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ON SOME FRACTIONAL MAGNETIC PROBLEMS

FRÉDÉRIC D. Y. ZONGO1,∗, SALIFOU KORBEOGO2 AND AROUNA OUÉDRAOGO2

ABSTRACT. In this article, we study existence of weak solutions and the unique continuation property of the
nonlocal fractional magnetic equation. First, we use a variational technique to prove existence of weak solutions
for the fractional Schrödinger equation with magnetic field. Moreover, we show the doubling property main
argument to unique continuation property via Carleman estimates.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The unique continuation property(UCP) is a fundamental result in mathematics and physics, especially
in the context of partial differential equations (PDEs) and the study of waves and quantum mechanics. It
has significant implications in understanding the behavior of solutions to certain differential equations and
is related to the notion of stability and predictability of physical systems. Essentially, UCP states that if a
solution to a partial differential equation (PDE) vanishes on a sufficiently large portion of a domain, then
the solution must vanish identically over the entire domain. In other words, if the solution is zero on a
non-empty open set, it must be zero everywhere in the domain. In other words, UCP can be interpreted
as stability and predictability conditions for physical systems. It was first introduced by Carleman in its
pioneer work [5]. Due to its profound physical meaning ant its implications in various fields of science, en-
gineering and applied mathematics, UCP of differential operator has attracted many researchers and gives
rised to many results concerning specially the Schrödinger operator H = ∆ + V (x), with V ∈ Lploc. Jeri-
son and Kenig has established UCP when p = N

2 , where N is the dimension of the whole space (see [12]).
Their result was later improve by Koch and Tataru [14]. Recently, UCP for the many-body Schrödinger
operators has been proved by Garrigue [11] with weaker assumption on the potential than the one shown
in [16]. For more results see [16]. On other hand, the fractional Schrödinger equation for the wave function
of quantum mechanical system was first introduced by Laskin to model the motion of fractional quantum
mechanic particle see [17]. Since then, many researchers have found several applications of fractional dif-
ferential equations. Indeed, fractional differential equations is used to describe the anomalous transport
of matter, the movement of a chain or a network of particles which are linked by elastic springs (see [20]),
financial processes with jump (see [6]) and references therein. For more informations on fractional magnetic
operator, we refer the reader to [1] and references therein.
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Therefore, we can obviously ask what will happen if instead of the classical Schrödinger operator H we
take the fractional Schrödinger operatorHs := (−∆)s+V (x)? Do we still get UCP result? This question has
received many attentions from researchers. Though, almost every results were obtained by using Carleman
estimates via Caffarelli-Silvestre extension see [9, 13]. We wonder if it is possible to use direct method to
prove UCP for fractional magnetic Schrödinger equation.
In this paper, we first establish existence of the weak solution for fractional magnetic Schrödinger equation.
Secondly, we show the doubling property first step to get the unique continuation property to the fractional
magnetic Schrödinger equation given by{

(−∆)sAu+ V (x)u = 0 in Ω,

u = 0 in RN \ Ω,
(1.1)

where Ω is a bounded subset of RN , V : RN → R is a sign-changing scalar potential, V ∈ L
N
2

loc(Ω)∩ (Lr(Ω)+

L∞(Ω)) (N ≥ 3, 1 ≤ r <∞), A : RN → RN is the magnetic potential, and (−∆)sA is the fractional magnetic
operator which, up to normalization, defined as

(1.2) (−∆)sAu(x) = 2 lim
ε→0+

∫
RN\Bε(x)

u(x)− ei(x−y)·A( x+y
2 )u(y)

|x− y|N+2s
dy, ∀x ∈ RN ,

here Bε(x) denotes the ball in RN with radius ε > 0 centered at x ∈ RN .
(−∆)sAu(x) is a magnetic version of fractional Laplacian operator given by

(1.3) (−∆)su(x) = 2 lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy, ∀x ∈ RN ,

Motivated by above works about magnetic equation(notably [21], [13] and references therein), this paper
uses variational approch to prove existence result for Schrödinger equation with magnetic field.
The rest of the paper is organized as follows: In section 2, we recall some basic proprieties of fractional
magnetic Sobolev spaces, in section 3, we state and prove our existence result for magnetic equation and in
section 4 we prove our result on UCP .

