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COMPOSITION-DIFFERENTIATION OPERATOR ON THE BERGMAN SPACE

K. O. ALOO1,∗, J. O. BONYO2, AND I. OKELLO1

ABSTRACT. We investigate the properties of composition-differentiation operator Dψ on the Bergman space of
the unit disk L2

a(D). Specifically, we characterize the properties of the reproducing kernel for the derivatives of
the Bergman space functions. Moreover, we determine the adjoint properties of Dψ whenever ψ is self analytic
map of the unit disk D.

1. INTRODUCTION AND PRELIMINARIES

The set D := {z ∈ C : |z| < 1} is called the unit disk of the complex plane. Let dA denote the area
Lebesgue measure on D, normalized so that the area of D is 1. In terms of rectangular and polar co-ordinates,
we have dA(z) = 1

πdxdy = r
πdrdθ where z = x+ iy = reiθ ∈ D.

For 1 ≤ p <∞, the classical Lebesgue spaces on the unit disk D, denoted by Lp(D), are defined by,

Lp(D) :=

{
f : D→ C : ‖f‖Lpa(D) :=

(∫
D
|f(z)|pdA(z)

) 1
p

<∞

}
.

The Bergman space Lpa(D), is a subspace of Lp(D) consisting of all analytic functions on D. In particular,

Lpa(D) := Lp(D) ∩H(D),

whereH(D) denote the space of analytic functions f : D→ C.
Therefore, Lpa(D) are Banach spaces with respect to ‖ · ‖p. For p = 2, L2

a(D) is a Hilbert space with the inner
product given by,

〈f, g〉 =

∫
D
f(z)g(z)dA(z).

For p =∞, we define L∞(D) as the space of essentially bounded functions on the unit disk D.
For 1 ≤ p <∞, the Hardy space of the unit disk, Hp(D), is defined as

Hp(D) :=

{
f ∈ H(D) : ‖f‖Hp(D) = sup

0<r<1

1

2π

(∫ π

−π
|f(reiθ)|pdθ

) 1
p

<∞

}
.

If p = 2, H2(D) is a Hilbert space with inner product defined by: For each f, g ∈ H2(D),

〈f, g〉H2(D) =
1

2π

∫ π

−π
f(eiθ)g(eiθ)dθ.
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We call Kw a reproducing kernel for a Hilbert space H a complex function, K : Ω× Ω → C such that if we
put Kw(z) = K(z, w), then the following two properties hold:

(i) For every w ∈ Ω, the function Kw belongs to H and,
(ii) for all f ∈ H and w ∈ Ω, we have f(w) = 〈f,Kw〉H (the reproducing property).

The reproducing kernel Kw for the Bergman space L2
a(D) is given by,

(1.1) Kw(z) =
1

(1− wz)2
.

See [1, 2, 11] and references therein for more details.
Let ψ be a self analytic map on D, then the composition operator Cψ induced by ψ and acting on H(D)

is defined by: Cψf = f ◦ ψ, for all f ∈ H(D) while the differentiation operator D on H(D) is defined by
Df(z) = f ′(z) ∀f ∈ H(D). Differentiation operator D is unbounded on the Bergman space. See [3,5,8] for
more details.
Given the function g ∈ L∞(D), we define an operator Tg acting onH(D) given by

Tgf = g · f ∀ f ∈ H(D).

The operator Tg is called a Toeplitz operator.
The composition-differentiation operator denoted by Dψ onH(D) is induced by ψ and is defined as

Dψf(z) = (f ′ ◦ ψ)(z) ∀ f ∈ H(D) and z ∈ D.

For analytic self maps ψ : D→ D, the operator Dψ is bounded on L2
a(D) (See [ [10], Theorem 2.44]). Closed

Graph Theorem shows that Dψ is bounded on L2
a(D) whenever Dψ takes L2

a(D) into itself.
Cowen and MacCluer [6] determined properties of composition operators Cψ on the Hardy space. Ohno
[10] later investigated the boundedness and compactness of the product of composition and differentiation
operator operators on the Hardy space of the unit disk. Fatehi and Hammond [7] extended Ohno’s results
and considered a particular case when the operator Dψ is bounded on the Hardy space of the unit disk
H2(D) and determined the properties of this operator on H2(D). Nevertheless, reproducing kernel is an
approach gaining popularity in the study of these operators. The purpose of this paper therefore is to
determine properties of Dψ on L2

a(D) when the operator Dψ is bounded.

