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ON TEMPERED (k,1)-HILFER FRACTIONAL BOUNDARY VALUE PROBLEMS

ABDELKRIM SALIM':2:*, JAMAL EDDINE LAZREG?, AND MOUFFAK BENCHOHRA?

ABSTRACT. Our research is primarily focused on applying the tempered (k, \)-fractional operators to investigate
the existence, uniqueness, and k-Mittag-Leffler-Ulam-Hyers stability of a specific class of boundary value prob-
lems involving implicit nonlinear fractional differential equations and tempered (k, {)-Hilfer fractional deriva-
tives. To accomplish this, we make use of the fixed point theorem of Banach and a generalization of the well-
known Gronwall inequality. Additionally, we provide illustrative examples to demonstrate the practical effec-
tiveness of our main findings.

1. INTRODUCTION

Fractional calculus extends differentiation and integration to non-integer orders, gaining attention in the-
oretical studies and practical applications across research domains. Its versatility has made it a crucial tool
in the field. Recently, there has been a significant increase in research on fractional calculus, exploring vari-
ous outcomes under different conditions and forms of fractional differential equations and inclusions. For
more details on the applications of fractional calculus, the reader is directed to the books of Herrmann [10],
Hilfer [11], Kilbas et al. [13] and Samko et al. [36]. Agrawal [1] introduced some generalizations of fractional
integrals and derivatives and presented some of their properties. In [4,5], Benchohra et al. demonstrated the
existence, uniqueness, and stability results for various classes of problems with different conditions with
some form of extension of the well-known Hilfer fractional derivative which unifies the Riemann-Liouville
and Caputo fractional derivatives.

In a recent publication [8], Diaz introduced novel definitions for the special functions k-gamma and «-
beta. Those interested can find more information in other sources such as [7,20,21]. Sousa et al. presented
the 1p-Hilfer fractional derivative in another work [39], highlighting important properties related to this
type of fractional operator. Further insights and results based on this operator can be explored in papers
like [2,37,38] and their references. Inspired by the cited papers, we have introduced a new extension of
the renowned Hilfer fractional derivative [35]. This extension, called the k-generalized \-Hilfer fractional
derivative, enabled us to establish a generalized version of Gronwall’s lemma and explore various types
of Ulam stability. Additionally, we have thoroughly investigated qualitative and quantitative results for
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different classes of fractional differential problems [14,28-34], all made possible by this new generalized
fractional operator. More details can be found in [4, 5].

Tempered fractional calculus has emerged as an important class of fractional calculus operators in re-
cent years. This class can generalize various forms of fractional calculus and possesses analytic kernels,
making it an extension of fractional calculus that can describe the transition between normal and anoma-
lous diffusion. The definitions of fractional integration with weak singular and exponential kernels were
initially established by Buschman in [6], and further elaboration on this topic can be found in [3, 22, 26].
Although the Caputo tempered fractional derivative has not been extensively explored in the literature, it
holds the potential to significantly contribute to this field. By studying this derivative, we aim to better
understand its properties and potential applications in this unique mathematical notion, thus advancing
fractional calculus. In their work cited as [19], Kucche et al. made substantial advancements in the field
of tempered fractional integrals and derivatives. They introduced a new framework for calculating these
integrals and derivatives and presented a comprehensive set of related properties and results. Continuing
their research in [16], the same team extended the theory and explored tempered fractional calculus with
respect to functions, introducing the tempered Hilfer-type operator.

While achieving precise solutions to differential equations proves challenging or even unattainable in
several instances, our focus, aligned with nonlinear analysis and optimization, revolves around investigat-
ing approximations. It’s essential to emphasize that solely stable approximations hold merit. Consequently,
an array of methodologies for stability assessment, including Lyapunov and exponential stability, come into
play. The stability predicament in functional equations was initially addressed by mathematician Ulam in
a 1940 lecture at the University of Wisconsin. Within this context, S.M. Ulam posed the inquiry: "What are
the conditions for the existence of an additive mapping in proximity to an approximately additive map-
ping?" [40]. The subsequent year saw Hyers tackling Ulam’s conundrum for additive functions defined
on Banach spaces in [12]. In 1978, Rassias [24] demonstrated the existence of unique linear mappings near
approximately additive mappings, thus extending Hyers’ findings. In contrast to the analysis of Lyapunov
and exponential stability, Ulam-Hyers stability analysis directs its focus toward the behavior of a function
under perturbations, as opposed to the stability of a dynamical system or equilibrium point. Notably, the
authors of [17, 32, 35] have delved into Ulam stability concerning fractional differential problems under
varying conditions. Furthermore, considerable attention has been directed towards exploring the stabil-
ity of diverse functional equation types, particularly Ulam-Hyers and Ulam-Hyers-Rassias stability. This
theme is pervasive in resources such as the book authored by Benchohra et al. [4]. Research conducted by
Luo et al. [18] and Rus [25] has also delved into the stability of operatorial equations using the Ulam-Hyers
methodology.