2. PRELIMINARIES

In this section, we first give some basic results of fractional Sobolev spaces that will be used later. Let
N > 2, 0 < s < 1 be real number satisfying 2s < N and the fractional critical exponent 2∗s be defined as
2∗s = 2N

N−2s . The fractional Sobolev space Ds(RN ) is defined as the closure of C∞0 (RN ) with respect to the
norm

‖u‖s =
(
‖u‖22 + [u]2s

)1/2

,

where

[u]s =
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

is the Gagliardo seminorm and ‖u‖2 the L2-norm. The Lp of u will be denoted ‖u‖p.
Suppose that A : RN → RN is a continuous function and denote

EA(x, y) = ei(x−y)·A( x+y
2 )

Let consider the magnetic Gagliardo semi-norm defined by

(2.1) [u]s,A :=
(∫∫

R2N

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dx dy

)1/2

,
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and define Ds
A(RN ,C) as the closure of C∞0 (RN ,C) with respect to [·]s,A.

We also define ||.||s and ||.||s,A as:

(2.2) ||u||s=
(∫

RN

|u(x)|2dx+

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

) 1
2

and

(2.3) ||u||s,A=

(∫
RN

|u(x)|2dx+

∫∫
R2N

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dx dy

) 1
2

.

The characterizations of magnetic Sobolev Spaces that we use are given as follows

(2.4) Hs
A(Ω) =

{
u ∈ L2(Ω); ‖u‖s,A <∞

}
,

Assumption 2.1. We make the following assumptions on the potential V .

(A1) : V ∈ Lr(Ω) + L∞(Ω), with r ≥ n

2s
.

(A2): V is weakly lower semicontinuous and vanishes at infinity, i.e

Aa = |{x : V (x) > a}| <∞ for all a > 0.

Lemma 2.2. (Diamagnetic inequality) For each u ∈ Ds
A(RN ,C) it holds |u| ∈ Ds(RN ). More precisely,[

|u|
]
s
≤ [u]s,A, for all u ∈ Ds

A(RN ,C).

In order to define weak solution to problem (1.1), we recall the following functional space

(2.5) X0,A(Ω) =
{
u ∈ Hs

A(Ω) : u = 0 a.e. in RN \ Ω
}
,

equipped with the semi-norm
||u||X0,A(Ω) = [u]s,A.

Lemma 2.3. (see [1]) Let Ω ⊂ RN be an bounded open. Then

X0,A(R3) ↪→ Hs(R3,C),

in other words, there exists a positive constante Cn,s > 0 such that for all p ∈ [2, 6
3−2s ]

(2.6) ‖u‖p ≤ Cn,s[u]s,A.

Furthermore, if the boundary of Ω is Lipschitz the injection

X0,A(Ω) ↪→ Lp(Ω,C)

is compact for any p ∈ [1, 2∗s).

The following lemma is an analogue of Lemma 2.1( [3]) in the frame of fractional magnetic laplacian.

Lemma 2.4. Assume that (A1) holds. Then for every ε, there exists λε such that

(2.7)
∫

Ω

V (x)|u(x)|2dx ≤ ε||u||2X0,A(Ω) + λε||u||2L2(Ω).

Proof. Let V ∈ Lr(Ω) + L∞(Ω) i.e V (x) = V1(x) + V2(x) with V1 ∈ Lr(Ω) and V2 ∈ L∞(Ω). we have∫
Ω

V (x)|u(x)|2dx =

∫
Ω

V1(x)|u(x)|2dx+

∫
Ω

V2(x)|u(x)|2dx

=

∫
Ω

V1(x)|u(x)|2dx+

∫
{|V2|≤k}

V2(x)|u(x)|2dx+

∫
{|V2|>k}

V2(x)|u(x)|2dx

≤ (k + ||V2||∞) ||u||2L2(Ω) + ||V1||Lr({|V2|>k})||u||
2
L2t(Ω)(2.8)
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where 1
r + 1

t = 1.

Since 2t ∈ [1, 2∗s) for all r ≥ n

2s
, then from Sobolev inequality we have

(2.9) ||u||2L2t(Ω) ≤ Cn,s||u||
2
X0,A(Ω)

therefore,

(2.10)
∫

Ω

V (x)|u(x)|2dx ≤ (k + ||V2||∞) ||u||2L2(Ω) + Cn,s||V1||Lr({|V2|>k})||u||
2
X0,A(Ω).

