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THE SEQUENCE SPACE V/(p)
KHALID EBADULLAH

ABSTRACT. In this article we introduce the sequence spaces Vi (p) and V! (p), where p = (p;,) is a sequence of
positive reals and study the topology that arises on the said spaces.

1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively.
We write
w={x=(zr): 2z €RorC},
the space of all real or complex sequences.
Let {, cand ¢y denote the Banach spaces of bounded, convergent and null sequences respectively normed
by
[|#][oc = sup ||
k

Let v denote the space of sequences of bounded variation, that is

(e}
v={x=(rg): lek — T—1| < 00, x_1 =0}
k=0
v is a Banach space normed by
oo
llel] =D lew — @1l
k=0

Let o be an injection of the set of positive integers N into itself having no finite orbits and T be the operator
defined on /o, by T'(zx) = (25 (1))-

A positive linear functional ¢, with ||¢|| = 1, is called a o-mean or an invariant mean if ¢(z) = ¢(T'z) for all
T €l

A sequence z is said to be o-convergent, denoted by x € V,, if ¢(x) takes the same value, called o — lim z,
for all o-means ¢. We have

Vo ={x = (xx): Z tm.x(z) = Luniformlyin k, L = 0 — limz},
m=1
where form > 0,k > 0

t7mk(f£) = ) ,and t_17k =0
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where o™ (k) denotes the m*"

iterate of ¢ at k. In particular, if o is the translation, a o-mean is often called
a Banach limit and V,, reduces to f, the set of almost convergent sequences. For certain kind of mappings
o, every invariant mean ¢ extends the limit functional on the space c of real convergent sequences, in the
sense that ¢(z) = lim« for all € c. Consequently, ¢ C V,, where V,, is the set of bounded sequences all of

whose o-mean are equal. (cf.[1],[4],[6],[8],[9],[10],[11],[14]).

The concept of statistical convergence was first introduced by Fast [2] for real and complex sequences.
Statistical convergence is a generalization of the usual notion of convergence that parallels the usual theory
of convergence.

A sequence x = (zy,) is said to be Statistically convergent to L if for a given ¢ > 0

1
im-—|{i:|z; — L] > €1 < =0.
hlgnk\{z |x; — L| > €,i <k} =0

The notion of I-convergence is a generalization of the statistical convergence. At the initial stage it was
studied by Kostyrko, Salat, Wilczyriski[7]. Later on it was studied by Salat, Tripathy and Ziman[12-13] and
many others. Here we give some preliminaries about the notion of I-convergence.

Let X be a non empty set. Then a family of sets I C 2% (2% denoting the power set of X) is said to be an
ideal if ] is additiveie A, B € I = AU B € I and hereditaryie Ac [, BC A= BcI.

A non-empty family of sets F'(I) C 2% is said to be filter on X if and only if ¢ ¢ F(I), for A, B € F(I) we
have AN B € F(I) and for each A € F(I) and A C B implies B € F(I).

AnlIdeal I C 2% is called non-trivial if T # 2%,

A non-trivial ideal I C 2¥ is called admissible if {{z} : 2 € X} CL

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal .J # I containing I as a subset.
For each ideal I, there is a filter F'(I) corresponding to I.

ie F(I)={K CN: K¢ e I},where K* =N - K.

Definition 1.1. A sequence (z;) € w is said to be I-convergent to a number L if for every e > 0, {k € N :
|z — L] > €} € 1. In this case we write I — limxzy, = L.

The space ¢! of all I-convergent sequences to L is given by

' ={(zy) €w:{keN: |z, — L| > ¢} € I,for some Le C }

Definition 1.2. A sequence (xj) € w is said to be I-null if L = 0. In this case we write I — lim z;, = 0.
Definition 1.3. A sequence (z}) € w is said to be I-cauchy if for every ¢ > 0 there exists a number m = m(e)
such that {k € N: |z, — x| > €} € 1.

