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THE SEQUENCE SPACE V Iσ (p)

KHALID EBADULLAH

ABSTRACT. In this article we introduce the sequence spaces V I0σ(p) and V Iσ (p), where p = (pk) is a sequence of
positive reals and study the topology that arises on the said spaces.

1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively.
We write

ω = {x = (xk) : xk ∈ R or C },
the space of all real or complex sequences.
Let `∞, c and c0 denote the Banach spaces of bounded, convergent and null sequences respectively normed
by

||x||∞ = sup
k
|xk|

Let v denote the space of sequences of bounded variation, that is

v = {x = (xk) :

∞∑
k=0

|xk − xk−1| <∞, x−1 = 0}

v is a Banach space normed by

||x|| =
∞∑
k=0

|xk − xk−1|

Let σ be an injection of the set of positive integers N into itself having no finite orbits and T be the operator
defined on `∞ by T (xk) = (xσ(k)).
A positive linear functional φ, with ||φ|| = 1, is called a σ-mean or an invariant mean if φ(x) = φ(Tx) for all
x ∈ `∞.
A sequence x is said to be σ-convergent, denoted by x ∈ Vσ , if φ(x) takes the same value, called σ − limx,
for all σ-means φ. We have

Vσ = {x = (xk) :

∞∑
m=1

tm,k(x) = L uniformly in k, L = σ − limx},

where for m ≥ 0, k > 0

tm,k(x) =
xk + xσ(k) + .....+ xσm(k)

m+ 1
, and t−1,k = 0
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where σm(k) denotes the mth iterate of σ at k. In particular, if σ is the translation, a σ-mean is often called
a Banach limit and Vσ reduces to f , the set of almost convergent sequences. For certain kind of mappings
σ, every invariant mean φ extends the limit functional on the space c of real convergent sequences, in the
sense that φ(x) = limx for all x ∈ c. Consequently, c ⊂ Vσ where Vσ is the set of bounded sequences all of
whose σ-mean are equal. (cf.[1],[4],[6],[8],[9],[10],[11],[14]).

The concept of statistical convergence was first introduced by Fast [2] for real and complex sequences.
Statistical convergence is a generalization of the usual notion of convergence that parallels the usual theory
of convergence.
A sequence x = (xk) is said to be Statistically convergent to L if for a given ε > 0

lim
k

1

k
|{i : |xi − L| ≥ ε, i ≤ k}| = 0.

The notion of I-convergence is a generalization of the statistical convergence. At the initial stage it was
studied by Kostyrko, Šalát, Wilczyński[7]. Later on it was studied by Šalát, Tripathy and Ziman[12-13] and
many others. Here we give some preliminaries about the notion of I-convergence.
Let X be a non empty set. Then a family of sets I ⊆ 2X (2X denoting the power set of X) is said to be an
ideal if I is additive i.e A,B ∈ I ⇒ A ∪B ∈ I and hereditary i.e A ∈ I,B ⊆ A⇒ B ∈ I.
A non-empty family of sets F (I) ⊆ 2X is said to be filter on X if and only if φ /∈ F (I), for A,B ∈ F (I) we
have A ∩B ∈ F (I) and for each A ∈ F (I) and A ⊆ B implies B ∈ F (I).
An Ideal I ⊆ 2X is called non-trivial if I 6= 2X .
A non-trivial ideal I ⊆ 2X is called admissible if {{x} : x ∈ X} ⊆I.
A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J 6= I containing I as a subset.
For each ideal I , there is a filter F (I) corresponding to I .
i.e F (I) = {K ⊆ N : Kc ∈ I},where Kc = N−K.
Definition 1.1. A sequence (xk) ∈ ω is said to be I-convergent to a number L if for every ε > 0, {k ∈ N :

|xk − L| ≥ ε} ∈ I. In this case we write I − limxk = L.
The space cI of all I-convergent sequences to L is given by

cI = {(xk) ∈ ω : {k ∈ N : |xk − L| ≥ ε} ∈ I, for some L∈ C }

Definition 1.2. A sequence (xk) ∈ ω is said to be I-null if L = 0. In this case we write I − limxk = 0.
Definition 1.3. A sequence (xk) ∈ ω is said to be I-cauchy if for every ε > 0 there exists a number m = m(ε)

such that {k ∈ N : |xk − xm| ≥ ε} ∈ I.
Definition 1.4. A sequence (xk) ∈ ω is said to be I-bounded if there exists
M >0 such that {k ∈ N : |xk| > M} ∈ I.
Definition 1.5. For any set E of sequences the space of multipliers of E, denoted by M(E) is given by

M(E) = {a ∈ ω : ax ∈ E for all x ∈ E}.(See[15]).