In [15], the authors considered the following problem:

§ D7 Mro(6) =N (&m(s, (?Dg”*m(d)) . 0€2:=0,,

51‘0(0) + 52m(%) = 53,

where0 <o < 1,A>0,§ Dg”\ is the Caputo tempered fractional derivative, 8 : = x C([—g,0],R) x R is
a continuous function, w € C([—p,0],R), 0 < 3 < 400, d1,d2,03 are real constants, and ¢ > 0 is the time
delay.
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In [14], the authors considered the initial value problem with nonlinear implicit k-generalized -Hilfer
type fractional differential equation:

(Hpgf;l’ )(5):&(5@(5), (Hpgff’ )(5)), 5 € (01,00,

(jgi(i ERT )(a ) = co,

HpyoGb  7x(1-0),k5%
DQl+ 7‘7

¢ €[0,1], and «- generahzed P-fractional integral of order k(1 — 6), where k > 0, X € C([o1, 02] x R?,R) and
co € R.

where are the k-generalized 1-Hilfer fractional derivative of order o € (0, k) and type

In order to generalize our prior results, in this paper, we establish existence and uniqueness results to
the following tempered (k,)-Hilfer boundary value problem with nonlinear implicit fractional differential

equation:

(L1) (F D3 w) (0) =X (6, w(0), (F1D50) (9)), 3 € (1, 02],

1.2) ( jK(l 9)7KII) ) (Ql )+ oA (TJK(l 0), ;ﬂJm) (92) = 33,

where TH Dgli’\ W ST *U=0)% are the tempered (k,)-Hilfer fractional derivative of order o € (0, k),

e €0, 1} and index A € R, and tempered (k,)-fractional integral of order k(1 — #) and index A defined in
Section 2 respectively, where 6 = 1 (c(k — o) + ), k > 0, 501, 32, 33 € R, where 51 + sepe = (W(e2)=b(e1)) £
N [o1,02] X R x R — Ris a given appropriate function specified later.

The paper is structured as follows: Section 2 starts by introducing necessary notations and reviewing
preliminaries related to k-generalized \-Hilfer and tempered fractional operators, as well as functions like
k-Gamma, k-Beta, k-Mittag-Leffler, and several auxiliary results. Additionally, the definition of the tem-
pered (k,)-Hilfer fractional derivative and some essential theorems and lemmas are presented. In Section
3, a generalized Gronwall inequality is presented. Section 4 contains an existence and uniqueness result
for the problem (1.1)-(1.2), which relies on the Banach contraction principle. Furthermore, in the Section
5, the definitions of k-Mittag-Leffler-Ulam-Hyers stability and related remarks are provided, followed by
the proof of the stability result for problem (1.1)-(1.2). The final section focuses on providing illustrative
examples that effectively demonstrate the practical applicability of the main findings.

2. PRELIMINARIES

First, we present the weighted spaces, notations, definitions, and preliminary facts which are used in
this paper. Let 0 < o1 < g2 < 00, V = [01,02], 0 € (0,k),c € [0,1, A\ € R,k > 0and 6 = L(¢(k — o) + o). By
C(V,R) we denote the Banach space of all continuous functions from V into R with the norm

[0]joc = sup{[w(d)] : 6 € V}.

ACI(V,R), C1(V,R) be the spaces of continuous functions, j-times absolutely continuous and j-times con-
tinuously differentiable functions on V, respectively.
Consider the weighted Banach space

Cop (V) = {m (01, 00] = R 6 — W (8, 01)10(0) € C’(V,R)} ,
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where U} (3, 01) = (V(8) — P(01)) %, with the norm

Iollcw., = sup |2 00w()|,
d€(o1,02]

and
5.4 (V) = {m € C""YV,R) : ) e CM(V)} J €N,
Og,lb(v) = CQ;‘-I)(V)7

with the norm
7—1
Iwlles =Y 0D + 0D e, -
R
i=0

Consider the space Xﬁ)(gl, 02), (c € R, 1 < p < 0) of those real-valued Lebesgue measurable functions R

on [o1, 02] for which ||R| xt < 00, where the norm is defined by

N 02 N v
Rix; = ([~ woRera).
01

where { is an increasing and positive function on [g1, g2] such that 1}’ is continuous on [g1, 02] with
P(0) = 0. In particular, when {(tv) = 1, the space Xﬁ, (01, 02) coincides with the L, (o1, 02) space.

In what follows, and to keep it concise, we will take into account the following;:

N 1 ifA>0
)= =AW (8- (7)) — ’ = U,
(6m)€lorealx[e1d] e AWb(e2)=b(e1) if ) < 0,

Definition 2.1 ( [8]). The k-gamma function is defined by
() = / 5 le= % ds, ¢ > 0.
0

When k — 1 then I'c(s) — I'(), we have also some useful following relations I'c () = k% 1" (£), T'e (s +
K) = ¢T'«(¢) and I' (k) = I'(1) = 1. Furthermore k-beta function is defined as follows

1 _
BK(gf):l/ oY1 —0)xtds
0

K

so that B(,<) = £B (£, £) and By(s,) = % The Mittag-Leffler function can also be refined into

the k-Mittag-Leffler function defined as follows

—~ o ml R
B =) 6 0

— T'(ci+7)
then, we can have
E( (m) _ Es‘,K(m) — i L ¢ > 0.
K K £~ T (¢i + k)’

=0
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2.1. Fractional Integrals. Now, we give all the definitions to the different fractional integrals used through-
out this paper.

