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FINITE LOGARITHMIC ORDER MEROMORPHIC SOLUTIONS OF COMPLEX LINEAR
DELAY-DIFFERENTIAL EQUATIONS

ABDELKADER DAHMANI AND BENHARRAT BELAÏDI∗

ABSTRACT. In this article, we study the growth of meromorphic solutions of linear delay-differential equation of
the form

n∑
i=0

m∑
j=0

Aij(z)f
(j)(z + ci) = F (z),

where Aij(z) (i = 0, 1, . . . , n, j = 0, 1, . . . ,m, n,m ∈ N) and F (z) are meromorphic of finite logarithmic order,
ci(i = 0, . . . , n) are distinct non-zero complex constants. We extend those results obtained recently by Chen and
Zheng, Bellaama and Belaïdi to the logarithmic lower order.

1. INTRODUCTION AND MAIN RESULTS

Throughout this article, we assume the readers are familiar with the fundamental results and standard
notations of the Nevanlinna distribution theory of meromorphic functions such asm(r, f), N(r, f), M(r, f),

T (r, f), which can be found in [13, 15, 25]. The concepts of logarithmic order and logarithmic type of entire
or meromorphic functions were introduced by Chern, [9, 10]. Since then, many authors used them in order
to generalize previous results obtained on the growth of solutions of linear difference equations and linear
differential equations in which the coefficients are entire or meromorphic functions in the complex plane
C of positive order different to zero, see for example [1, 6, 11, 14, 19, 21, 22], their new results were on the
logarithmic order, the logarithmic lower order and the logarithmic exponent of convergence, where they
considered the case when the coefficients are of zero order see, for example, [2–4, 7, 12, 17, 18, 23]. In this
article, we also use these concepts to investigate the lower logarithmic order of solutions to more general
homogeneous and non homogeneous linear delay-differential equations, where we generalize those results
obtained in [5, 8]. We start by stating some important definitions.

Definition 1.1 ( [3, 10]). The logarithmic order and the logarithmic lower order of a meromorphic function
f are defined by

ρlog(f) = lim sup
r−→+∞

log T (r, f)

log log r
, µlog(f) = lim inf

r−→+∞

log T (r, f)

log log r
.
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where T (r, f) denotes the Nevanlinna characteristic of the function f . If f is an entire function, then

ρlog(f) = lim sup
r−→+∞

log logM(r, f)

log log r
= lim sup
r−→+∞

log T (r, f)

log log r
,

µlog(f) = lim inf
r−→+∞

log logM(r, f)

log log r
= lim inf
r−→+∞

log T (r, f)

log log r
,

where M(r, f) denotes the maximum modulus of f in the circle |z| = r.

It is clear that, the logarithmic order of any non-constant rational function f is one, and thus, any
transcendental meromorphic function in the plane has logarithmic order no less than one. Moreover, any
meromorphic function with finite logarithmic order in the plane is of order zero.

Definition 1.2 ( [3, 7]). The logarithmic type and the logarithmic lower type of a meromorphic function f
are defined by

τlog(f) = lim sup
r−→+∞

T (r, f)

(log r)ρlog(f)
, τ log(f) = lim inf

r−→+∞

T (r, f)

(log r)µlog(f)
.

If f is an entire function, then

τlog,M (f) = lim sup
r−→+∞

logM(r, f)

(log r)ρlog(f)
,

τ log,M (f) = lim inf
r−→+∞

logM(r, f)

(log r)µlog(f)
.

It is clear that, the logarithmic type of any non-constant polynomial P equals its degree degP , that
any non-constant rational function is of finite logarithmic type, and that any transcendental meromorphic
function whose logarithmic order equals one in the plane must be of infinite logarithmic type.

Definition 1.3 ( [10]). Let f be a meromorphic function. Then, the logarithmic exponent of convergence of
poles of f is defined by

λlog

(
1

f

)
= lim sup
r−→+∞

log n(r, f)

log log r
= lim sup
r−→+∞

logN(r, f)

log log r
− 1,

where n(r, f) denotes the number of poles and N(r, f) is the counting function of poles of f in the disc
|z| ≤ r.