2. REPRODUCING KERNEL FOR THE DERIVATIVE OF L2
a(D) FUNCTIONS

In this section, we determine the reproducing kernel for the derivatives of Bergman space L2
a(D) func-

tions. We further establish the norm of the reproducing kernel for the derivative of the Bergman space
functions together with its growth condition.

Proposition 2.1. For a fixed point w ∈ D, let Kw denote the reproducing kernel for the Bergman space L2
a(D). Then

the following properties hold:

(1) ‖Kw‖ = 1
1−|w|2 .

(2) The growth condition for the Bergman space functions is given by,

|f(w)| ≤ 1√
1− |w|2

‖f‖.

(3) The reproducing kernel for the derivative of Bergman space functions K(1)
w is given by,

K(1)
w (z) =

2z

(1− wz)3
.
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(4) The norm of the reproducing kernel for the derivative of the Bergman space functions is given by,

‖K(1)
w ‖ =

√
2(1 + 5|w|2)

(1− |w|2)2
.

(5) The growth condition of the derivative of the Bergman space functions is given by,

|f ′(w)| ≤

√
2z

(1− wz)3
‖f‖.

Proof. To prove 1, letKw be the reproducing kernel of L2
a(D). Then letting z = w in equation (1.1), we obtain

Kw(w) =
1

(1− |w|2)2
.

Then by the reproducing property of Kw given by,

〈f,Kw〉 = f(w) ∀f ∈ L2
a(D),

we have that
Kw(w) = 〈Kw,Kw〉 = ‖Kw‖2.

Thus
‖Kw‖2 =

1

(1− |w|2)2
,

and therefore
‖Kw‖ =

1

1− |w|2
,

as desired.
To prove 2, we use the Cauchy Schwartz inequality.
Now for every f ∈ L2

a(D), we have

|f(w)| = |〈f,Kw〉|

≤ ‖f‖‖Kw‖

= ‖f‖ 1

1− |w|2
.

It follows that

(2.1) |f(w)| ≤ 1

1− |w|2
‖f‖,

where
‖f‖ := ‖f‖L2

a(D).

Equation (2.1) is the growth condition for the Bergman space functions.
To prove 3, we need to obtain K ′w(z) and then deduce K(1)

w (z).
Differentiating (1.1) with respect to z, we get

(2.2) K ′w(z) =
2w

(1− wz)3
.

We then obtain K(1)
w (z) by interchanging w with z in (2.2),

(2.3) K(1)
w (z) =

2z

(1− zw)3
,

which is the reproducing kernel for the derivative of L2
a(D) functions.

To prove 4, we use equation (2.3) which gives K(1)
w .

Now by the reproducing property of K(1)
w , we have that

〈f,K(1)
w 〉 = f ′(w)
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and therefore

〈K(1)
w ,K(1)

w 〉 = (K(1)
w )′(w) = ‖K(1)

w ‖2.

But

K(1)
w (w) =

2w

(1− ww)3
.

We then get the derivative of the reproducing kernel as follows,

(K(1)
w )′(w) =

2(1− ww)3 − 2w[3(1− ww)2(−w)]

(1− ww)6

=
2(1− ww)3 + 6ww(1− ww)2

(1− ww)6

=
2(1 + 5|w|2)

(1− |w|2)4
.

It then follows that

‖K(1)
w ‖2 =

2(1 + 5|w|2)

(1− |w|2)4
.

Thus

‖K(1)
w ‖ =

√
2(1 + 5|w|2)

(1− |w|2)2
.

To prove 5, we again employ Cauchy-Schwartz inequality.
By Cauchy-Schwartz inequality, we have that for every f ∈ L2

a(D),

f ′(w) = 〈f,K(1)
w 〉 = |〈f,K(1)

w 〉|

≤ ‖f‖‖K(1)
w ‖

= ‖f‖
√

2(1 + 5|w|2)

(1− |w|2)2
.

Hence

|f ′(w)| ≤
√

2(1 + 5|w|2)

(1− |w|2)2
‖f‖,

as desired.
This completes the proof. �

3. PROPERTIES OF COMPOSITION-DIFFERENTIATION OPERATOR ON THE BERGMAN SPACE.

In this section, we determine certain properties of composition-differentiation operator on the Bergman
space. In particular, we prove a compactness property of the composition-differentiation operator Dψ that
‖Dψ‖ ≥

√
2 whenever ψ(0) 6= 0. We further determine the adjoint of the composition-differentiation opera-

tor by employing the use of nonconstant linear fractional self maps. However, we first prove the following
proposition.