Definition 2.2 (k-Generalized 1-fractional Integral [23]). Let Ne X 1’1’, (01, 02) and [o1, 02] be a finite or infinite
interval on the real axis R = (—00,00), P(d) > 0 be an increasing function on (g1, 2] and P’(§) > 0 be
continuous on (g1, g2) and o > 0. The generalized k-fractional integral operators of a function N of order o
are defined by

6 o~
e Ne) = [ wEt )R,
TTEYR() = /5 P, S0 ()R (),
(W) —p(y)* "
k[« (o) '

with k > 0 and U5¥(6,v) =

Definition 2.3 (The \-tempered fractional Integral [19]). Let Ne Xﬂ') (01, 02) and [p1, 02] be a finite or infinite
interval on the real axis R, P(d) > 0 be an increasing function on (o1, g2] and ¥’(§) > 0 be continuous on
(01,02), A € Rand o > 0. The P-tempered fractional integral operators of a function R of order o and index
A are defined by

(o)

. G I 1) YR

{ITERE) = / ) T w4 (o))

1

Obviously, the -tempered fractional integral {7, '} reduces to the {-Riemann-Liouville fractional integral
[4,5]if A = 0.

By incorporating Definition 2.2 and Definition 2.3, we can now present the subsequent definition of a
broader fractional integral that encompasses both integrals as specific instances.

Definition 2.4 (The (k,{)-tempered fractional Integral). Let Ne ij’) (01, 02) and [p1, 02] be a finite or infinite
interval on the real axis R, P(4) > 0 be an increasing function on (¢1, g2] and {’(§) > 0 be continuous on
(01,02), A € R,k > 0and o > 0. The (k,)-tempered fractional integral operators of a function N of order
o and index A are defined by

jcr K; wN( ) )\w(é)ja K (N(é)e)\u)(é)>

- / B (5, ) N OO— O (1)R(7)d,

01

T 7o ”)N(é) V() 7oK (ﬁ(é)e*”’(‘s))

02— 02—

= [, OO (R )
0

21
with 5P (5,~) = (w(é)K_Flb((J))) . Now, the (k,)-tempered fractional integral § 7, b

-tempered fractional integral § 7,V if k = 1.

reduces to the

2.2. Fractional derivatives. In this section, we present the definitions of various fractional derivatives that
are utilized.

Definition 2.5 (k-Generalized -Hilfer Derivative [4,5]). Let j — 1 < % < gwithy € N, V = [g1, 02] an
interval such that —co < g1 < g3 < oo and E‘E,l,b € C'([o1, 02), R) two functions such that 1 is increasing
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and V’(9) 75 0, for all § € V. The k-generalized \-Hilfer fractional derivatives {/ D}’ E’Lp( Y and HD7W (1) of

02—
a function R of order o and type 0 < e < 1, with k > 0 are defined by

o,& e(Kky—0o),K; 1 d l1—e)(kg—0),kPp
IR0 = (757 (G gs) (97 8) ) )

_ (jgal(j_a o) ,11:5] (ngg(:a)(w—o)x;tb&)) (6)

and

HDUEII)N (5): jE(KJ—fT)7K;11’ _ 1 i ! Jj(l e)(ky— U)KQJN (5)
02— 02— LI)/ ((5) 02—

- (s s (1) )

1 dy
-
whereéw—(wl(a)(ﬁ).

Definition 2.6 (The tempered -Hilfer Derivative [16]). Let ) — 1 < o0 < ywithy € N, A € R, V = [01, 02]
an interval such that —oco < g1 < 92 < oo and &, P € CI([p1, 02], R) two functions such that  is increasing
and /(9) # 0, for all § € V. The tempered p-Hilfer fractional derivatives 7#D7:%*% (-) and THDZ =% ()
of a function X of order o, index A and type 0 < e < 1, are defined by
o —0); 1 d 1 o
DGR () = (17,0 (G a) (1990 R) ) )
_ ( jE(J o ‘l’UJ ( j£511+5)(3 o); le)) ((5)

— MO TP (R(g)eM D)

and
THPZ AR (6) = <Tj§§i i < )— + >\> (Taa=o0 "“"N)) ()
_ (Tjgi(?_ o) (Tjg(;_a) J7—0); ‘IJN)) (6)
— AV) o HDU€‘I) ( 8)e~ )
1 d . .
) il Ua,lb . Hpyo.ew (. o . o REe ~
where Uy, = () do +A D57 () and “ Dy 7" (-) are the left-sided and right-sided -Hilfer frac

tional derivatives, defined in [39].

By incorporating Definition 2.5 and Definition 2.6, we will now give the following definition of a more
generalized fractional derivative that encompasses both tempered -Hilfer derivative and k-generalized

P-Hilfer derivative as specific cases.

Definition 2.7 (The tempered (k,1)-Hilfer Derivative [27]). Let j — 1 < % < jywithy € N, A € R,

kK > 0, V = [01,02] an interval such that —oco < g; < g3 < oo and ﬁ,lj) € C?([o1,02],R) two functions
such that  is increasing and {’(¢) # 0, for all 6 € V. The tempered (k,)-Hilfer fractional derivatives
(left-sided and right-sided) T#D? %" (-) and T#DZ>*"(-) of a function X of order ¢, index A and type
0 < e <1, are defined by
,E, e(k)—0),K; 1 d 1—e)(ky—0), kPG
g R ) = (575 (S ) (918 4R) ) )
_ (TJE(KJ o) ﬂl’Uzb (KJ g\“jgllf)(KJ*U);K;lbﬁ)) (5)

= MO TP (R(o)e®)
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and

THpo.e,A0 Q0 _ (T 7e(xy—0), <50 1 d ! T +(1—e)(kg—0),k; WG
DY INUR(8) = <A‘7§2f <1])’(5)d6+>\) (KJAJQQ_E ! N))(é)
_ ({ygjj-f—vhmw(_l)z% (Kg gjg(?l:e)(m—o),mm)) ©)

= MO B (R()e @),

1 d J .
where U}, = (11)' ) 3 + /\> . The tempered (k,)-Hilfer fractional derivative 77 D75V reduces to the

tempered -Hilfer fractional derivative 77 DJ 5NV if k = 1.