Definition 1.6. A map ~ defined on a domain D ⊂ X i.e ~ : D ⊂ X → R is said to satisfy Lipschitz
condition if |~(x) − ~(y)| ≤ K|x − y| where Kis known as the Lipschitz constant. The class of K-Lipschitz
functions defined on D is denoted by ~ ∈ (D,K).(see[5]).

Definition 1.7. A convergence field of I-covergence is a set

F (I) = {x = (xk) ∈ `∞ : there exists I − limx ∈ R}.
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The convergence field F (I) is a closed linear subspace of `∞ with respect to the supremum norm,
F (I) = `∞ ∩ cI (See[5,12,13]).
Define a function ~ : F (I) → R such that ~(x) = I − limx, for all x ∈ F (I), then the function ~ : F (I) → R
is a Lipschitz function.(see[5,12,13]).

Recently Khan and Ebadullah[3] introduced the following classes of sequence spaces.
Let x = (xk) ∈ `∞,

V I0σ(m, ε) = {(xk) ∈ `∞ : (∀m)(∃ε > 0){k ∈ N : |tm,k(x)| ≥ ε} ∈ I}

V Iσ (m, ε) = {(xk) ∈ `∞ : (∀m)(∃ε > 0){k ∈ N : |tm,k(x)− L| ≥ ε} ∈ I, for some L∈ C }

2. Main Results

In this article we introduce the following classes of sequence spaces.
Let x = (xk) ∈ `∞ and p = (pk) a sequence of positive reals

V I0σ(p) = {(xk) ∈ `∞ : (∀m)(∃ε > 0){k ∈ N : |tm,k(x)|pk ≥ ε} ∈ I}

V Iσ (p) = {(xk) ∈ `∞ : (∀m)(∃ε > 0){k ∈ N : |tm,k(x)− L|pk ≥ ε} ∈ I, for some L∈ C }

Theorem 2.1. V Iσ (p) and V I0σ(p) are linear spaces.

Proof. Let (xk), (yk) ∈ V Iσ (p) and let α, β be scalars. Then for a given ε > 0.

we have
{k ∈ N : |tm,k(x)− L1|pk ≥

ε

2M1
, for some L1 ∈ C} ∈ I

{k ∈ N : |tm,k(y)− L2|pk ≥
ε

2M2
, for some L2 ∈ C} ∈ I

where
M1 = D.max{1, sup

k
|α|pk}

M2 = D.max{1, sup
k
|β|pk}

and
D = max{1, 2H−1}where H = sup

k
pk ≥ 0.

Let
A1 = {k ∈ N : |tm,k(x)− L1|pk <

ε

2M1
, for some L1 ∈ C} ∈ F (I)

A2 = {k ∈ N : |tm,k(x)(y)− L2|pk <
ε

2M2
, for some L2 ∈ C} ∈ F (I)

be such that Ac1, Ac2 ∈ I .
Then

A3 = {k ∈ N : |(αtm,k(x) + βtm,k(y)− (αL1 + βL2)|pk) < ε}

⊇ {k ∈ N : |α|pk |tm,k(x)− L1|pk <
ε

2M1
|α|pk .D}

∩{k ∈ N : |β|pk |tm,k(y)− L2|pk <
ε

2M2
|β|pk .D}

Thus Ac3 = Ac1 ∩Ac2 ∈ I.
Hence (αtm,k(x) + βtm,k(y)) ∈ V Iσ (p).
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Hence V Iσ (p) is a linear space.
Similarly the result can be proved for V I0σ(p).

Theorem 2.2. Let (pk) ∈ `∞. Then the spaces V Iσ (p) is a normed linear space, normed by

||xk||∗ = sup
k
|tm,k(x)|

pk
M . [2.1]

where M = max{1, sup
k
pk}.

Proof. Let x = (xk), y = (yk) ∈ V Iσ (p).
(1) Clearly, ||x||∗ = 0 if and only if x = 0.

(2) ||x||∗ = || − x||∗ is obvious.
(3) Since pk

M ≤ 1 and M > 1, using Minkowski’s inequality we have

sup
k
|tm,k(x) + tm,k(y)|

pk
M ≤ sup

k
|tm,k(x)|

pk
M + sup

k
|tm,k(y)|

pk
M

(4) Now for any complex λ we have (λk) such that λk → λ, (k →∞).

Let (xk) ∈ V Iσ (p) such that |tm,k(x)− L|pk ≥ ε.
Therefore, ||tm,k(x)− L||∗ = sup

k
|tm,k(x)− L|

pk
M ≤ sup

k
|tm,k(x)|

pk
M + sup

k
|L|

pk
M .

Hence ||λktm,k(x)− λL||∗ ≤ ||λktm,k(x)||∗ + ||λL||∗ = λk||tm,k(x)||∗ + λ||L||∗ as (k →∞).

Theorem 2.3. V Iσ (p) is a closed subspace of `∞(p).

