Pan-American Journal of Mathematics 2 (2023), 18 https://doi.org/10.28919/cpr-pajm/2-18 © 2023 by the authors

COMPOSITION-DIFFERENTIATION OPERATOR ON THE BERGMAN SPACE

K. O. ALOO^{1,*}, J. O. BONYO², AND I. OKELLO¹

ABSTRACT. We investigate the properties of composition-differentiation operator D_{ψ} on the Bergman space of the unit disk $L_a^2(\mathbb{D})$. Specifically, we characterize the properties of the reproducing kernel for the derivatives of the Bergman space functions. Moreover, we determine the adjoint properties of D_{ψ} whenever ψ is self analytic map of the unit disk \mathbb{D} .

1. Introduction and preliminaries

The set $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$ is called the unit disk of the complex plane. Let dA denote the area Lebesgue measure on \mathbb{D} , normalized so that the area of \mathbb{D} is 1. In terms of rectangular and polar co-ordinates, we have $dA(z)=\frac{1}{\pi}dxdy=\frac{r}{\pi}drd\theta$ where $z=x+iy=re^{i\theta}\in\mathbb{D}$.

For $1 \le p < \infty$, the classical Lebesgue spaces on the unit disk \mathbb{D} , denoted by $L^p(\mathbb{D})$, are defined by,

$$L^p(\mathbb{D}) := \left\{ f: \mathbb{D} \to \mathbb{C}: \|f\|_{L^p_a(\mathbb{D})} := \left(\int_{\mathbb{D}} |f(z)|^p dA(z) \right)^{\frac{1}{p}} < \infty \right\}.$$

The Bergman space $L^p_a(\mathbb{D})$, is a subspace of $L^p(\mathbb{D})$ consisting of all analytic functions on \mathbb{D} . In particular,

$$L_a^p(\mathbb{D}) := L^p(\mathbb{D}) \cap \mathcal{H}(\mathbb{D}),$$

where $\mathcal{H}(\mathbb{D})$ denote the space of analytic functions $f: \mathbb{D} \to \mathbb{C}$.

Therefore, $L_a^p(\mathbb{D})$ are Banach spaces with respect to $\|\cdot\|_p$. For p=2, $L_a^2(\mathbb{D})$ is a Hilbert space with the inner product given by,

$$\langle f, g \rangle = \int_{\mathbb{D}} f(z) \overline{g(z)} dA(z).$$

For $p = \infty$, we define $L^{\infty}(\mathbb{D})$ as the space of essentially bounded functions on the unit disk \mathbb{D} .

For $1 \le p < \infty$, the Hardy space of the unit disk, $H^p(\mathbb{D})$, is defined as

$$H^p(\mathbb{D}) := \left\{ f \in \mathcal{H}(\mathbb{D}) : \|f\|_{H^p(\mathbb{D})} = \sup_{0 < r < 1} \frac{1}{2\pi} \left(\int_{-\pi}^{\pi} |f(re^{i\theta})|^p d\theta \right)^{\frac{1}{p}} < \infty \right\}.$$

If p = 2, $H^2(\mathbb{D})$ is a Hilbert space with inner product defined by: For each $f, g \in H^2(\mathbb{D})$,

$$\langle f, g \rangle_{H^2(\mathbb{D})} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta}) \overline{g(e^{i\theta})} d\theta.$$

E-mail addresses: kenaloo60@gmail.com, jbonyo@mmu.ac.ke, irene@tmuc.ac.ke.

Submitted on Oct. 17, 2023.

2020 Mathematics Subject Classification. Primary 47B38, 47A05; Secondary 47A30, 46E22.

Key words and phrases. Bergman space, Composition-differentiation operator, Reproducing kernel, Adjoint.

*Corresponding author.

1

¹Faculty of Biological and Physical Sciences, Tom Mboya University, P.O. Box 199-40300, Homabay, Kenya

²DEPARTMENT OF MATHEMATICS, MULTIMEDIA UNIVERSITY OF KENYA, P.O. BOX 15653-00503 NAIROBI, KENYA

We call K_w a reproducing kernel for a Hilbert space H a complex function, $K: \Omega \times \Omega \to \mathbb{C}$ such that if we put $K_w(z) = K(z, w)$, then the following two properties hold:

- (i) For every $w \in \Omega$, the function K_w belongs to H and,
- (ii) for all $f \in H$ and $w \in \Omega$, we have $f(w) = \langle f, K_w \rangle_H$ (the reproducing property).