Proposition 3.1. Let ψ be an analytic self map in D, then for anyw ∈ D, the following properties hold in the Bergman
space L2

a(D):
1. 〈f,K(1)

w 〉 = f ′(w).

2. C∗ψ(Kw) = Kψ(w) where C∗ψ denotes the adjoint of Cψ on L2
a(D).

3. Cψ is invertible if and only if ψ is an automorphism. In that case, C−1ψ = Cψ−1 .

4. T ∗ψ(Kw) = ψ(w)Kw

5. D∗ψ(Kw) = K
(1)
ψ(w)

6. DψDψ−1 = Dψ−1Dψ with D∗ψD
∗
ψ−1Kw = D∗ψ−1D∗ψKw = (K

(1)
w )(1). In particular, Dψ is not invertible.
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Proof. To prove 1, for every f ∈ L2
a(D), we have

f(w) = 〈f,Kw〉

=

∫
D
f(z)Kw(z)dA(z)

=

∫
D

f(z)

(1− zw)2
dA(z).(3.1)

Differentiating equation (3.1) with respect to w we obtain

f ′(w) =
∂

∂w

∫
D

f(z)

(1− zw)2
dA(z)

=

∫
D

∂

∂w

f(z)

(1− zw)2
dA(z)

=

∫
D
f(z)

2z

(1− zw)3
dA(z)

=

∫
D
f(z)K

(1)
z (w)dA(z)

= 〈f,K(1)
w 〉,

as desired. For 2, for every f ∈ L2
a(D) and w ∈ D, we have by the definition of Cψ and the reproducing

property of Kw,

〈f, C∗ψKw〉 = 〈Cψf,Kw〉

= 〈f ◦ ψ,Kw〉

= f(ψ(w))

= 〈f,Kψ(w)〉.

So C∗ψKw = Kψ(w) as desired.
For 3, if ψ is an automorphism of D, then by assertion 2, we have

〈CψCψ−1f,Kw〉 = 〈Cψ−1f, C∗ψKw〉

= 〈Cψ−1f,Kψ(w)〉

= 〈f,Kψ−1(ψ(w))〉

= 〈f,Kw〉.

Thus CψCψ−1 = I . Similarly, it can be shown that Cψ−1Cψ = I .
This implies that Cψ is invertible and C−1ψ = Cψ−1 , as desired.
For 4, by the inner product property, we have

T ∗ψKw(z) = 〈T ∗ψKw,Kz〉

= 〈TψKz,Kw〉

= TψKz(w)

= ψ(w)Kz(w)

= ψ(w)〈Kw,Kz〉

= ψ(w)Kw(z).
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Since z was arbitrary, it follows that T ∗ψKw = ψ(w)Kw, as desired.
For 5, let f ∈ L2

a(D), then by assertion 1, we have

〈f,D∗ψKw〉 = 〈Dψf,Kw〉

= Dψf(w)

= (f ′ ◦ ψ)(w)

= f ′(ψ(w))

= 〈f,K(1)
ψ(w)〉.

So D∗ψKw = K
(1)
ψ(w).

For 6, by assertion 4, we have that

〈DψDψ−1f,Kw〉 = 〈Dψ−1f,D∗ψKw〉

= 〈Dψ−1f,K
(1)
ψ(w)〉

= 〈f, (K(1)
ψ−1(ψ(w)))

(1)〉

= 〈f, (K(1)
w )(1)〉.

Similarly,

〈Dψ−1Dψf,Kw〉 = 〈Dψf,D
∗
ψ−1Kw〉

= 〈Dψf,K
(1)
ψ−1(w)〉

= 〈f, (K(1)
ψ−1(ψ(w)))

(1)〉

= 〈f, (K(1)
w )(1)〉,

where (K
(1)
w )(1) is the second derivative of the reproducing kernel Kw.

Therefore DψDψ−1 = Dψ−1Dψ with D∗ψD
∗
ψ−1Kw = D∗ψ−1D∗ψKw = (K

(1)
w )(1).

In particular, Dψ is not invertible. �

In the next results, we approximate the lower bound of the composition-differentiation operator Dψ on
the Bergman space L2

a(D).