Now, choosing k big enough so that Cn,s||V1||Lr({|V2|>k}) < ε we get the desired result. �

3. EXISTENCE OF GROUND STATE SOLUTION

In this part we consider the following fractional Schrödinger problem
(−∆)sAu+ V (x)u = Eu in Ω,

u = 0 in RN \ Ω,

‖u‖2 = 1.

(3.1)

We give the following definition of weak solution to problem 1.1 that arises from the variationnal formula-
tion.

Definition 3.1. A function u ∈ X0,A(Ω) is a weak solution of (1.1) if u satisfies

(3.2) 〈(−∆)sAu, v〉+

∫
Ω

V uvdx = 0,

where

(3.3) 〈(−∆)sAu, v〉 :=

∫∫
Ω×Ω

(
u(x)− EA(x, y)u(y)

)(
v(x)− EA(x, y)v(y)

)
|x− y|N+2s

dx dy

for every v ∈ X0,A(Ω).

Theorem 3.2. Assume that (A1)− (A2) hold. Then problem (1.1) has a weak solution in the sense of definition 3.1.

In order to formulate the variational approach of problem 1.1, we introduce the functional JA : X0,A(Ω)→
R defined as follows

JA(u) = φA(u) + ψ(u),

where

φA(u) =
1

2

∫∫
Ω×Ω

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dx dy.

and
ψ(u) =

1

2

∫
Ω

V |u|2dx.

The followings lemmas permits to prove ours theorem

Lemma 3.3. Assume that V satisfy (A1) and (A2), then JA(.) is bounded from below and is weakly lower semicon-
tinuous.

Proof. Let u ∈ X0,A(Ω). First, we show that if V ∈ Lr(Ω) then JA(.) is nonnegative whenever ‖V ‖r ≤ C−1
n,s.

Indeed, let us consider φA(u). We have by Hölder and Sobolev inequalities∫
Ω

V (x)

‖V1‖r
|u(x)|2dx ≤ ‖ V1

‖V1‖r
‖r‖u2‖ r

r−1

≤ ‖u‖22r
r−1

‖V1‖−1
r ψ(u) ≤ Cn,s[u]2s,A.(3.4)
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It follows from (3.4) that

JA(u) = φA(u) + ψ(u)

≥ (1− Cn,s‖V1‖r)φA(u) ≥ 0.

Now, consider V as in (A1) i.e. V = V1 + V2, where V1 ∈ Lr(Ω) and V2 ∈ L∞(Ω), with r ≥ n

2s
. Let

h(x) = (V1(x)− λ)−, where f−(x) = min(f(x), 0). Then, h satisfies ‖h‖r ≤ Cn,s. Indeed, by (2.6)

‖h‖r ≤ Cn,s

∫∫
Ω×Ω

|h(x)− h(y)|2

|x− y|N+2s
dx dy

≤ Cn,s

[∫∫
{V1(x)>λ,V1(y)>λ}

|V1(x)− V1(y)|2

|x− y|N+2s
dx dy + 2

∫∫
{V1(x)>λ,V1(y)≤λ}

|V1(x)− λ|2

|x− y|N+2s
dx dy

]
≤ Cn,s (I1(λ) + I2(λ))(3.5)

Since, V is vanishing at infinity so is V1 therefore, by the dominated convergence theorem for λ great enough
the integrals I1(λ) and I2(λ) could be choose small such that
I1(λ) + I2(λ) ≤ 1. That shows the desired result.
From what precedes, we have

JA(u) =
1

2

∫∫
Ω×Ω

∣∣(u(x)− EA(x, y)u(y)
)∣∣2

|x− y|N+2s
dx dy +

1

2

∫
Ω

V (x)|u(x)|2dx

= φA(u) +
1

2

∫
Ω

(V1(x)− λ) |u(x)|2dx+
1

2

∫
Ω

V2(x)|u(x)|2dx+ λ

≥ φA(u) +
1

2

∫
Ω

h(x)|u(x)|2dx+ ||V2||∞||u||22 + λ

≥ φA(u)− 1

2
‖h‖r||V1||22r

r−1
− ||V2||∞||u||22 + λ

≥ 1

2
φA(u) + λ− ||V2||∞||u||22

≥
(

1

2
+ λ− Cn,s||V2||∞

)
[u]2s,A ≥ 0(3.6)

( since λ is supposed to be big enough). And therefore, the functional JA(.) is bounded from below and
coercive. Moreover, JA(.) is weakly lower semicontinuous since, V is assumed to be weakly lower semi-
continuous and so is the Gagliardo seminorm [.]s,A by applying Fatou lemma. �

Lemma 3.4. Let u ∈ X0,A(Ω), u is a minimizer of JA if and only if u is weak solution to problem.