The reproducing kernel K_w for the Bergman space $L_a^2(\mathbb{D})$ is given by,

(1.1)
$$K_w(z) = \frac{1}{(1 - \overline{w}z)^2}.$$

See [1,2,11] and references therein for more details.

Let ψ be a self analytic map on \mathbb{D} , then the composition operator C_{ψ} induced by ψ and acting on $\mathcal{H}(\mathbb{D})$ is defined by: $C_{\psi}f = f \circ \psi$, for all $f \in \mathcal{H}(\mathbb{D})$ while the differentiation operator D on $\mathcal{H}(\mathbb{D})$ is defined by $Df(z) = f'(z) \quad \forall f \in \mathcal{H}(\mathbb{D})$. Differentiation operator D is unbounded on the Bergman space. See [3,5,8] for more details.

Given the function $g \in L^{\infty}(\mathbb{D})$, we define an operator T_q acting on $\mathcal{H}(\mathbb{D})$ given by

$$T_a f = g \cdot f \quad \forall f \in \mathcal{H}(\mathbb{D}).$$

The operator T_g is called a Toeplitz operator.

The composition-differentiation operator denoted by D_{ψ} on $\mathcal{H}(\mathbb{D})$ is induced by ψ and is defined as

$$D_{\psi}f(z) = (f' \circ \psi)(z) \quad \forall f \in \mathcal{H}(\mathbb{D}) \text{ and } z \in \mathbb{D}.$$

For analytic self maps $\psi : \mathbb{D} \to \mathbb{D}$, the operator D_{ψ} is bounded on $L_a^2(\mathbb{D})$ (See [[10], Theorem 2.44]). Closed Graph Theorem shows that D_{ψ} is bounded on $L_a^2(\mathbb{D})$ whenever D_{ψ} takes $L_a^2(\mathbb{D})$ into itself.

Cowen and MacCluer [6] determined properties of composition operators C_{ψ} on the Hardy space. Ohno [10] later investigated the boundedness and compactness of the product of composition and differentiation operator operators on the Hardy space of the unit disk. Fatehi and Hammond [7] extended Ohno's results and considered a particular case when the operator D_{ψ} is bounded on the Hardy space of the unit disk $H^2(\mathbb{D})$ and determined the properties of this operator on $H^2(\mathbb{D})$. Nevertheless, reproducing kernel is an approach gaining popularity in the study of these operators. The purpose of this paper therefore is to determine properties of D_{ψ} on $L^2_a(\mathbb{D})$ when the operator D_{ψ} is bounded.

2. Reproducing Kernel for the derivative of $L^2_a(\mathbb{D})$ functions

In this section, we determine the reproducing kernel for the derivatives of Bergman space $L^2_a(\mathbb{D})$ functions. We further establish the norm of the reproducing kernel for the derivative of the Bergman space functions together with its growth condition.

Proposition 2.1. For a fixed point $w \in \mathbb{D}$, let K_w denote the reproducing kernel for the Bergman space $L_a^2(\mathbb{D})$. Then the following properties hold:

- (1) $||K_w|| = \frac{1}{1-|w|^2}$.
- (2) The growth condition for the Bergman space functions is given by,

$$|f(w)| \le \frac{1}{\sqrt{1-|w|^2}} ||f||.$$

(3) The reproducing kernel for the derivative of Bergman space functions $K_w^{(1)}$ is given by,

$$K_w^{(1)}(z) = \frac{2z}{(1 - \overline{w}z)^3}.$$

(4) The norm of the reproducing kernel for the derivative of the Bergman space functions is given by,

$$||K_w^{(1)}|| = \frac{\sqrt{2(1+5|w|^2)}}{(1-|w|^2)^2}.$$

(5) The growth condition of the derivative of the Bergman space functions is given by,