Definition 1.4 ( [25]). Let a ∈ C = C∪ {∞}, the deficiency of a with respect to a meromorphic function f is
given by

δ (a, f) = lim inf
r→+∞

m
(
r, 1
f−a

)
T (r, f)

= 1− lim sup
r→+∞

N
(
r, 1
f−a

)
T (r, f)

.

Recently, the research on the properties of meromorphic solutions of complex delay-differential equa-
tions has become a subject of great interest from the viewpoint of Nevanlinna theory and its difference ana-
logues. In [20], Liu, Laine and Yang presented developments and new results on complex delay-differential
equations, an area with important and interesting applications, which also gathers increasing attention
(see, [4, 5, 8, 24]. In [8], Chen and Zheng considered the following homogeneous complex delay-differential
equation

(1.1)
n∑
i=0

m∑
j=0

Aij(z)f
(j)(z + ci) = 0,

where Aij(z) (i = 0, 1, . . . , n, j = 0, 1, . . . ,m, n,m ∈ N) are entire or meromorphic functions of finite order,
ci(i = 0, . . . , n) are distinct non-zero complex constants, and they proved the following results.
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Theorem 1.5 ( [8]). Let Aij(z) (i = 0, 1, . . . , n, j = 0, 1, . . . ,m) be entire functions, and a, l ∈ {0, 1, ..., n} ,
b ∈ {0, 1, ...,m} such that (a, b) 6= (l, 0). If the following three assumptions hold simultaneously:

(1) max{µ(Aab), ρ(Aij) : (i, j) 6= (a, b), (l, 0)} ≤ µ(Al0) <∞, µ(Al0) > 0;

(2) τM (Al0) > τM (Aab), when µ(Al0) = µ(Aab);

(3) τM (Al0) > max{τM ((Aij) : ρ(Aij) = µ(Al0) : (i, j) 6= (a, b), (l, 0)}, when µ(Al0) =

max{ρ(Aij) : (i, j) 6= (a, b), (l, 0)},
then any meromorphic solution f(z)( 6≡ 0) of (1.1) satisfies ρ(f) ≥ µ(Al0) + 1.

Theorem 1.6 ( [8]). LetAij(z) (i = 0, 1, . . . , n, j = 0, 1, . . . ,m) be meromorphic functions, and a, l ∈ {0, 1, ..., n} ,
b ∈ {0, 1, ...,m} such that (a, b) 6= (l, 0). If the following four assumptions hold simultaneously:

(1) δ(∞, Al0) = δ > 0;

(2) max{µ(Aab), ρ(Aij) : (i, j) 6= (a, b), (l, 0)} ≤ µ(Al0) <∞, µ(Al0) > 0;

(3) δτ(Al0) > τ(Aab), when µ(Al0) = µ(Aab);

(4) δτ(Al0) > max{τ((Aij) : ρ(Aij) = µ(Al0) : (i, j) 6= (a, b), (l, 0)}, when µ(Al0) = max{ρ(Aij) : (i, j) 6=
(a, b), (l, 0)},

then any meromorphic solution f(z)( 6≡ 0) of (1.1) satisfies ρ(f) ≥ µ(Al0) + 1.

Further, Bellaama and Belaïdi in [5] extended the previous results to the non homogeneous delay dif-
ferential equation

(1.2)
n∑
i=0

m∑
j=0

Aij(z)f
(j)(z + ci) = F (z),

where Aij(z) (i = 0, 1, . . . , n, j = 0, 1, . . . ,m, n,m ∈ N), and F (z) are entire or meromorphic functions of
finite order, ci(i = 0, . . . , n) are distinct non-zero complex constants, and obtained the following theorems
for the homogeneous and non-homogeneous cases.

Theorem 1.7 ( [5]). Consider the delay differential equation (1.2) with entire coefficients. Suppose that one of the
coefficients, say Al0 with µ(Al0) > 0, is dominate in the sense that:

(1) max{µ(Aab), ρ(S)} ≤ µ(Al0) <∞;

(2) τM (Al0) > τM (Aab), whenever µ(Al0) = µ(Aab);

(3) τM (Al0) > max{τM (g) : ρ(g) = µ(Al0) : g ∈ S}, whenever µ(Al0) = ρ(S), where S := {F,Aij : (i, j) 6=
(a, b), (l, 0)} and ρ(S) := max{ρ(g) : g ∈ S}.