2.3. Necessary properties of fractional operators. Subsequently, employing Definition 2.4, particularly
highlighting the notion that we have the ability to write

2.1) LTGEIR@) = e O g2m® (Re)e @),

and by following the same steps of Theorem 2.2 and Theorem 2.3 from [35], we can deduce the following
theorems.

Theorem 2.8 ( [27]). Let N [01,02] — R be an integrable function, and take o > 0, A € R and k > 0. Then
?\"j;’f"’ﬁ exists for all 6 € [o1, 02).

Theorem 2.9 ([27]). Let R € X% (o1, 02) and take ¢ > 0, A € Rand k > 0. Then T 7R € C([o1, 2], R).

Lemma 2.10 ([27]). Let 0 > 0,¢ > 0, A € Rand x > 0. Then, we have the following semigroup property given by
?\“j;,i;lb fjgsl,i;wN((;) _ Tj;isyK;le((;) _ Tjgsl,i;w Z:j;l’fle(é)
and
;j;’f*b z\“jga;i;wN((g) _ g\“j;ts,K;th((;) — Tjgi;d) fjé’f;w?‘l(é).
Lemma 2.11 ( [35]). Let o, > 0, and k > 0. Then, we have
TSP WEY (5, 01) = U5 (5, 01)
and
TS0 EY (05,6) = U5 (0, 0).
Lemma 2.12 ( [27]). Let 0, > 0, A € Rand « > 0. Then, we have
fj;l’fwe_’\(w(é)_‘l’(gl))\IIEK"I’ (6,01) = e~ MW () —b(e1)) \j;;il’s((g’ 01)
and
£j£7i;¢eA(w(6)_¢(gl))\I/?wll)(Q27 §) = MW @)—b(en) @53:1’8(@275).
Theorem 2.13 ( [27]). Let 0 < 91 < 92 < 00,0 > 0,0< 0 <1, A€R, k> 0andt € Cp,(V). If% >1-46,
then

T 70,k _ : T 70,k _

(Angi m) (01) = 5£$+ (Ajgli m) (8) =0.
Lemma 2.14 ([27]). Let§ > 01,0 > 0,0 <e < L,A€ R,k > 0. Then for 0 < 6 < 1,0 = L(c(k — o) + 0), we
have

. —1
DG (W, 00)) Y] 5) o,
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Theorem 2.15 ([27]). If X € C’g;w[gl, 0],1—1< % <72,0<e<1,AeR, wherej)c Nand k > 0, then
( i THD;’;WN) (6)

_ - ))G_i i (1—e)(kg—0),kp |
o e Z Ki— JF —i+1)) {6] (jgllJr g Rler)e e ))}’

where

9:1(5(@—0)—&-0).

A

In particular, if 3 = 1, we have
(T7g5" THDRN) (6)

_ oA —b(en y (W) = ¥(0)" 7 -0y
= R(0) — e e oy At R(e1)-

Lemma 2.16 ([27]). Leto > 0,0<e <1, e R,andw € Col;w(V), where k > 0, then for 6 € (o1, 02], we have
(LD 705 ) (6) = w(d).

Lemma 2.17. Let o,k > 0and A € R. Then, we have

L5 e = @B ((6) = b))

@-ve) [E7 (9(0) —b(en)F) 1]
and
L0 RL ((0) — w(e)F) < X [E7 ((@(6) - b(en)F) —1].

Proof. By using relation (2.1), we may write the following

[Tt e 2O DR (9(6) ~ (o))

= e MO0 77V ET ($(5) ~ b(or))

Al

).

On the other hand, we have

Q

e VB ((000) — (o)) /w ()T (5.0 (06() = (1))

B ah
N—

IS

=2

With 11 = $(7) — b(o1), we get

J;i‘l’E" (W) —u)(gl))%)

|
M8

/wé) (or) "
o Dloitx (W) — (o) — p)'~

(P(8) = (1) = ! [P@wle o 1
T (o + K) / : <1 w—w(gl)) -

2

1
k[ (o)

Il
.Mg

I
o

7
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Making the change of variables V = and using the definition of k-beta function, we have

B(8) —(or)
TESVEL ((0(0) ~b(er)¥)

L @) — ()T .
- Z Lc(oi+ k) /OV (L=V)= dv

_ ! ﬁi(d%5)—ﬂﬁgn)%“+”FKun+-@rK@@
o) Fe(oi+ k) (0(i + 1) + )

Il
i{Ngk:
=
VS
S
+
=
+
K

Thus, we have

TEEVEL ((00) ~ (o)) = EZ ((8) — (o)) — 1.

Consequently,
[Tg0 e @b eEg ((6) — w(e1))* )
D@-we) [E7 (9(8) —blen)F) 1]
The second result can be proved by following the same steps. O

3. THE GRONWALL INEQUALITY

In this section, we present a generalized Gronwall inequality that will play a crucial role in our Ulam
stability results. The proof of this result incorporates the properties of the functions k-gamma, «-beta, and
k-Mittag-Leffler.