$$|f'(w)| \le \sqrt{\frac{2z}{(1-\overline{w}z)^3}} ||f||.$$

Proof. To prove 1, let K_w be the reproducing kernel of $L_a^2(\mathbb{D})$. Then letting z=w in equation (1.1), we obtain

$$K_w(w) = \frac{1}{(1 - |w|^2)^2}.$$

Then by the reproducing property of K_w given by,

$$\langle f, K_w \rangle = f(w) \quad \forall f \in L_a^2(\mathbb{D}),$$

we have that

$$K_w(w) = \langle K_w, K_w \rangle = ||K_w||^2.$$

Thus

$$||K_w||^2 = \frac{1}{(1-|w|^2)^2},$$

and therefore

$$||K_w|| = \frac{1}{1 - |w|^2},$$

as desired.

To prove 2, we use the Cauchy Schwartz inequality.

Now for every $f \in L_a^2(\mathbb{D})$, we have

$$|f(w)| = |\langle f, K_w \rangle|$$

 $\leq ||f|| ||K_w||$
 $= ||f|| \frac{1}{1 - |w|^2}.$

It follows that

$$|f(w)| \le \frac{1}{1 - |w|^2} ||f||,$$

where

$$||f|| := ||f||_{L^2(\mathbb{D})}.$$

Equation (2.1) is the growth condition for the Bergman space functions. To prove 3, we need to obtain $K_w'(z)$ and then deduce $K_w^{(1)}(z)$.

Differentiating (1.1) with respect to z, we get

$$(2.2) K'_w(z) = \frac{2\overline{w}}{(1-\overline{w}z)^3}.$$

We then obtain $K_w^{(1)}(z)$ by interchanging \overline{w} with z in (2.2),

(2.3)
$$K_w^{(1)}(z) = \frac{2z}{(1 - z\overline{w})^3},$$

which is the reproducing kernel for the derivative of $L^2_a(\mathbb{D})$ functions. To prove 4, we use equation (2.3) which gives $K^{(1)}_w$. Now by the reproducing property of $K^{(1)}_w$, we have that

$$\langle f, K_w^{(1)} \rangle = f'(w)$$

and therefore

$$\langle K_w^{(1)}, K_w^{(1)} \rangle = (K_w^{(1)})'(w) = ||K_w^{(1)}||^2.$$

But

$$K_w^{(1)}(w) = \frac{2w}{(1 - \overline{w}w)^3}.$$

We then get the derivative of the reproducing kernel as follows,

$$(K_w^{(1)})'(w) = \frac{2(1-\overline{w}w)^3 - 2w[3(1-\overline{w}w)^2(-\overline{w})]}{(1-w\overline{w})^6}$$

$$= \frac{2(1-\overline{w}w)^3 + 6\overline{w}w(1-\overline{w}w)^2}{(1-\overline{w}w)^6}$$

$$= \frac{2(1+5|w|^2)}{(1-|w|^2)^4}.$$

It then follows that

$$||K_w^{(1)}||^2 = \frac{2(1+5|w|^2)}{(1-|w|^2)^4}.$$

Thus

$$||K_w^{(1)}|| = \frac{\sqrt{2(1+5|w|^2)}}{(1-|w|^2)^2}.$$

To prove 5, we again employ Cauchy-Schwartz inequality.

By Cauchy-Schwartz inequality, we have that for every $f \in L_a^2(\mathbb{D})$,

$$\begin{split} f'(w) &= \langle f, K_w^{(1)} \rangle &= |\langle f, K_w^{(1)} \rangle| \\ &\leq \|f\| \|K_w^{(1)}\| \\ &= \|f\| \frac{\sqrt{2(1+5|w|^2)}}{(1-|w|^2)^2}. \end{split}$$

Hence

$$|f'(w)| \le \frac{\sqrt{2(1+5|w|^2)}}{(1-|w|^2)^2} ||f||,$$

as desired.

This completes the proof.