Proposition 3.2. Let ψ be an analytic self map on D. Then ‖Dψ‖ ≥
√

2. Moreover if ψ(0) 6= 0, then ‖Dψ‖ >
√

2.

Proof. From assertion 5 of Proposition 3.1, we also have that

D∗ψ(Kw) = K
(1)
ψ (w).

Recall,

‖Kw‖ =
1

1− |w|2
,

and

‖K(1)
w ‖ =

√
2(1 + 5|w|2)

(1− |w|2)4
.

Now we define ‖D∗ψ(Kw)‖ given by

(3.2) ‖D∗ψ(Kw)‖ =

√
2(1 + 5|w|2)

(1− |w|2)4
.
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Dividing equation (3.2) by ‖Kw‖2 we obtain

(3.3)
‖D∗ψ(Kw)‖2

‖Kw‖2
=

(1− |w|2)22(1 + 5|ψ(w)|2)

(1− |ψ(w)|2)4
,

Implying that

‖D∗ψ(Kw)‖
‖Kw‖

=
(1− |w|2

√
(2 + 10|ψ(w)|2)

(1− |ψ(w)|2)2
.

It follows that, if Dψ is bounded on L2
a then,

(3.4) ‖Dψ‖ ≥ sup
w∈D

√
(1− |w|2)2(2 + 10|ψ(w)|2)

(1− |ψ(w)|2)4
≥ sup
w∈D

√
(1− |w|2)2

(1− |ψ(w)|2)4
,

since ‖D∗ψ‖ = ‖Dψ‖. Letting w = 0 in equation (3.4), we obtain,

‖Dψ‖ ≥

√
(2 + 10|ψ(0)|2)

(1− |ψ(0)|2)4

This shows that ‖Dψ‖ ≥
√

2, for all ψ and that whenever ψ(0) 6= 0 then ‖Dψ‖ >
√

2. �

Consider ϕ(z) = az+b
cz+d be a nonconstant linear fractional self-map of D where a, b, c, d ∈ C, then the map

σ(z) =
az − c
−bz + d

,

also takes D to D.
These two maps ϕ and σ have been used mostly to investigate adjoint properties of composition operators.
See [4, 5, 9] for more details.
In our next result, we also employ the maps ϕ and σ to determine the adjoint properties of the composition-
differentiation operatorsDψ . Moreover, we deduce some consequences from the adjoint relations obtained.

Theorem 3.3. For the two maps ϕ and σ,

(3.5) D∗ϕT
∗
K

(1)

σ(0)

= T
K

(1)

ϕ(0)

Dσ.

Proof. Let ϕ(z) = az+b
cz+d . Then

ϕ(0) =
b

d
.

We also have that
σ(z) =

az − c
−bz + d

which implies that

σ(0) = − c
d
.

Reproducing kernel of the derivatives of the Bergman space functions was obtained in chapter 3 as

(3.6) K(1)
w (z) =

2z

(1− wz)3

That is, for all f ∈ L2
a(D), f ′(z) = 〈f,K(1)

w 〉.
Letting w = ϕ(0) in equation (3.6), we obtain

K
(1)
ϕ(0)(z) =

2z

(1− ( bd )z)3
(3.7)

=
2z

(1− b
d
z)3

.(3.8)
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Multiplying equation (4.7) by d
3
, we obtain

(3.9) K
(1)
ϕ(0)(z) =

2d
3
z

(d− bz)3
.

Also, letting w = σ(0) in (3.6), we get

(3.10) K
(1)
σ(0)(z) =

2z

(1− (− c
d
)z)3

.

Multiplying the R.H.S of (3.10) by d3, we obtain

K
(1)
σ(0)(z) =

2d3z

(d+ cz)3
.

Moreover,

T
K

(1)

ϕ(0)

Dσ(Kw)(z) = K
(1)
ψ(0)Dσ(Kw)(z)

= K
(1)
ϕ(0)K

′
w(σ(z)).

But from equation (3.6),

K(1)
w (z) =

2w

(1− wz)3
.

It then follows that,

K ′w(σ(z)) =
2w

(1− wσ(z))3

=
2w(

1− w
(
az−c
−bz+d

))3 .
Therefore,

T
K

(1)

ϕ(0)

Dσ(Kw)(z) =
2d

3
z

(d− bz)3
.