Theorem 3.1. Let tv, 3 be two integrable functions and ¢ continuous, with domain [y, 2] . Let Y € C* [p1, 0o] an
increasing function such that ' (§) # 0,6 € o1, 02), 0 > 0, k > 0 and X € R. Assume that:

(1) w and 3 are nonnegative;

(2) 1 is nonnegative and nondecreasing.

if
w (5) < 3 (6) / W (7) e ACOLGEY (5 ) (1) dy,
then
§ o0 . i
(31) 0@ <30+ [ Y [Fe@Te()] W0 856 ()

forall 6 € o1, 02], where

~ 1 iFA>0
= “AW(@)-b () — ) =
G)eloronxlons] e AWl —b(e)) if X < 0.

And if 3 is a nondecreasing function on [01, 02, then we have

w (6) <5 (0) L (e () T (0) (W (8) = ¥ (1))
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Proof. Let

b
(32) To(6) =S @Pu(o) [ (€ U5V €)o () de
for all § € [p1, 2] and locally integral function v. Then,
1 (8) <3(6) + Tro ().

Iterating for y € N, we can write

o (6) < Y %5 (8) + Yo (6) .

%

<

I
=)

Thus, by mathematical induction, and if tv is a nonnegative function, we prove the following relation:

J ~ J _

(33) o 6) < [ [ (0T ()] W (© U5 (G de.
01

We know that relation (3.3) is true for y = 1. Suppose that the formula is true for some j = i € N, then the

induction hypothesis implies

T+l (5) = T (Yo (6))

IN

T ( / RO 0] W © G (© dE)

= X (9)l'x (0)

1

5 B I i _
< [ w©ute ( | @] vowmeste v)dv> de.
01 e
Since 1 is a nondecreasing function, thatis ¢ (§) < ¢ (), for all £ < ¢, then we obtain

N i+1 90 € - _
@) < RO )] [ [ WO 0) 6w (o) dide,
(3.4)

From Equation (3.4) and by Dirichlet’s formula, we can have

N it1 [0 o _ _
T (0) < O] [ W ©w© [ TG () U5 0

01 §

(3.5)

On other hand, we have
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With a change of variables p = lltigi : Ibl) ((g and using the definition of k-beta function and the relation
with gamma function By (¢,<) = L K(g()glj: E(; ) , we have
5
VR @) =] RG) e @O Ty

(3.6) = [ (8) — (&)

By replacing Equation (3.6) in Equation (3.5), we get

R i _
@) < [ [Re@re] v ©w© U, 6.06

01
Let us now prove that T7to (§) — 0 as j — oo. Since ¢ is a continuous function on [g1, 02, there exist a
constant f > 0 such that Ax (§) < F for all § € [g1, 02). Then, we obtain
5

T (@) < [T (€ T, )i
01
Consider the series .

[FT« (@)
; T (og)

Using the property of the generalized k-gamma, we have

e’} [e’s) o _ o\1J [e'e] — o\1J

ST @F e TN el T )]

= R =

=1 I (0-‘7) =1 Kox IF (?J)

By using Stirling approximation and the root test, we can show that the series converges. Therefore, we

conclude that
oo § o0 i ~
0@ <Y T30 <30+ [ D [eo)re )] v e B0 de
1=0 01 =1

Now, since 3 is nondecreasing, so, for all £ € [g1, §], we have 3 (£) < 3 (§) and we can write

(6 « (o i v
M[Md)—w(gn]” ,

and by using the properties of k-gamma function and the definition of k-Mittag-Leffler function in Defini-
tion 2.1, we have

w () <5(9)

1+ x [Xx (0) P« (a)r‘if?fh(& 91)]
=1

=3 (O)EZ (A () T (o) (0 () =W (1) ) -
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4. EXISTENCE OF SOLUTIONS

We consider the following fractional differential equation

(1) (FHD5 ) () = =(6), 6 € (01, 03],
where 0 < 0 < k,0 < e <1, € R with the condition
4.2) s (TJK(I 0),K; Py ) (Ql+) + 309 (?\"jgl(Jr 6), Kl ) (02) = 53,

where 0 = @, w(-) € C(V,R), 51, 50, 303 € R, 301 + sepe~ M We2)=W(e1)) £,

The following theorem shows that the problem (4.1)-(4.2) have a unique solution.

Theorem 4.1. Let 0 < 0 < k,0 <e <L, A € R, k >0, w(-) € C(V,R). The problem (4.1)-(4.2) has a unique
solution given by:

oA (o)) | 23 — 520 (TJK“ AR )(

5 92) P 5
(*3) 0 = GG T8 | b e @ty | (F755v=) o)

7% () on both sides

Proof. Assume w satisfies (4.1)-(4.2). By applying the fractional integral operator } 7,
of the fractional equation (4.1) and using Theorem 2.15, we obtain

K(1-0),k; 1J,)
j r(o1) A(W(S K
(44) m(é) = e~ (W(8)—b(e1)) j? W (6)
‘1’3’(5, o)l (x0) ( ! )
Applying J, K(1=0).x % (.) on both sides of (4.4), using Lemma 2.10, Lemma 2.12 and taking § = p,, we have

( jK(l AT )(92)
(4.5) — e AW(e)=b@)T gRU=O Kty () 4 (Tjgl(i e )(gz)-
Multiplying both sides of (4.5) by s, we get
s (ij 0), K;¢m> (02)
= e M@ @)T FKI=0 K () 4 (TJK(l B)+o, )(92).
Using condition (4.2), we obtain

2 (FT2070"% ) (02) = 1 — o (T2 ) (o).