Proof. Let us check that the minimizer of JA satisfies the problem (1.1). We have

0 =
d

dt
JA(u+ tw)

∣∣
t=0

=
[ 1

2

∫∫
Ω×Ω

d

dt

∣∣(u(x)− EA(x, y)u(y)
)

+ t
(
w(x)− EA(x, y)w(y)

)∣∣2
|x− y|N+2s

dx dy︸ ︷︷ ︸
I1

+
1

2

∫
Ω

d

dt
V (x)(u(x) + tw(x))2 dx︸ ︷︷ ︸

I2

]∣∣
t=0

.(3.7)
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Note that

I1 =
1

2

∫∫
Ω×Ω

(
w(x)− EA(x, y)w(y)

)((
u(x)− EA(x, y)u(y)

))
|x− y|N+2s

dx dy

+
1

2

∫∫
Ω×Ω

(
w(x)− EA(x, y)w(y)

)((
u(x)− EA(x, y)u(y)

))
|x− y|N+2s

dx dy.(3.8)

By changing the role of u and w in the first integral we obtain:

I1 =
1

2

∫∫
Ω×Ω

(
w(x)− EA(x, y)w(y)

)((
u(x)− EA(x, y)u(y)

))
|x− y|N+2s

dx dy

+
1

2

∫∫
Ω×Ω

(
w(x)− EA(x, y)w(y)

)((
u(x)− EA(x, y)u(y)

))
|x− y|N+2s

dx dy

=

∫∫
Ω×Ω

((
u(x)− EA(x, y)u(y)

))(
w(x)− EA(x, y)w(y)

)
|x− y|N+2s

dx dy.(3.9)

The same ideas on I2 give

I2 =

∫
Ω

V (x)u(x)w(x) dx.

It follows that

0 =
d

dt
JA(u+ tw)

∣∣
t=0

=

∫∫
Ω×Ω

(
u(x)− EA(x, y)u(y)

)(
w(x)− EA(x, y)w(y)

)
|x− y|N+2s

dx dy

+

∫
Ω

V (x)u(x)w(x)dx.(3.10)

Therefore, u satisfies problem 1.1.
Now, let see the proof of the converse (that every weak solution is the minimiser of JA). Let u ∈ X0,A(Ω)

be a weak solution to problem then in the sense of Definition 3.1, u satisfy

(3.11)
∫∫

Ω×Ω

(
u(x)− EA(x, y)u(y)

)(
v(x)− EA(x, y)v(y)

)
|x− y|N+2s

dx dy +

∫
Ω

V uvdx = 0

for every v ∈ X0,A(Ω), which proves that J ′A(u) = 0. So, since JA attains its minimum, then u minimizes
JA. �

The proof of Theorem 3.2 follows from Lemmas (3.3) and (3.4).

4. AN UCP RESULT

In this part, we prove a weak ucp property of the fractional magnetic operator (−∆)sA.

Definition 4.1. A function u ∈ L2(Ω) has a zero of infinite order at x0 ∈ Ω if for each n ∈ N, there exists a
constant C1 > 0 such that

(4.1)
∫
B(x0,R)

|u|2 ≤ C1R
n.

Definition 4.2. A family of functions enjoys the unique continuation property for short U.C.P. , if no func-
tion besides possibly the zero function vanishes in a set of positive measure of Ω.

Definition 4.3. A family of functions has the strong unique continuation property for short S.U.C.P. , if no
function besides possibly the zero function has a zero of infinite order.
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Definition 4.4. A family of functions enjoys the weak unique continuation property for short W.U.C.P. , if
no function besides possibly the zero function vanishes in an open subset of Ω.

Now, we state the main result of this part.

Theorem 4.5. Let V ∈ L
N
2

loc(Ω) and suppose that u ∈ X0,A(Ω) be a solution of

(4.2) (−∆)sAu+ V (x)u = 0.

If u = 0 on a set of positive measure E, then u has a zero of infinite order.

Now, we will need the following inverse Poincaré’s Inequality.