Then any meromorphic solution f of (1.2) satisfies ρ(f) ≥ µ(Al0) if F (z)( 6≡ 0). Further if F (z)(≡ 0), then any
meromorphic solution f(z)( 6≡ 0) of (1.1) satisfies ρ(f) ≥ µ(Al0) + 1.

Theorem 1.8 ( [5]). Consider the delay differential equation (1.2) with meromorphic coefficients. Suppose that one
of the coefficients, say Al0 with µ(Al0) > 0, is dominate in the sense that:

(1) max{µ(Aab), ρ(S)} ≤ µ(Al0) <∞;

(2) τ(Al0) > τ(Aab), whenever µ(Al0) = µ(Aab);

(3)
∑
ρ(Aij)=µ(Al0),(i,j)6=(l,0),(a,b) τ(Aij) + τ(F ) < τ(Al0) <∞, whenever µ(Al0) = ρ(S);

(4)
∑
ρ(Aij)=µ(Al0),(i,j)6=(l,0),(a,b) τ(Aij) + τ(Aab) < τ(Al0) <∞, whenever µ(Al0) = µ(Aab) = ρ(S);

(5) λ
(

1
Al0

)
< µ(Al0) <∞.

Then any meromorphic solution f of (1.2) satisfies ρ(f) ≥ µ(Al0) if F (z)( 6≡ 0). Further if F (z)(≡ 0), then any
meromorphic solution f(z)( 6≡ 0) of (1.1) satisfies ρ(f) ≥ µ(Al0) + 1.

Note that the case when the coefficients are of order zero is not included in the above results and because
the logarithmic order is an effective technique to express the growth of solutions of the linear difference
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equations and the linear differential equations even when the coefficients are zero order entire or meromor-
phic functions, in this article, our main aim is to investigate the logarithmic lower order of meromorphic
solutions of equations (1.1) and (1.2) to extend and improve the above theorems. When the coefficients of
(1.1) and (1.2) are meromorphic functions and there is one dominating coefficient by its logarithmic lower
order or by its logarithmic lower type, we get the following two theorems.

Theorem 1.9. Let Aij(z) (i = 0, 1, . . . , n, j = 0, 1, . . . ,m, n,m ∈ N) be meromorphic functions, and a, l ∈
{0, 1, ..., n} , b ∈ {0, 1, ...,m} such that (a, b) 6= (l, 0). Suppose that one of the coefficients, sayAl0 with λlog

(
1
Al0

)
+

1 < µlog(Al0) <∞, is dominate in the sense that:

(i) max{µlog(Aab), ρlog(S)} ≤ µlog(Al0) <∞;

(ii) τ log(Al0) > τ log(Aab), whenever µlog(Al0) = µlog(Aab);

(iii)
∑
ρlog(Aij)=µlog(Al0),(i,j) 6=(l,0),(a,b) τlog(Aij) + τlog(F ) < τ log(Al0) <∞, whenever µlog(Al0) = ρlog(S);

(iv)
∑
ρlog(Aij)=µlog(Al0),(i,j) 6=(l,0),(a,b) τlog(Aij)+τlog(F )+τ log(Aab) < τ log(Al0) <∞,whenever µlog(Al0) =

µlog(Aab) = ρlog(S), where S := {F,Aij : (i, j) 6= (a, b), (l, 0)} and ρlog(S) := max{ρlog(g) : g ∈ S}.
Then any meromorphic solution f of (1.2) satisfies ρlog(f) ≥ µlog(Al0) if F (z)(6≡ 0). Further if F (z)(≡ 0), then any
meromorphic solution f(z)( 6≡ 0) of (1.1) satisfies ρlog(f) ≥ µlog(Al0) + 1.