Definition 1.4. A sequence (z) € w is said to be I-bounded if there exists

M >0 such that {k € N : |zi| > M} € I.

Definition 1.5. For any set E of sequences the space of multipliers of E, denoted by M (E) is given by

M(E)={a €w:azx € E forall x € E}.(See[15]).

Definition 1.6. A map h defined on a domain D C X ieh : D C X — R is said to satisfy Lipschitz
condition if |i(z) — hi(y)| < K|z — y| where Kis known as the Lipschitz constant. The class of K-Lipschitz
functions defined on D is denoted by & € (D, K).(see[5]).

Definition 1.7. A convergence field of I-covergence is a set

F(I) = {x = (z) € { : there exists I — limx € R}.
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The convergence field F(I) is a closed linear subspace of ¢, with respect to the supremum norm,
F(I) = lo N c!(See[5,12,13)).

Define a function 7 : F'(I) — R such that fi(z) = I — lim, for all z € F(I), then the function . : F(I) - R
is a Lipschitz function.(see[5,12,13]).

Recently Khan and Ebadullah[3] introduced the following classes of sequence spaces.
Letz = (z1) € leo,

Vb (m, €) = {(wx) € loo : (Ym)(Je > 0){k € N : |t x(2)| > €} € I}
Vi(m,e) = {(zk) € loo : (Ym)(Je > 0){k € N: |t,, x(x) — L| > €} € I, for some Le C }

2. Main Results

In this article we introduce the following classes of sequence spaces.
Let z = (z1) € lo and p = (pi) a sequence of positive reals

Vb (p) = {(21) € oo : (Ym)(3e > 0){k € N : [t,, x(2)|P* > €} € I}
VEp) = {(k) € loo : (Vm)(3e > 0){k € N : |t () — L|P* > ¢} € I, for some Le C }

Theorem 2.1. V! (p) and V(. (p) are linear spaces.

Proof. Let (zy), (yx) € V,}(p) and let o, 3 be scalars. Then for a given ¢ > 0.

we have
{k eN:|tmp(x) — Ly|P* > L, forsome L; € C} €
’ 2M1
{k e N:|tmr(y) — La|?* > L, forsome L, € C} € 1
’ 2Ms
where
M; = D.max{1, sup |a|P*}
k
My = D.max{1, sup|s|"*}
k
and
D = max{1,2771} where H = supp;, > 0.
k
Let

Ay = {k €N [ty (2) — Ly|P* < ﬁ for some Ly € C} € F(I)
1

€
2M>

Ay ={k €N [tmk(2)(y) — Lo <

be such that A§, A5 € I.
Then

, for some Ly € C} € F(I)

Az ={k e N:|(atmi(r) + Btmi(y) — (aLy + BL2)|P*) < €}
€
D{keN:|afP*|ty,k(x) — L1|P* < TM|@|”’“.D}

. Pk _ Pk L Pk
Nk € N : |BP*|tyr(y) — La|P* < 2M2|ﬁ| .D}
Thus A§ = AN A5 € 1.
Hence (aty, k(7)) + Btm k(y)) € VI(p).
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Hence V! (p) is a linear space.
Similarly the result can be proved for VL (p).

Theorem 2.2. Let (pi) € {o. Then the spaces V! (p) is a normed linear space, normed by
bl = sup [tm () 5. 2]

where M = max{1, suppx}.
k

Proof. Let z = (z1), y = (yx) € V. (p).

(1) Clearly, ||z||« = 0 if and only if z = 0.

) ||x||+ = || — ||« is obvious.

(3) Since £& < 1and M > 1, using Minkowski’s inequality we have

P P Pl
SUD [t o () + o ()] 3 < SUD [t 1o ()| 3+ Sup [t (3)] 3
k k k

(4) Now for any complex A we have (A\x) such that A\, — A, (k — 00).

Let (z1) € V. (p) such that |t,, x(x) — L|Px > e.