2w(
1− w

(
az−c
−bz+d

))3
=

2d
3
z.2w(

d− bz − w(az − c)
)3

=
4d3wz(

d− bz − awz + cw
)3 .

Hence

(3.11) T
K

(1)

ϕ(0)

Dσ(Kw)(z) =
4d3wz(

d− bz − awz + cw
)3 .

Simplifying the denominator of the R.H.S of (3.11), we obtain

(
(cw + d)− (aw + b)z

)3
=
(
cw + d

)3(
1−

(
aw + b

cw + d

)
z

)3

.

Therefore equation (3.11) can be written as

T
K

(1)

ϕ(0)

Dσ(Kw)(z) =
4d3w

(cw + d)3
.

z(
1−

(
aw+b
cw+d

)
z
)3 ,
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for any w ∈ D.
Next, we compute D∗ϕT ∗K(1)

σ(0)

(Kw).

From the adjoint property of T given in Proposition 3.1 assertion 4, we have that

D∗ϕT
∗
K

(1)

σ(0)

(Kw) = D∗ϕK
(1)
σ(0)Kw

= K
(1)
σ(0)D

∗
ϕKw.

But by assertion 5 of Proposition 3.1, we have that

D∗ϕKw = K
(1)
ϕ(w)

This implies that,

K
(1)
σ(0)(w)D∗ϕ(Kw) = K

(1)
σ(0)(w)K

(1)
ϕ(w)

=
2d

3
w

(cw + d)3
.

2z(
1− ϕ(w)z

)3
=

4d3w(
cw + dz

)3 . z(
1−

(
aw+b
cw+d

)
z
)3

Therefore, D∗ϕT ∗K(1)

σ(0)

and T
K

(1)

ϕ(0)

Dσ both agree on span of reproducing functions and therefore constitutes a

dense subset of L2
a(D).

Thus both the operators are identical on L2
a(D). �

Remark 3.4. The relation obtained in Theorem 3.3 above is similar to that obtained by Fatehi and Hammond
[7] in the setting of the Hardy space H2(D). Moreover, as noted in [7], it has a resemblance to Cowen’s
adjoint formula for composition operators, which is written as C∗ϕT ∗K(1)

σ(0)

= T
K

(1)

ϕ(0)

Cσ (See[8, Theorem 2]).

Now, let us focus on special cases obtained by taking b, c = 0 and r = a
d where a, d ∈ R. Then σ(z) = a

d
z

and ϕ(z) = σ(z) = a
dz.

Take ρ(z) = rz for some real number r = a
d .

Then clearly, ρ(z) = σ(z) = ϕ(z) which implies that ρ(0) = 0 and so K(1)
ρ(0) = z.

For ease of notation, we let

Tz = T
K

(1)

ϕ(0)

= T
K

(1)

σ(0)

.

and

Dρ = Dϕ = Dσ.

Then the relation in equation (3.5) reduces to

(3.12) D∗ρT
∗
z = TzDρ.

We can then deduce the following consequences:

Corollary 3.5. Let Tz and Dρ be as defined above. Then

(1) T ∗z Tz = I

(2) D∗ρ = TzDρTz

(3) DρTz is self adjoint
(4) DρD

∗
ρ = (DρTz)

2
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Proof. To prove 1, for f ∈ L2
a(D), we have that

〈T ∗z Tzf, f〉 = 〈Tzf, Tzf〉

= ‖Tzf‖2

= ‖f‖2

= 〈f, f〉.

So T ∗z Tz = I , as desired.
To prove 2, from assertion 1, we have that T ∗z Tz = I .
Therefore D∗ρ = D∗ρT

∗
z Tz .

But from (3.12), D∗ρT ∗z = TzDρ.
We then have that, D∗ρT ∗z Tz = TzDρTz ,
implying that D∗ρ = TzDρTz , as desired.
To prove (3), let (DρTz)

∗ be the adjoint of DρTz , then

(DρTz)
∗ = T ∗zD

∗
ρ

= T ∗z (TzDρTz)

= T ∗z TzDρTz.

Since T ∗z Tz = I , it then follows that T ∗z TzDzTz = DρTz ,
as desired.
To prove (4), from assertion (2), D∗ρ = TzDρTz .
It then follows that,

DρD
∗
ρ = Dρ(TzDρTz)

= DρTzDρTz

= (DρTz)
2.

This completes the proof. �
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