Lemma 4.6. Let r > 0, Br and B2r be two concentric balls contained in Ω. Assume V ∈ L
N
2

loc(Ω). If u is a solution
of Problem 1.1 then, we have

(4.3)
∫∫

Br×Br

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dx dy ≤ C2

r2

∫
B2r

|u|2.

Proof. Let ϕ ∈ C∞0 (Ω) be a real-valued function with suppϕ ⊂ B2r, ϕ ≡ 1 for x ∈ Br and |(−∆)sAϕ| ≤ 2
r .

Let u ∈ X0,A(Ω) satisfying 4.2, taking v = uϕ2 as test function, we obtain

∫∫
B2r×B2r

(
u(x)− EA(x, y)u(y)

)(
(ϕ2u)(x)− EA(x, y)(ϕ2u)(y)

)
|x− y|N+2s

dx dy

+

∫
B2r

V u(ϕ2u)dx = 0.(4.4)

Using the following identity

(4.5) (a− b)(ca− db) = c|a− b|2 + b(a− b)(c− d),

where a, b, c, d are complex numbers; the first term of (4.4) can be written as

∫∫
B2r×B2r

|u(x)− EA(x, y)u(y)|2ϕ2(x)

|x− y|N+2s
dxdy

+

∫∫
B2r×B2r

EA(x, y)u(y)
(
u(x)− EA(x, y)u(y)

)(
ϕ2(x)− ϕ2(y)

)
|x− y|N+2s

dxdy(4.6)

and then (4.4) becomes

∫∫
B2r×B2r

|u(x)− EA(x, y)u(y)|2ϕ2(x)

|x− y|N+2s
dxdy

= −
∫∫

B2r×B2r

EA(x, y)u(y)
(
u(x)− EA(x, y)u(y)

)(
ϕ2(x)− ϕ2(y)

)
|x− y|N+2s

dxdy

−
∫
B2r

V u(ϕ2u)dx.(4.7)
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Passing to absolute value we have∫∫
B2r×B2r

|u(x)− EA(x, y)u(y)|2ϕ2(x)

|x− y|N+2s
dxdy

≤
∫∫

B2r×B2r

∣∣EA(x, y)u(y)
(
u(x)− EA(x, y)u(y)

)(
ϕ2(x)− ϕ2(y)

)∣∣
|x− y|N+2s

dxdy

+

∫
B2r

|V ||u|2ϕ2dx

≤
∫∫

B2r×B2r

|EA(x, y)u(y)||u(x)− EA(x, y)u(y)||ϕ2(x)− ϕ2(y)|
|x− y|N+2s

dxdy
∣∣

+

∫
B2r

|V ||u|2ϕ2dx

≤ ε

∫∫
B2r×B2r

∣∣u(x)− EA(x, y)u(y)
∣∣2(ϕ(x) + ϕ(y))2

|x− y|N+2s
dxdy +

+
1

ε

∫∫
B2r×B2r

|u(y)|2|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dxdy +

∫
B2r

|V ||u|2ϕ2dx

≤ I1 + I2 + I3,(4.8)

where

I1 := ε

∫∫
B2r×B2r

∣∣u(x)− EA(x, y)u(y)
∣∣2(ϕ(x) + ϕ(y))2

|x− y|N+2s
dxdy

I2 :=
1

ε

∫∫
B2r×B2r

|u(y)|2|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dxdy

I3 :=

∫
B2r

|V ||u|2ϕ2dx.

Since, ϕ ≤ 1 on B2r we have

(4.9) I1 ≤ 4ε

∫∫
B2r×B2r

∣∣u(x)− EA(x, y)u(y)
∣∣2

|x− y|N+2s
dxdy.

As for I2, we have

I2 =
1

ε

∫∫
B2r×B2r

|u(y)|2|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dxdy

=
1

ε

∫
B2r

|u(y)|2
[∫

B2r

|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dx

]
dy

=
1

ε

∫
B2r

|u(y)|2Gsϕ(y)dy

≤ C1

εr2

∫
B2r

|u(y)|2dy,(4.10)

where

Gsϕ(y) =

∫
B2r

|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dx.