Therefore, ||ty x(x) — L« = sup [tm.x(z) — L| % < sup [ty (z)| ¥ + sup |L|5 .
k k k

Hence |\t x(2) — ALl < [\t (@)l + IALLL = Alltw (@)l + ALl as (k — o0).
Theorem 2.3. V! (p) is a closed subspace of /o (p).

Proof. Let (xffn)) be a cauchy sequence in V! (p) such that (™) — z.
We show that z € V! (p).
Since (x,i”)) € VX(p), then there exists a,, such that

{(keN: [tpp(™) —anPr >e} el

We need to show that

(1)(ay,,) converges to a.
QIfU ={keN: |z —alPr <e}, thenU® € I.

(1) Since (x,i")) is a cauchy sequence in V! (p) then for a given € > 0, there exists ko € N such that

sup |tmk(x,(€n)) — tm,k(x,(j))\p’“ < %,for alln,i > kg
k

For a given € > 0, we have

n 7 €
Bri = {k €N |tms(z™) =ty p () |Pr < M}
B ={k € N: [ty 1(z\") — a;]?* < %M}

By ={k €N |tni(a™) - a,P* < %M}

Then B;;, BY, B;, € 1.

Let B® = BS, N BN B,

ni

where
B={keN:la;—an|P* <e} € F(I).
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Then B¢ € 1.
We choose kg € B¢, then for each n,i > kg, we have

(k€N :|ai—anlP* < et D{keN: |tyr(a?) — a;P* < g}
n 7 €
Nk € N [t (7)) =t (2P < 3}

Ak €Nt [ty s (z() = anP* < %}

Then (a,) is a cauchy sequence of scalars in C, so there exists a scalar a € C such that (a,,) — a, as n — occ.

(2) Let 0 < § < 1 be given.Then we show that if
U={keN:|tmi(x)—alP* <d},

thenU° € I.
Since tm,k(:x(")) — tm (), then there exists gy € N such that

P={keN: |ty —t, p(2)P < g}
which implies that P¢ € I
The number ¢q can be so choosen that together with [2.2], we have
0
Q={keN:l|ag —al* < 5}

such that Q¢ € I
Since {k € N : [ty 1 (29)) — ag [P > 6} € I
Then we have a subset S of N such that S¢ € I, where

B
S ={k €N:|tmr(@®) —ag P < 3

LetU®=P°NQ°NS°, whereU = {k € N: [t (x) — a|P* <4}
Therefore for each k € U¢, we have

{keN:|tpmi(x)—alP* <0} D{keN: |tm,;€(a§(q°) — tmp(2)|P* < =}
. (go) _ Pk é
N{k € N: [ty k(x;") — ag|P* < 3}

)
N{k € N:lag —alP* < g}

Then the result follows.

Since the inclusion V! (p) C I (p) are strict so in view of Theorem 2.3 we have the following result.

Theorem 2.4. The space V! (p) is nowhere dense subset of /. (p).
Theorem 2.5. The space V! (p) is not seperable.

Proof. Let M = {m; < ma <mg < ....... } be an infinite subset of N such that M € I.
Let

2, otherwise.

{ 1,if ke M,
Pk =
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Let Py = {(zx) : tmx(z) =0o0r 1, fork =m;, j € N and t,, i (z) = 0, otherwise}.
Since M is infinite, so P, is uncountable.

Consider the class of open balls By = {B(z,3) : z € Py}

Let C; be an open cover of V,/ (p) containing B;.

Since B; is uncountable, so C; cannot be reduced to a countable subcover for V! (p).
Thus V! (p) is not seperable.

Theorem 2.6. The function i : V,/(p) — R is the Lipschitz function and is uniformly continuous.

