2 ∨ ... and µ(ê) is finite , then ∃ a monotone-
increasing sequence {q̄j} which converges to ê in measure, where the ith component of q̄j is the ith component of one
of the ēh for i, j ∈ N.

Proof. In the proof of the previous theorem, it was established that the sequence {ḡj} converges to ê in
measure. Let

q̄1 = ḡ1, q̄2 = ḡ1 ∨ ḡ2, ..., q̄j = ḡ1 ∨ ḡ2 ∨ ... ∨ ḡj ; j ∈ N

Clearly {q̄j} is a monotone-increasing sequence which converges to ê in measure. �

5. CONVERGENCE IN THE Lσ-RING S

In this section we show that under certain conditions, if {an} is a sequence in the σ-ring S and {an}
converges to L in U, then L ∈ S.

The following theorem is the analogue of the result in lines 14 and 15 of [4].

Theorem 5.1. If S is an lσ-ring of elements of the lattice (U,≤), āi ∈ S, µ(āi) <∞ for each i ∈ N, and µ(∨∞i=1āi) <

∞, then ∧∞i=1āi ∈ S.

Proof. Let ū = (u1, u2, ...) = ∨∞i=1āi and l̄ = (l1, l2, ...) = ∧∞i=1āi. We establish that l ∈ S by showing that

(5.1) ∨∞i=1(ū− āi) = ū− l̄ ∈ S

and hence that l̄ = ū− (ū− l̄) ∈ S, since the kth coordinate of l̄ is less than or equal to the kth coordinate of
ū, for each k ∈ N and both coordinates must be finite.
We prove (5.1) by considering the kth coordinate of the tuple {ū − ān}, where k is an arbitrary natural
number. There are two cases to consider.
Case1 lk ∈ {ank | n = 1, 2, ...} so that lk = an0k, say.

uk − lk = uk − an0k ≥ uk − ank,∀n ∈ N

Case2 lk /∈ {ank | n = 1, 2, ...}
There exists a subsequence {aiknk

};n = 1, 2, ... of the sequence {ank};n = 1, 2, ... converging to lk from
above. Also ank ≥ lk for n = 1, 2, ... and for each k ∈ {1, 2, ...}.

By considering all different relative sizes of uk, ank and lk, k ∈ N, it is easy to see that

uk − ank ≤ uk − lk,∀n ∈ N and ∀k ∈ N

Given ε > 0,∃ N ∈ N 3 0 ≤ aiknk
− lk < ε,∀n > N.

Now
(uk − lk)− (uk − aiknk

) ≤ aiknk
− lk,∀n > N

Therefore
0 ≤ (uk − lk)− (uk − aiknk

) < ε,∀n > N

Hence {uk − aiknk
};n = 1, 2, ... is a subsequence of the sequence {uk − ank};n = 1, 2, ... which converges to

(uk − lk) from below.
From Case 1 and Case 2, we see that ∨∞i=1(ū− āi) = ū− l̄ ∈ S.
We have therefore established (5.1). �
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Theorem 5.2. Let S be an lσ-ring of elements of (U,≤) and let {ān} be a sequence of elements of S 3 µ(āi) < ∞
for each i ∈ N, and µ(∨∞i=1āi) <∞. If {ān} converges in measure to L ∈ U , then L ∈ S.

Proof. Assume that {ān} converges in measure to L ∈ U .
We first establish that if for each k ∈ N, either:
(1) ank ≥ Lk,∀n ∈ N and a1k ≥ a2k ≥ ... or
(2) ank ≤ Lk,∀n ∈ N and a1k ≤ a2k ≤ ...
then L ∈ S, where L = (L1, L2, ...).

Consider the sequence {b̄n}, where
b̄1 = ā1 ∨ ā2 ∨ ā3...
b̄2 = ā2 ∨ ā3 ∨ ā4...
b̄3 = ā3 ∨ ā4 ∨ ā5...
...
Also, let B = b̄1 ∧ b̄2 ∧ b̄3 . . . ∈ S, from the previous theorem.
It is clear that L = B ∈ S.

We next establish that for any sequence {an} of elements of S that satisfies the given conditions, L is also
in S.
There exists a subsequence {āin1

};n = 1, 2, ... of the sequence {ān};n = 1, 2, ... 3 the subsequence
{āin1

};n = 1, 2, ... is either monotone increasing or monotone decreasing. Also, there exists a subsequence
{āin2

};n = 1, 2, ... of the subsequence {āin1
};n = 1, 2, ... 3 the subsequence {āin2

};n = 1, 2, ... is either
monotone increasing or monotone decreasing.

In general, there exists a subsequence {āinm};n = 1, 2, ... of the subsequence {āin(m−1)
};n = 1, 2, ...

for each m ∈ {2, 3, ...} 3 the sequence {āinmm};n = 1, 2, ... is either monotone increasing or monotone
decreasing. We can conclude that there exists a subsequence {b̄n};n = 1, 2, ... of {ān};n = 1, 2, ... 3 for
each k ∈ N, the sequence {b̄nk};n = 1, 2, ... is either monotone increasing or monotone decreasing. Now,
{b̄n};n = 1, 2, ... will converge in measure to L and will also satisfy the condition at the beginning of this
proof. Hence L ∈ S. �
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