3. Properties of composition-differentiation operator on the Bergman space.

In this section, we determine certain properties of composition-differentiation operator on the Bergman space. In particular, we prove a compactness property of the composition-differentiation operator D_{ψ} that $\|D_{\psi}\| \geq \sqrt{2}$ whenever $\psi(0) \neq 0$. We further determine the adjoint of the composition-differentiation operator by employing the use of nonconstant linear fractional self maps. However, we first prove the following proposition.

Proposition 3.1. Let ψ be an analytic self map in \mathbb{D} , then for any $w \in \mathbb{D}$, the following properties hold in the Bergman space $L_a^2(\mathbb{D})$:

- 1. $\langle f, K_w^{(1)} \rangle = f'(w)$.
- 2. $C_{\psi}^*(K_w) = K_{\psi(w)}$ where C_{ψ}^* denotes the adjoint of C_{ψ} on $L_a^2(\mathbb{D})$.
- 3. C_{ψ} is invertible if and only if ψ is an automorphism. In that case, $C_{\psi}^{-1} = C_{\psi^{-1}}$.
- 4. $T_{\psi}^*(K_w) = \overline{\psi(w)}K_w$
- 5. $D_{\psi}^*(K_w) = K_{\psi(w)}^{(1)}$
- 6. $D_{\psi}D_{\psi^{-1}} = D_{\psi^{-1}}D_{\psi}$ with $D_{\psi}^*D_{\psi^{-1}}^*K_w = D_{\psi^{-1}}^*D_{\psi}^*K_w = (K_w^{(1)})^{(1)}$. In particular, D_{ψ} is not invertible.

Proof. To prove 1, for every $f \in L_a^2(\mathbb{D})$, we have

$$f(w) = \langle f, K_w \rangle$$

$$= \int_{\mathbb{D}} f(z) \overline{K_w(z)} dA(z)$$

$$= \int_{\mathbb{D}} \frac{f(z)}{(1 - \overline{z}w)^2} dA(z).$$
(3.1)

Differentiating equation (3.1) with respect to w we obtain

$$f'(w) = \frac{\partial}{\partial w} \int_{\mathbb{D}} \frac{f(z)}{(1 - \overline{z}w)^2} dA(z)$$

$$= \int_{\mathbb{D}} \frac{\partial}{\partial w} \frac{f(z)}{(1 - \overline{z}w)^2} dA(z)$$

$$= \int_{\mathbb{D}} f(z) \frac{2\overline{z}}{(1 - \overline{z}w)^3} dA(z)$$

$$= \int_{\mathbb{D}} f(z) \overline{K_z^{(1)}(w)} dA(z)$$

$$= \langle f, K_w^{(1)} \rangle,$$

as desired. For 2, for every $f \in L^2_a(\mathbb{D})$ and $w \in \mathbb{D}$, we have by the definition of C_{ψ} and the reproducing property of K_w ,

$$\langle f, C_{\psi}^* K_w \rangle = \langle C_{\psi} f, K_w \rangle$$

$$= \langle f \circ \psi, K_w \rangle$$

$$= f(\psi(w))$$

$$= \langle f, K_{\psi(w)} \rangle.$$

So $C_{\psi}^*K_w=K_{\psi(w)}$ as desired.

For 3, if ψ is an automorphism of \mathbb{D} , then by assertion 2, we have

$$\langle C_{\psi}C_{\psi^{-1}}f, K_{w}\rangle = \langle C_{\psi^{-1}}f, C_{\psi}^{*}K_{w}\rangle$$

$$= \langle C_{\psi^{-1}}f, K_{\psi(w)}\rangle$$

$$= \langle f, K_{\psi^{-1}(\psi(w))}\rangle$$

$$= \langle f, K_{w}\rangle.$$

Thus $C_{\psi}C_{\psi^{-1}}=I$. Similarly, it can be shown that $C_{\psi^{-1}}C_{\psi}=I$. This implies that C_{ψ} is invertible and $C_{\psi}^{-1}=C_{\psi^{-1}}$, as desired. For 4, by the inner product property, we have