From (2.4), we have

(4.11)
∫
B2r

V ϕ2|u|2dx ≤ ε
∫∫

B2r×B2r

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dx dy + λ(ε)

∫
B2r

|u|2.
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Then, putting together (4.9)-(4.11), (4.8) becomes∫∫
B2r×B2r

|u(x)− EA(x, y)u(y)|2ϕ2(x)

|x− y|N+2s
dxdy ≤ 5ε

∫∫
B2r×B2r

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dx dy

+

(
C1

εr2
+ λ(ε)

)∫
B2r

|u|2

Now, choosing ε such that 0 < ε <
1

5
and λ(ε)r2 < C it follows that∫∫

B2r×B2r

|u(x)− EA(x, y)u(y)|2ϕ2(x)

|x− y|N+2s
dxdy ≤ C

r2

∫
B2r

|u|2.

Hence, ∫∫
Br×Br

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dxdy ≤ C

r2

∫
B2r

|u|2.

�

Proof of Theorem: We denote E a set of positive measure, Ec the complement of E, Br(x0) the ball of
radius r centered at x0 and |S| the Lebesgue’s measure of a set S.
Assume that u ∈ Hs

A(γ,Ω) vanishes on the set E. Almost every point of E are a point of density of E i.e if
x0 is such a point then

(4.12) lim
r−→0

|E ∩Br(x0)|
|Br(x0)|

= 1.

In other words, if x0 is a density point of E, given some ε > 0, there is an r0 = r0(ε) such that for any r ≤ r0

we have

(4.13)
|Ec ∩Br(x0)|
|Br(x0)|

< ε.

Taking r0 smaller, if necessary, we can assume Br0(x0) ⊂ Ω.
Since u = 0 on E, the Hölder inequality yield∫

Br

|u|2 =

∫
Br∩EC

|u|2

≤
(∫

Br∩EC

|u|
2N

N−2

)N−2
N

|Br ∩ EC |
2
N

≤ ε 2
N |Br|

2
N

(∫
Br∩EC

|u|
2N

N−2

)N−2
N

.(4.14)

According to 4.14, Sobolev inequalities and Diamagnetic inequality, we have∫
Br

|u|2 ≤ Cε 2
N (rN )

2
N

(∫
Br

|u|2 +

∫∫
Br×Br

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dx dy

)

≤ Cε 2
N r2

0

∫
Br

|u|2 + Cε
2
N r2

∫∫
Br×Br

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dx dy.

And we obtain

(4.15)
∫
Br

|u|2 ≤ Cε 2
N r2

∫∫
Br×Br

|u(x)− EA(x, y)u(y)|2

|x− y|N+2s
dx dy.

From inverse Poincaré’s Inequality we have for any r ≤ r0

(4.16)
∫
Br

|u|2 ≤ Cε 2
N

∫
B2r

|u|2.
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Now, we introduce the following function

(4.17) f(r) =

∫
Br

|u|2

and fix n ∈ N, choose ε > 0 such that Cε
2
N = 2−n. Since r0 depends on ε then r0 will also depends on n and

from (4.16) we have

(4.18) f(r) ≤ 2−nf(2r) for r ≤ r0.

By iteration of (4.18) we get

(4.19) f(r′) ≤ 2−knf(2kr′) for r′ ≤ 2−(k−1)r0.

Let fix r and choose k such that 2−kr0 ≤ r ≤ 2−(k−1)r0. Then according to 4.19, it follows that

(4.20) f(r) ≤ 2−knf(2kr).

In addition, since the function f is increasing, we have

(4.21) f(2kr) ≤ f(2r0).

We use (4.20) and (4.21) to get

(4.22) f(r) ≤ 2−knf(2r0).

Since 2−k ≤ r
r0

, we have

(4.23) f(r) ≤
(
r

r0

)n
f(2r0).

It follows that x0 is zero of infinite order of u.

Notes and Comments. First, we may go further and try to show existence of ground state solution. In other
word, problem (1.1) constrained with ‖u‖2 = 1 has a minimizer under mild assumption on V . To this aim
we could use Lions compactness princinpe see [19].
Secondly, many authors get UCP for fractional operator by using Caffarelli-Silvestre extension( [4]). Could
we prove this result without using Caffarelli-Silvestre extension( [4])? We will try to elucidate it in forth-
coming paper.

REFERENCES

[1] P. d’Avenia, M. Saquassina, Ground states for fractional magnetic operators, ESAIM, Optim. Calc. Var. 24(2018), 1-24.
[2] J.F. Bonder, A.M. Salort, Magnetic fractional order Orlicz-Sobolev spaces, https://arxiv.org/abs/1812.05998.
[3] H. Brézis, T. Kato, Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 58 (1979), P137-151.
[4] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Equ. 32 (2007), 1245-1260.
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