Proof. Let x,y € V.!(p) and = # y.Then the sets
Ag ={k e N: [ty (@) — M) = |lz —yll.} € 1,

Ay ={k e N:[tmr(y) — h(y)[™* = llz —yll.} € L.
Thus the sets,
By ={k € N: [ty x(z) — h(x)[P* < |z —yll«} € F(I),
By ={k € N:[tmr(y) — h(y)[™* <|lz—ylls} € F(I).
Hence also
B=B,NB, e F(I),

so that B # ¢.
Now taking kin B,

i) = R(y) P

< R(@) =t (@)]7* + [tk (@) =tk (DI + [tk (y) — By
< 3llz =yl
Thus % is a Lipschitz function.

Theorem 2.7. ¢l (p) C Vi, (p) C L (p).

Proof. Let (z) € cb(p).
Then we have {k € N : [z;|P* > €} € T
Since ¢y C Vo
(zx) € Vi (p) implies {k € N : |t x(x)|P* > €} € I.
Now let
Ay ={k eN: |xg|P* < e} € F(I).

Ay ={k e N: [ty 1 (2)|P* < €} € F(I).

be such that A§, A € 1.
As U (p) = {x = (zx) : sup |zx|"* < oo}, taking supremum over k we get A7 C AS.
k

Hence ¢l (p) C VL (p) C ¢4 (p).
Theorem 2.8. ¢! (p) C VE(p) C ¢L (p).

Proof. Let (z},) € ¢!(p). Then we have {k € N : |z;, — L|P* > ¢} € 1.
Sincec C V, C l
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(zx) € VI(p) implies {k € N : |t,, p(z) — L|P* > €} € 1.
Now let
By ={keN:|t, — LIP* <e} € F(I).
By ={keN: |tmr(x) — LIP* < e} € F(I).
be such that Bf, BS € I.
As U (p) = {x = () : sup |z|P* < oo}, taking supremum over k we get Bf C BS.
k

Hence ¢/ (p) C V/ (p) C L5 (p)-
Theorem 2.9. If H = sup pj;, < oo, then we have ¢4, C M(V,(p)), where the inclusion may be proper.
k

Proof. Let a € ¢._.This implies that sup |ax| < 1 + K. for some K > 0 and all k.
k
Therefore z € V.1 (p) implies
sup(lartm,i(2)[P) < (1+ K)™ sup(|tm . (z)[P*) < oo.
k k
which gives ¢/ ¢ M(V]!(p)).

To show that the inclusion may be proper, consider the case when p;, = 7 for all k. Take a; = k for all
k.Therefore = € V! (p) implies

SUp([axtm. ()[*) < sup (k| %) sup([tm. ()| < .
Thus in this case a = (ax) € M (V! (p)) while a ¢ ¢Z_.

Theorem 2.10. Let (p;) and (gi) be two sequences of positive real numbers. Then V! (p) O VI(g) if and
only if %ln}l{ inf 2 > 0, where K¢ C N such that K € I.
i )

Proof. Let lim inf e > 0and (zx) € V) (q).

€
Then there exists 8 > 0 such that p, > Sqx, for all sufficiently large k € K.
Since (zy) € V(q) for a given € > 0, we have

By={keN:|tmrlx)—L|%* >e} €I

Let GO = K°U By Then G(] el.
Then for all sufficiently large k € Go,

{keN:|tpmr(x) = LP*) > e} C{k€N:|tpmr(z) — LIP®) >} €1,

Therefore (z1) € V. (p).
The converse part of the result follows obviously.

Theorem 2.11. Let (p;) and (gi) be two sequences of positive real numbers. Then V! (q) D V! (p) if and
only if %111}1{ inf % > 0, where K¢ C Nsuch that K € I.
€

Proof. The proof follows similarly as the proof of Theorem 2.10.

Theorem 2.12. Let (px) and (gi) be two sequences of positive real numbers. Then V(p) = V! (q) if and
only if lim inf 22 > 0, and lim inf = > 0, where K C N such that K¢ € I.
keK qk keK Pk
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Proof. On combining Theorem 2.10 and 2.11 we get the required result.
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