$$T_{\psi}^* K_w(z) = \langle T_{\psi}^* K_w, K_z \rangle$$

$$= \langle \overline{T_{\psi} K_z, K_w} \rangle$$

$$= \overline{T_{\psi} K_z(w)}$$

$$= \overline{\psi(w) K_z(w)}$$

$$= \overline{\psi(w)} \langle K_w, K_z \rangle$$

$$= \overline{\psi(w)} K_w(z).$$

Since z was arbitrary, it follows that $T_{\psi}^*K_w = \overline{\psi(w)}K_w$, as desired. For 5, let $f \in L_a^2(\mathbb{D})$, then by assertion 1, we have

$$\langle f, D_{\psi}^* K_w \rangle = \langle D_{\psi} f, K_w \rangle$$

$$= D_{\psi} f(w)$$

$$= (f' \circ \psi)(w)$$

$$= f'(\psi(w))$$

$$= \langle f, K_{\psi(w)}^{(1)} \rangle.$$

So $D_{\psi}^* K_w = K_{\psi(w)}^{(1)}$.

For 6, by assertion 4, we have that

$$\langle D_{\psi} D_{\psi^{-1}} f, K_{w} \rangle = \langle D_{\psi^{-1}} f, D_{\psi}^{*} K_{w} \rangle$$

$$= \langle D_{\psi^{-1}} f, K_{\psi(w)}^{(1)} \rangle$$

$$= \langle f, (K_{\psi^{-1}(\psi(w))}^{(1)})^{(1)} \rangle$$

$$= \langle f, (K_{w}^{(1)})^{(1)} \rangle.$$

Similarly,

$$\langle D_{\psi^{-1}} D_{\psi} f, K_{w} \rangle = \langle D_{\psi} f, D_{\psi^{-1}}^{*} K_{w} \rangle$$

$$= \langle D_{\psi} f, K_{\psi^{-1}(w)}^{(1)} \rangle$$

$$= \langle f, (K_{\psi^{-1}(\psi(w))}^{(1)})^{(1)} \rangle$$

$$= \langle f, (K_{w}^{(1)})^{(1)} \rangle,$$

where $(K_w^{(1)})^{(1)}$ is the second derivative of the reproducing kernel K_w . Therefore $D_\psi D_{\psi^{-1}} = D_{\psi^{-1}} D_\psi$ with $D_\psi^* D_{\psi^{-1}}^* K_w = D_{\psi^{-1}}^* D_\psi^* K_w = (K_w^{(1)})^{(1)}$. In particular, D_ψ is not invertible.

In the next results, we approximate the lower bound of the composition-differentiation operator D_{ψ} on the Bergman space $L_a^2(\mathbb{D})$.

Proposition 3.2. Let ψ be an analytic self map on \mathbb{D} . Then $||D_{\psi}|| \geq \sqrt{2}$. Moreover if $\psi(0) \neq 0$, then $||D_{\psi}|| > \sqrt{2}$.

Proof. From assertion 5 of Proposition 3.1, we also have that

$$D_{\psi}^{*}(K_{w}) = K_{\psi}^{(1)}(w).$$

Recall,

$$||K_w|| = \frac{1}{1 - |w|^2},$$

and

$$||K_w^{(1)}|| = \sqrt{\frac{2(1+5|w|^2)}{(1-|w|^2)^4}}.$$

Now we define $||D_{\psi}^*(K_w)||$ given by

(3.2)
$$||D_{\psi}^*(K_w)|| = \sqrt{\frac{2(1+5|w|^2)}{(1-|w|^2)^4}}.$$

Dividing equation (3.2) by $||K_w||^2$ we obtain

(3.3)
$$\frac{\|D_{\psi}^*(K_w)\|^2}{\|K_w\|^2} = \frac{(1-|w|^2)^2 2(1+5|\psi(w)|^2)}{(1-|\psi(w)|^2)^4},$$

Implying that

$$\frac{\|D_{\psi}^*(K_w)\|}{\|K_w\|} = \frac{(1-|w|^2\sqrt{(2+10|\psi(w)|^2})}{(1-|\psi(w)|^2)^2}.$$