Proof. Let (x(n)k ) be a cauchy sequence in V Iσ (p) such that x(n) → x.
We show that x ∈ V Iσ (p).
Since (x

(n)
k ) ∈ V Iσ (p), then there exists an such that

{k ∈ N : |tm,k(x(n))− an|pk ≥ ε} ∈ I

We need to show that
(1)(an) converges to a.
(2)If U = {k ∈ N : |xk − a|pk < ε}, then U c ∈ I .

(1) Since (x
(n)
k ) is a cauchy sequence in V Iσ (p) then for a given ε > 0, there exists k0 ∈ N such that

sup
k
|tm,k(x(n)k )− tm,k(x(i)k )|pk < ε

3
, for all n,i ≥ k0

For a given ε > 0, we have

Bni = {k ∈ N : |tm,k(x(n)k )− tm,k(x(i)k )|pk < ε

3
M}

Bi = {k ∈ N : |tm,k(x(i)k )− ai|pk <
ε

3
M}

Bn = {k ∈ N : |tm,k(x(n)k )− an|pk <
ε

3
M}

Then Bcni, B
c
i , B

c
n ∈ I .

Let Bc = Bcni ∩Bci ∩Bcn,
where

B = {k ∈ N : |ai − an|pk < ε} ∈ F (I).



Pan-Amer. J. Math. 1 (2022), 4 5

Then Bc ∈ I .
We choose k0 ∈ Bc, then for each n, i ≥ k0, we have

{k ∈ N : |ai − an|pk < ε} ⊇ {k ∈ N : |tm,k(x(i)k )− ai|pk <
ε

3
}

∩{k ∈ N : |tm,k(x(n)k )− tm,k(x(i)k )|pk < ε

3
}

∩{k ∈ N : |tm,k(x(n)k )− an|pk <
ε

3
}

Then (an) is a cauchy sequence of scalars in C, so there exists a scalar a ∈ C such that (an)→ a, as n→∞.

(2) Let 0 < δ < 1 be given.Then we show that if

U = {k ∈ N : |tm,k(x)− a|pk < δ},

then U c ∈ I.
Since tm,k(x(n))→ tm,k(x), then there exists q0 ∈ N such that

P = {k ∈ N : |tm,k(x(q0) − tm,k(x)|pk <
δ

3
} [2.2]

which implies that P c ∈ I
The number q0 can be so choosen that together with [2.2], we have

Q = {k ∈ N : |aq0 − a|pk <
δ

3
}

such that Qc ∈ I
Since {k ∈ N : |tm,k(x(q0)k )− aq0 |pk ≥ δ} ∈ I .
Then we have a subset S of N such that Sc ∈ I , where

S = {k ∈ N : |tm,k(x(q0)k )− aq0 |pk <
δ

3
}.

Let U c = P c ∩Qc ∩ Sc, where U = {k ∈ N : |tm,k(x)− a|pk < δ}.
Therefore for each k ∈ U c, we have

{k ∈ N : |tm,k(x)− a|pk < δ} ⊇ {k ∈ N : |tm,k(x(q0) − tm,k(x)|pk <
δ

3
}

∩{k ∈ N : |tm,k(x(q0)k )− aq0 |pk <
δ

3
}

∩{k ∈ N : |aq0 − a|pk <
δ

3
}

Then the result follows.
Since the inclusion V Iσ (p) ⊂ l∞(p) are strict so in view of Theorem 2.3 we have the following result.

Theorem 2.4. The space V Iσ (p) is nowhere dense subset of `∞(p).

Theorem 2.5. The space V Iσ (p) is not seperable.

Proof. Let M = {m1 < m2 < m3 < .......} be an infinite subset of N such that M ∈ I .
Let

pk =

{
1, if k∈M,

2, otherwise.
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Let P0 = {(xk) : tm,k(x) = 0 or 1, for k = mj , j ∈ N and tm,k(x) = 0, otherwise}.
Since M is infinite, so P0 is uncountable.
Consider the class of open balls B1 = {B(z, 12 ) : z ∈ P0}.
Let C1 be an open cover of V Iσ (p) containing B1.
Since B1 is uncountable, so C1 cannot be reduced to a countable subcover for V Iσ (p).
Thus V Iσ (p) is not seperable.

Theorem 2.6. The function ~ : V Iσ (p)→ R is the Lipschitz function and is uniformly continuous.

Proof. Let x, y ∈ V Iσ (p) and x 6= y.Then the sets

Ax = {k ∈ N : |tm,k(x)− ~(x)|pk ≥ ||x− y||∗} ∈ I,

Ay = {k ∈ N : |tm,k(y)− ~(y)|pk ≥ ||x− y||∗} ∈ I.

Thus the sets,

Bx = {k ∈ N : |tm,k(x)− ~(x)|pk < ||x− y||∗} ∈ F (I),

By = {k ∈ N : |tm,k(y)− ~(y)|pk < ||x− y||∗} ∈ F (I).