Thus,
s — ( TELO by ) (011) = sepe W@ (@) T F(1=0kipy ()
¥ (TJKU 0)+o,kp ) (02).
Then,
(T ") (e1%) = P
(4.6) o+ %2e—§i<gz>—w<gl>> (Tjg o ) (e2)-

Substituting (4.6) into (4.4), we obtain (4.3).
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Reciprocally, applying 1.7, g'j(ife)"(;w on both sides of (4.3) and using Lemma 2.12 and Lemma 2.10, we
get
_ T 7x(1=0)+0o,kp
<T._7 (1-6), Kll) ) ((5) — T ( jg ) (Q2) e—)\(‘b(5)—11’(91))
ot 301 + sge— M (e2)—b(e1))
4.7) ( JLLm Ot )(5), 5 € (o1, 02).

Next, taking the limit § — o1 of (4.7) and using Theorem 2.13, with k(1 — ) < k(1 — ) + o, we obtain
5 — 2o (TJK(l 0) 4o,k ) (

1 + %26*)‘(’4)(92)*“)(21))

48) (jK(l 0.kt )(Q1+): 92>.

Now, taking § = g5 in (4.7), to get

s — 39 ( jK(1 0)+o, kP ) (02)

—A(W(e2)—W(e1))
21 + sege—Nb(22)—b(01) c R

( jK(l 6), K,U) )(92) _

4.9) ( A ) (02)-
From (4.8) and (4.9), we obtain
%1 (zjgi(i—e)x;wm) (01" + 5 (ij 0).kb ) (02)

sy303 — 345 ( »7'((1 Drose ) (02)

221+ e AW (e2)—b(en)

e—A(w<92>—w(el>>+%2( jKu 0)+o,xp )(Qz)

TJK(l 0)+o,k;b )(

A M3 — A2 ( QQ)

* 1+ e A(W(22)—B(en)

= 3,

which proves that (4.2) is satisfied. Apply 7 D75 () on both sides of (4.3). Then, from Lemma 2.14 and
Lemma 2.16 we obtain equation (4.1). O

Lemmad4.2. Let 0 = Mwhereo<a< kand 0 <e <1,A e R, letR: VxR xR — R bea continuous

K
function. Then, the problem (1.1)-(1.2) is equivalent to the following integral equation:

e (o) [ 33 — 52 (TJK“ Ot )(@2)

4.10 0) =
( ) m( ) \IIE’ (67 Ql)FK(KG) %1 + %267)‘(11)(92)711)(91))

+ (f7gst=) @),

where w be a function satisfying the functional equation
=(8) = R(6,10(8), =(8)).

The following hypotheses will be used in the sequel :

(Ax1) The function X : V x R x R — R is continuous.
(Ax2) There exist constants (; > 0 and 0 < {2 < 1 such that

IN(6, 101, 31) — R(J, 102, 32)| < (1]w1 — 2| + C2[31 — 32

for any ti,2,31,32 € Rand § € V.
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We are now in a position to state and prove our existence result for the problem (1.1)-(1.2) based on
based on Banach'’s fixed point theorem [9].

Theorem 4.3. Assume (Ax1)-(Ax2) hold. If

4.11) oo Qo) — P(o1))* [ |55 | N2 AL (k0)
: o

1—G K+0) ‘%1 4 %2€—>\(ll’(92)—1|)(91))| Ti(o+ «0)

then the problem (1.1)-(1.2) has a unique solution in Cy.y, (V).

Proof. Transform problem (1.1)-(1.2) into a fixed point problem by considering the operator 7 : Cy., (V) —
Co:p (V) by

@12)  (Tw) () =

Ao [ = (I ) (0]
+ (Jast=) o).

\I/;l’(é, 01)L(k0) 311 + 2= AW (e2)—W(e1))
where w be a function satisfying the functional equation
@(0) = N, w(5),=(9)).

By Theorem 2.9, we have Tt € Cpy,,, (V). We show that the operator 7 has a unique fixed point in Cy., (V).
Let 1,3 € Cy.y,(V). Then for any for § € V, we have

e ADE)—b(e) | |2l ({J;(i‘e””’“’)|w1(y) - WQ(V)‘) (02)
U (8, 01)T(K6) 501 + 236 A W(e) (1)

+ (1775 =1 () = =) (6),

[T (6) = T35(9)] <

where w; and @, be functions satisfying the functional equations

@1(0) = R(5,w(6), @1(9)),

By (Ax2), we have
|@1(0) —@2(0)] = [R(6,0(6),1(0)) — N(J,5(6), @2(3))]
< G|w(0) = 3(0)] + C2l@1(6) — w2(d)]-
Then,
@100) - (0] < T 00) - 501

Therefore, for each § € V we get

Tro(6) — T3(0)] < Lo r@ble) Glsal (758 P () = 5(1)1) (02)
m —
) B \Il}yb (6a Ql)FK(Ke) (1 — CQ) |%1 —+ %QQ*A(ll’(Qz)*‘l’(.Ql)”

+ 2 (5 m) —50)1) )
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Thus,

[T (d) = T3(9)]

DG ] (T (0() — (o)) (02)
WP (8, 01D (KO (1 — (o) |51 + sz (Wle2)=0(e1))|

G
1-G

e APEOIT(@I)(, |56, (Jgi(i_(’””’““’6‘““’(5)‘“’(”” (W(y) - 11)(91))9_1) (02)
WY (8,00)T(KO) (1 — C2) |51 + sepe=A(ble2) = (1)