It follows that, if D_{ψ} is bounded on L_a^2 then,

(3.4)
$$||D_{\psi}|| \ge \sup_{w \in \mathbb{D}} \sqrt{\frac{(1 - |w|^2)^2 (2 + 10|\psi(w)|^2)}{(1 - |\psi(w)|^2)^4}} \ge \sup_{w \in \mathbb{D}} \sqrt{\frac{(1 - |w|^2)^2}{(1 - |\psi(w)|^2)^4}},$$

since $||D_{\psi}^*|| = ||D_{\psi}||$. Letting w = 0 in equation (3.4), we obtain,

$$||D_{\psi}|| \ge \sqrt{\frac{(2+10|\psi(0)|^2)}{(1-|\psi(0)|^2)^4}}$$

This shows that $||D_{\psi}|| \ge \sqrt{2}$, for all ψ and that whenever $\psi(0) \ne 0$ then $||D_{\psi}|| > \sqrt{2}$.

Consider $\varphi(z)=\frac{az+b}{cz+d}$ be a nonconstant linear fractional self-map of $\mathbb D$ where $a,b,c,d\in\mathbb C$, then the map

$$\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}},$$

also takes \mathbb{D} to \mathbb{D} .

These two maps φ and σ have been used mostly to investigate adjoint properties of composition operators. See [4,5,9] for more details.

In our next result, we also employ the maps φ and σ to determine the adjoint properties of the composition-differentiation operators D_{ψ} . Moreover, we deduce some consequences from the adjoint relations obtained.

Theorem 3.3. *For the two maps* φ *and* σ *,*

(3.5)
$$D_{\varphi}^* T_{K_{\sigma(0)}}^* = T_{K_{\varphi(0)}}^{(1)} D_{\sigma}.$$

Proof. Let $\varphi(z) = \frac{az+b}{cz+d}$. Then

$$\varphi(0) = \frac{b}{d}$$
.

We also have that

$$\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$$

which implies that

$$\sigma(0) = -\frac{\overline{c}}{\overline{d}}.$$

Reproducing kernel of the derivatives of the Bergman space functions was obtained in chapter 3 as

(3.6)
$$K_w^{(1)}(z) = \frac{2\overline{z}}{(1 - \overline{w}z)^3}$$

That is, for all $f \in L_a^2(\mathbb{D})$, $f'(z) = \langle f, K_w^{(1)} \rangle$. Letting $w = \varphi(0)$ in equation (3.6), we obtain

(3.7)
$$K_{\varphi(0)}^{(1)}(z) = \frac{2z}{(1-(\frac{\overline{b}}{2})z)^3}$$

$$= \frac{2z}{(1 - \frac{\bar{b}}{d}z)^3}.$$

Multiplying equation (4.7) by \overline{d}^3 , we obtain

(3.9)
$$K_{\varphi(0)}^{(1)}(z) = \frac{2\overline{d}^3 z}{(\overline{d} - \overline{b}z)^3}.$$

Also, letting $w = \sigma(0)$ in (3.6), we get

(3.10)
$$K_{\sigma(0)}^{(1)}(z) = \frac{2z}{(1 - (-\frac{\overline{c}}{d})z)^3}.$$

Multiplying the R.H.S of (3.10) by d^3 , we obtain

$$K_{\sigma(0)}^{(1)}(z) = \frac{2d^3z}{(d+cz)^3}.$$

Moreover,

$$T_{K_{\varphi(0)}^{(1)}} D_{\sigma}(K_w)(z) = K_{\psi(0)}^{(1)} D_{\sigma}(K_w)(z)$$
$$= K_{\varphi(0)}^{(1)} K_w'(\sigma(z)).$$

But from equation (3.6),

$$K_w^{(1)}(z) = \frac{2\overline{w}}{(1 - \overline{w}z)^3}.$$

It then follows that,

$$K'_{w}(\sigma(z)) = \frac{2\overline{w}}{(1 - \overline{w}\sigma(z))^{3}}$$

$$= \frac{2\overline{w}}{\left(1 - \overline{w}\left(\frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{a}}\right)\right)^{3}}.$$