Hence also

B = Bx ∩By ∈ F (I),

so that B 6= φ.
Now taking k in B,
|~(x)− ~(y)|pk

≤ |~(x)− tm,k(x)|pk + |tm,k(x)− tm,k(y)|pk + |tm,k(y)− ~(y)|pk

≤ 3||x− y||∗.
Thus ~ is a Lipschitz function.

Theorem 2.7. cI0(p) ⊂ V I0σ(p) ⊂ `I∞(p).

Proof. Let (xk) ∈ cI0(p).
Then we have {k ∈ N : |xk|pk ≥ ε} ∈ I
Since c0 ⊂ V0σ.
(xk) ∈ V I0σ(p) implies {k ∈ N : |tm,k(x)|pk ≥ ε} ∈ I.
Now let

A1 = {k ∈ N : |xk|pk < ε} ∈ F (I).

A2 = {k ∈ N : |tm,k(x)|pk < ε} ∈ F (I).

be such that Ac1, Ac2 ∈ I.
As `∞(p) = {x = (xk) : sup

k
|xk|pk <∞}, taking supremum over k we get Ac1 ⊂ Ac2.

Hence cI0(p) ⊂ V I0σ(p) ⊂ `I∞(p).

Theorem 2.8. cI(p) ⊂ V Iσ (p) ⊂ `I∞(p).

Proof. Let (xk) ∈ cI(p). Then we have {k ∈ N : |xk − L|pk ≥ ε} ∈ I.
Since c ⊂ Vσ ⊂ `∞
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(xk) ∈ V Iσ (p) implies {k ∈ N : |tm,k(x)− L|pk ≥ ε} ∈ I.
Now let

B1 = {k ∈ N : |tk − L|pk < ε} ∈ F (I).

B2 = {k ∈ N : |tm,k(x)− L|pk < ε} ∈ F (I).

be such that Bc1, Bc2 ∈ I.
As `∞(p) = {x = (xk) : sup

k
|xk|pk <∞}, taking supremum over k we get Bc1 ⊂ Bc2.

Hence cI(p) ⊂ V Iσ (p) ⊂ `I∞(p).

Theorem 2.9. If H = sup
k
pk <∞, then we have `I∞ ⊂M(V Iσ (p)), where the inclusion may be proper.

Proof. Let a ∈ `I∞.This implies that sup
k
|ak| < 1 +K. for some K > 0 and all k.

Therefore x ∈ V Iσ (p) implies

sup
k
(|aktm,k(x)|pk) ≤ (1 +K)H sup

k
(|tm,k(x)|pk) <∞.

which gives `I∞ ⊂M(V Iσ (p)).

To show that the inclusion may be proper, consider the case when pk = 1
k for all k. Take ak = k for all

k.Therefore x ∈ V Iσ (p) implies

sup
k
(|aktm,k(x)|pk) ≤ sup

k
(|k| 1k ) sup

k
(|tm,k(x)|pk) <∞.

Thus in this case a = (ak) ∈M(V Iσ (p)) while a /∈ `I∞.

Theorem 2.10. Let (pk) and (qk) be two sequences of positive real numbers. Then V Iσ (p) ⊇ V Iσ (q) if and
only if lim

k∈K
inf pkqk > 0, where Kc ⊆ N such that K ∈ I.

Proof. Let lim
k∈K

inf pkqk > 0 and (xk) ∈ V Iσ (q).
Then there exists β > 0 such that pk > βqk, for all sufficiently large k ∈ K.
Since (xk) ∈ V Iσ (q) for a given ε > 0, we have

B0 = {k ∈ N : |tm,k(x)− L|qk ≥ ε} ∈ I

Let G0 = Kc ∪B0 Then G0 ∈ I.
Then for all sufficiently large k ∈ G0,

{k ∈ N : |tm,k(x)− L|pk) ≥ ε} ⊆ {k ∈ N : |tm,k(x)− L|βqk) ≥ ε} ∈ I.

Therefore (xk) ∈ V Iσ (p).
The converse part of the result follows obviously.

Theorem 2.11. Let (pk) and (qk) be two sequences of positive real numbers. Then V Iσ (q) ⊇ V Iσ (p) if and
only if lim

k∈K
inf qkpk > 0, where Kc ⊆ N such that K ∈ I.

Proof. The proof follows similarly as the proof of Theorem 2.10.

Theorem 2.12. Let (pk) and (qk) be two sequences of positive real numbers. Then V Iσ (p) = V Iσ (q) if and
only if lim

k∈K
inf pkqk > 0, and lim

k∈K
inf qkpk > 0, where K ⊆ N such that Kc ∈ I.
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Proof. On combining Theorem 2.10 and 2.11 we get the required result.
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