+ = (T8 () = w(e)™) @] 0 = sllc.,

<

i (e OO () — en)) ™) <5>] I = 3llcs,-

By Lemma 2.11, we have

e VO o[ (T ()~ (o)) (e2)
WY (8, 00)T e (kO) (1 = C2) |1 + 306 A0 (22)—b(21)|

[Tr(8) — T3(9)] <

1 (725 @)~ e ™) <6>] I = 3l

a
K

Gl A2 (W(2) — Wle1))
\I/;l’(é’ Ql)FK(K + 0-)(1 — 42) |%1 + %28_A(11’(92)_1])(01))|

L GALK(x0) (W(0) = W(e)) =~ ]lm [

<

Fi(o+«0)(1— ()
Hence,

W (6.01) (Tro(8) = T5(9))|

- Gilzal X ((02) — (1))
T Te(k+0)(1—¢2) |%1 + %2€_>‘(‘"l"(92)_1l’(91))|

o
K

GAL (k) (W(8) — W(01)) ¥
FK(O’ + Ke)(l — CQ)

< G (W(o2) — P(o1)) ¥
- 1—-0G
y [ |52 A2 . AT (k0)
Le(k+0) |%1 4 %26*>\(ll)(92)*1|)(91))| Ti(o+ «0)

] ”m - 5‘|Ce;¢

Hm *5Hce;q)

Thus,
||Tt'0 - ,7_3”09;!.[) < [’”m - 5“09;14)'

By (4.11), the operator T is a contraction on Cy.,(V). Hence, by Banach’s contraction principle, 7 has a
unique fixed point tv € Cy.y,(V), which is a solution to our problem (1.1)-(1.2). O
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5. k-MITTAG-LEFFLER-ULAM-HYERS STABILITY

In this Section, we consider the k-Mittag-Leffler-Ulam-Hyers stability for our problem (1.1)-(1.2). Let
€ Cyy,(V), € > 0. We consider the following inequality:

(Tﬂpgfp ‘bm) (6) =X (5, w(8), (Tﬂpg;* ﬂ’m) (5))’
< eBZ ((0(0) —W(e)¥) 3 € (o1, 2]

Definition 5.1 ( [32]). Problem (1.1)-(1.2) is said to be k-Mittag-Leffler-Ulam-Hyers stable with respect to
E? ((1])(5) - 11)(91))%) if there exists ag; > 0 where for each € > 0 and for each solution v € Cy.,(V) of
inequality (5.1) there exists a solution 3 € Cy., (V) of (1.1)-(1.2) with

1(8) = 5(6)] < asgeBZ (W(6) ~w(e1)¥), €V

Definition 5.2 ([32]). Problem (1.1)-(1.2) is generalized k-Mittag-Leffler-Ulam-Hyers stable with respect to
E? ((11)(6) - 1])(@1))%) if there exists v : C([0, 00), [0, 00)) with v(0) = 0 such that for each ¢ > 0 and for each
solution to € Cy., (V) of inequality (5.1) there exists a solution 3 € Cy., (V) of (1.1)-(1.2) with

(6) = 3(6)] < v(OEL (W(6) —(e)¥), eV,

Remark 5.3. Its clear that : Definition 5.1 = Definition 5.2.

(5.1)

Remark 5.4. A function o € Cy,(V) is a solution of inequality (5.1) if and only if there exist p € Cp ., (V)
such that

(M) lp(0)] < BZ (((6) = W(en)?), 6 € (o1, 03],

@ (FHD M w) () =R (8,w(8), (FHDGTw) (8)) + 0(6), 8 € (o1, 03],
Theorem 5.5. Assume that (Ax1), (Ax2) and (4.11) hold. Then, (1.1)-(1.2) is k-Mittag-Leffler-Ulam-Hyers stable
with respect to E ((1])( ) — (o 1))2) and consequently generalized k-Mittag-Leffler-Ulam-Hyers stable.

Proof. Let v € Cy,y, (V) be a solution if inequality (5.1), and let us assume that 3 is the unique solution of
the problem

(D5 5) (8) = % (8,50), (FHD55) (9)) 5 6 € (on, 0],

P51 (TJK(I Ul ”’5) (01F) + 2 (TJK“ Ok 11’5) (02) = 23,

(T %5) (01) = (T w) (017,

By Lemma 4.2, we obtain for each § € (g1, 02]

e v [ =0 (L7507 w) (o)

5) = + (X755 w) (9),
- i || + () 0

where w € Cy,(V), be a function satisfying the functional equation

w(d) = R(0,5(5), w(d)).

Since v is a solution of the inequality (5.1), by Remark 5.4, we have

(52) (D3 w) (8) = X (6.w(0), (F7DGT"w) (6)) +p(0), 6 € (01, 02]
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Clearly, the solution of (5.2) is given by
jK(l 0),k; 11) (

o1) e AWO)—w(er)) 4 (T oK
U (W (w +9) ) ().
U (6, 01)Tw (K6) (k2 )

where w be a function satisfying the functional equation

@(8) = R(, 10(3), ().

w(d) =

Hence, for each ¢ € (o1, 02], we have
w(0) = 30 < (F75 " 1) = wim)l) ) + (FT2500) (0)

< JT BT (((0) —b(er)) )+1C1< (755 w0 =500 ) 0)

#l9

Using Lemma 2.12 and Lemma 2.17, we get
() — 5(6)] < X [EZ ((0) —w(e1)®) 1]

6
n W (7) e MCEO=PODFEP (5 )0 (y) — 3(7)|d
L= 7

Q1

By applying Theorem 3.1, we obtain
1(6) — 3(6)] < NEZ (((5) — W(e1))?)

i\
< BT (((6) (o) ¥ ) EZ [1”_1?72 (W () = (gm‘i]
< eAE? ((lp(a) - w(gl)ﬁ) E llmm (W (02) =¥ (@1))‘5]

where

#la

2 )~ (21) ] .