Therefore,

$$T_{K_{\varphi(0)}^{(1)}} D_{\sigma}(K_{w})(z) = \frac{2\overline{d}^{3}z}{(\overline{d} - \overline{b}z)^{3}} \cdot \frac{2\overline{w}}{\left(1 - \overline{w}\left(\frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}\right)\right)^{3}}$$

$$= \frac{2\overline{d}^{3}z \cdot 2\overline{w}}{(\overline{d} - \overline{b}z - \overline{w}(\overline{a}z - \overline{c}))^{3}}$$

$$= \frac{4\overline{d}^{3}wz}{(\overline{d} - \overline{b}z - \overline{a}\overline{w}z + \overline{c}\overline{w})^{3}}.$$

Hence

(3.11)
$$T_{K_{\varphi(0)}^{(1)}} D_{\sigma}(K_w)(z) = \frac{4\overline{d^3w}z}{\left(\overline{d} - \overline{b}z - \overline{aw}z + \overline{cw}\right)^3}.$$

Simplifying the denominator of the R.H.S of (3.11), we obtain

$$\left((\overline{cw} + \overline{d}) - (\overline{aw} + \overline{b})z\right)^3 = \left(\overline{cw} + \overline{d}\right)^3 \left(1 - \left(\frac{\overline{aw} + \overline{b}}{\overline{cw} + \overline{d}}\right)z\right)^3.$$

Therefore equation (3.11) can be written as

$$T_{K_{\varphi(0)}^{(1)}}D_{\sigma}(K_w)(z) = \frac{4\overline{d^3w}}{(\overline{cw} + \overline{d})^3} \cdot \frac{z}{\left(1 - \left(\frac{\overline{aw} + \overline{b}}{\overline{cw} + \overline{d}}\right)z\right)^3},$$

for any $w \in \mathbb{D}$.

Next, we compute $D_{\varphi}^*T_{K_{\tau(0)}^{(1)}}^*(K_w)$.

From the adjoint property of *T* given in Proposition 3.1 assertion 4, we have that

$$D_{\varphi}^* T_{K_{\sigma(0)}}^* (K_w) = D_{\varphi}^* \overline{K_{\sigma(0)}^{(1)}} K_w$$
$$= K_{\sigma(0)}^{(1)} D_{\varphi}^* K_w.$$

But by assertion 5 of Proposition 3.1, we have that

$$D_{\varphi}^* K_w = K_{\varphi(w)}^{(1)}$$

This implies that,

$$\overline{K_{\sigma(0)}^{(1)}}(w)D_{\varphi}^{*}(K_{w}) = \overline{K_{\sigma(0)}^{(1)}(w)}K_{\varphi(w)}^{(1)}$$

$$= \frac{2\overline{d}^{3}w}{(\overline{cw} + \overline{d})^{3}} \cdot \frac{2z}{\left(1 - \overline{\varphi(w)}z\right)^{3}}$$

$$= \frac{4\overline{d}^{3}w}{\left(\overline{cw} + \overline{d}z\right)^{3}} \cdot \frac{z}{\left(1 - \left(\frac{\overline{aw} + \overline{b}}{\overline{cw} + \overline{d}}\right)z\right)^{3}}$$

Therefore, $D_{\varphi}^*T_{K_{\varphi(0)}^{(1)}}^*$ and $T_{K_{\varphi(0)}^{(1)}}D_{\sigma}$ both agree on span of reproducing functions and therefore constitutes a dense subset of $L_a^2(\mathbb{D})$.

Thus both the operators are identical on $L_a^2(\mathbb{D})$.

Remark 3.4. The relation obtained in Theorem 3.3 above is similar to that obtained by Fatehi and Hammond [7] in the setting of the Hardy space $H^2(\mathbb{D})$. Moreover, as noted in [7], it has a resemblance to Cowen's adjoint formula for composition operators, which is written as $C_{\varphi}^*T_{K_{\sigma(0)}^{(1)}}^* = T_{K_{\varphi(0)}^{(1)}}C_{\sigma}$ (See[8, Theorem 2]).

Now, let us focus on special cases obtained by taking b,c=0 and $r=\frac{a}{d}$ where $a,d\in\mathbb{R}$. Then $\sigma(z)=\frac{a}{d}z$ and $\varphi(z)=\sigma(z)=\frac{a}{d}z$.