Hence, the problem (1.1)-(1.2) is k-Mittag-Leffler-Ulam-Hyers stable with respect to
E? ((11)(5) - 1])(91))%). If we set v(e) = agz¢, then the problem (1.1)-(1.2) is also generalized k-Mittag-
Leffler-Ulam-Hyers stable. U

6. EXAMPLES

In this segment, we are going to provide practical examples that showcase the fulfillment of the condi-
tions outlined in the theorems of the existence and stability results. We will initially present the general
case of our problem (1.1)-(1.2).

Example 6.1. By takinge =0 =1, A =3,k =3, 9(0) =6%, 01 =1, 00 =7, 5 =50 = land 55 = ¢,
from the problem (1.1)-(1.2), we obtam the following boundary value problem with (k,)-Hilfer nonlinear
implicit fractional differential equation:

6.1) (55D83 ) () = & (5,0(0), (7DF ") (4)) &€ (1,7,
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(62) (1757 w) 1) + (175" w0) (m) =,

where V= [1,7],0 = L(e(k —0) + o) = 2 and

0% — 1(] cos(d)| + w + 3)
513e—0+27

R(d,10,3) = ,0€V, m,3€R.

We have

Cop(V) = C2,y (V) = {m S, = R: (V5P — e C(V,R)} .
It is clear that the function N is continuous on V. Then, the condition (Ax1) is satisfied.
For each tv,10,3,3 € Rand 6§ € V, we have
L V-1
‘ — 513e—96+27

T —

|N(5,m,1'_0)*N(5,5,3) (lmir_o|+‘5fg|)a 5€V,

and so the condition (Ax2) is satisfied with (; = (s = Also, the condition (4.11) of Theorem 4.3 is

513e™
satisfied. Indeed, we have
£ Gb(e2) — () 215 AL(x0)
1-¢ T (k4 0) [301 + se5e A0 (02) = (01)) | (o + k)

V-1 \3/773 1 52

2
= + Tl =
5136”— [\/711 4 1+e—3(ﬂ3—1)) 3 <3)]

3

~ 0.00310176086069368

<1
Then the problem (6.1)-(6.2) has a unique solutionin C'z,, ([1,7]) and is k-Mittag-Leffler-Ulam-Hyers stable
with respect to Eé (Vo3 —1).

Example 6.2. Takinge — 0,0 = % A=0,k=11Y0) =060 =1,0=¢€,3 =1, =0and 33 = 7, we
get a particular case of problem (1.1)-(1.2) using the Riemann-Liouville fractional derivative, given by

6.3) (1T Hp? f’o'*"’m) (6) = (RLDim) (6) =R (5, w(0), (RLD%+m) (5)) L oe(Lhe,
(6.4 (F74 " w) %) =,
where V= [l,e],0 = L(e(k —0) +0) =1,

3e2 + wvInd

N(d,10,3) = +5,66V, 1,3 € R.

333e9
We have

Coup(V) = C1 (V) = {m ‘(Le] 5R: (V3 —D)w e C’(V,R)} .

Clearly, the continuous function X is continuous. Hence, the condition (Ax1) is satisfied.
For each tv,10,3,3 € Rand ¢ € V, we have

_ _ Viné _
‘N(&mam) - N(5a575)| < 33366 ‘m - m| +

3330 5I3 3l, 6€V,
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1
and so the condition (Ax2) is satisfied with {; = (2 = 3330
e
Also, we have
£ G b(e2) —(er)* 205 AL (x6)
1-¢G Ce(k+0) ‘%1 + %ge—/\(ﬂ’(@z)_ﬂ’(@l)” T(o + «0)

_ m(e—1)

© 333e—1

~ 0.00256958784

<1

Since the conditions of Theorem 4.3 and Theorem 5.5 are satisfied, then the problem (6.1)-(6.2) has a unique
1
solution in O, ([1, ¢]) and is Mittag-Leffler-Ulam-Hyers stable with respect to E7 (v/d —1).

7. CONCLUSION

In this research, we introduced a new derivative operator called the tempered (k, {)-Hilfer fractional de-
rivative. Alongside this introduction, we conducted a thorough investigation into the essential properties
of this operator, considering the unique characteristics of the functions k-Gamma and k-Beta. Moreover,
we demonstrated the practical significance of our definitions by establishing the existence and uniqueness
of the solutions for two tempered (k,1)-Hilfer problems. These problems encompassed nonlinear implicit
fractional differential equations accompanied by boundary conditions. Our approach to proving existence
and uniqueness relied on the application of the Banach contraction principle. Furthermore, we formulated
and validated a generalized Gronwall inequality, which played a crucial role in demonstrating the k-Mittag-
Leffler-Ulam-Hyers stability. To exemplify the applicability of our key results and to show that the require-
ments of our theorems can be verified, we presented several specific examples. These examples effectively
highlighted the versatility and broadening effect of our proposed operator across various cases. Notably,
this newly introduced operator acts as an extension, encompassing previously established fractional deriva-
tives like the \-Hilfer fractional derivative already present in the literature. This broader framework sig-
nificantly enriches the ongoing advancement of fractional calculus, paving the way for promising avenues
of future exploration in this ever-evolving and dynamic field.
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