Take $\rho(z)=rz$ for some real number $r=\frac{a}{d}$.

Then clearly, $\rho(z) = \sigma(z) = \varphi(z)$ which implies that $\rho(0) = 0$ and so $K_{\rho(0)}^{(1)} = z$. For ease of notation, we let

$$T_z = T_{K_{\varphi(0)}^{(1)}} = T_{K_{\sigma(0)}^{(1)}}.$$

and

$$D_{\rho} = D_{\varphi} = D_{\sigma}.$$

Then the relation in equation (3.5) reduces to

(3.12)
$$D_{\rho}^{*}T_{z}^{*} = T_{z}D_{\rho}.$$

We can then deduce the following consequences:

Corollary 3.5. Let T_z and D_ρ be as defined above. Then

- (1) $T_z^*T_z = I$
- (2) $D_{\rho}^* = T_z D_{\rho} T_z$
- (3) $D_{\rho}T_z$ is self adjoint
- (4) $D_{\rho}D_{\rho}^* = (D_{\rho}T_z)^2$

Proof. To prove 1, for $f \in L_a^2(\mathbb{D})$, we have that

$$\langle T_z^* T_z f, f \rangle = \langle T_z f, T_z f \rangle$$

$$= \|T_z f\|^2$$

$$= \|f\|^2$$

$$= \langle f, f \rangle.$$

So $T_z^*T_z = I$, as desired.

To prove 2, from assertion 1, we have that $T_z^*T_z = I$.

Therefore $D_{\rho}^* = D_{\rho}^* T_z^* T_z$.

But from (3.12), $D_{\rho}^*T_z^* = T_z D_{\rho}$.

We then have that, $D_{\rho}^*T_z^*T_z = T_zD_{\rho}T_z$,

implying that $D_{\rho}^* = T_z D_{\rho} T_z$, as desired.

To prove (3), let $(D_{\rho}T_z)^*$ be the adjoint of $D_{\rho}T_z$, then

$$(D_{\rho}T_{z})^{*} = T_{z}^{*}D_{\rho}^{*}$$

 $= T_{z}^{*}(T_{z}D_{\rho}T_{z})$
 $= T_{z}^{*}T_{z}D_{\rho}T_{z}.$

Since $T_z^*T_z = I$, it then follows that $T_z^*T_zD_zT_z = D_\rho T_z$, as desired.

To prove (4), from assertion (2), $D_{\rho}^* = T_z D_{\rho} T_z$.

It then follows that,

$$D_{\rho}D_{\rho}^{*} = D_{\rho}(T_{z}D_{\rho}T_{z})$$
$$= D_{\rho}T_{z}D_{\rho}T_{z}$$
$$= (D_{\rho}T_{z})^{2}.$$

This completes the proof.

REFERENCES

- [1] S. Axler, Bergman spaces and their operators, Lecture notes at the Indiana University, Function Theoritic operators Theory Conference Nov, (1985).
- [2] J.O. Bonyo, Reproducing Kernels for Hardy and Bergman spaces of the Upper Half Plane, Commun. Adv. Math. Sci. 3 (2020), 13–23.
- [3] R. B. Burckel, An introduction to Classical Complex Analysis, Birkhauser Verlag, Basel, (1979).
- [4] J. B. Conway, A course in Functional Analysis, 2^{nd} Edition, Springer-Verlag, (1990).
- [5] C. C. Cowen, Linear fractional composition operators on H^2 , J. Integral Equ. Oper. Theory, 11 (1988), 151–160.
- [6] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, (1995).
- [7] M. Fatehi and C. Hammond, Composition-differentiation operators on the Hardy space, Proc. Amer. Math. Soc. 148 (2020), 2893–2900.
- [8] K. Han and M. Wang, Some properties of composition differentiation operators, Banach J. Math. Anal. 16 (2022), 36.
- [9] E. A. Nodgren, Composition operators, Can. J. Math. 33 (1966), 442–449.
- [10] S. Ohno, Products of Composition and differentiation between Hardy space, Bull. Austral. Math. (Basel), 2 (2006), 235–243.
- [11] 21. K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, (1990).