Theorem 1.10. Let Aij(z) (i = 0, 1, . . . , n, j = 0, 1, . . . ,m, n,m ∈ N) be meromorphic functions, and a, l ∈
{0, 1, ..., n} , b ∈ {0, 1, ...,m} such that (a, b) 6= (l, 0). Suppose that one of the coefficients, say Al0 with µ(Al0) > 0

and δ(∞, Al0) > 0, is dominate in the sens that:

(i) max{µlog(Aab), ρlog(S)} ≤ µlog(Al0) <∞;

(ii) δτ log(Al0) > τ log(Aab), whenever µlog(Al0) = µlog(Aab);

(iii)
∑
ρlog(Aij)=µlog(Al0),(i,j) 6=(l,0),(a,b) τlog(Aij) + τlog(F ) < δτ log(Al0) <∞, whenever µlog(Al0) = ρlog(S);

(iv)
∑
ρlog(Aij)=µlog(Al0),(i,j) 6=(l,0),(a,b) τlog(Aij) + τlog(F ) + τ log(Aab) < δτ log(Al0) < ∞, whenever

µlog(Al0) = µlog(Aab) = ρlog(S), where S := {F,Aij : (i, j) 6= (a, b), (l, 0)} and ρlog(S) :=

max{ρlog(g) : g ∈ S}.
Then any meromorphic solution f of (1.2) satisfies ρlog(f) ≥ µlog(Al0) if F (z)(6≡ 0). Further if F (z)(≡ 0), then any
meromorphic solution f(z)( 6≡ 0) of (1.1) satisfies ρlog(f) ≥ µlog(Al0) + 1.

2. SOME LEMMAS

The following lemmas are important to our proofs.

Lemma 2.1 ( [16]). Let k and j be integers such that k > j ≥ 0. Let f be a meromorphic function in the plane C
such that f (j) does not vanish identically. Then, there exists an r0 > 1 such that

m(r,
f (k)

f (j)
) ≤ (k − j) log+ ρ(T (ρ, f))

r(ρ− r)
+ log

k!

j!
+ 5.3078(k − j),

for all r0 < r < ρ < +∞. If f is of finite order s, then

lim sup
r→+∞

m(r, f
(k)

f(j) )

log r
≤ max{0, (k − j)(s− 1)}.

Remark 2.1. It is shown in [13, p. 66], that for an arbitrary complex number c 6= 0, the following inequalities

(1 + o (1))T (r − |c| , f (z)) ≤ T (r, f (z + c)) ≤ (1 + o (1))T (r + |c| , f (z))

hold as r → +∞ for a general meromorphic function f (z). Therefore, it is easy to obtain that

ρlog(f + c) = ρlog(f), µlog(f + c) = µlog(f).
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Lemma 2.2 ( [3]). Let f be a meromorphic function with 1 ≤ µlog (f) < +∞. Then there exists a set E1 ⊂ (1,+∞)

with infinite logarithmic measure such that for any given ε > 0 and r ∈ E1 ⊂ (1,+∞) , we have

T (r, f) < (log r)
µlog(f)+ε

.

Lemma 2.3. Let f be a meromorphic function with 1 ≤ µlog (f) < +∞. Then there exists a set E2 ⊂ (1,+∞) with
infinite logarithmic measure such that

τ log(f) = lim
r→+∞
r∈E2

T (r, f)

(log r)µlog(f)
.

Consequently, for any given ε > 0 and all sufficiently large r ∈ E2, we have

T (r, f) <
(
τ log(f) + ε

)
(log r)

µlog(f)
.

Proof. By the definition of the logarithmic lower type, there exists a sequence {rn}∞n=1 tending to∞ satisfy-
ing

(
1 + 1

n

)
rn < rn+1, and

τ log(f) = lim
rn→+∞

T (rn, f)

(log rn)µlog(f)
.

Then for any given ε > 0, there exists an integer n1 such that for n ≥ n1 and any r ∈
[

n
n+1rn, rn

]
, we have

T ( n
n+1rn, f)

(log rn)µlog(f)
≤ T (r, f)

(log r)µlog(f)
≤ T (rn, f)

(log n
n+1rn)µlog(f)

.

It follows that (
log n

n+1rn

log rn

)µlog(f) T ( n
n+1rn, f)

(log n
n+1rn)µlog(f)

≤ T (r, f)

(log r)µlog(f)

(2.1) ≤ T (rn, f)

(log rn)µlog(f)

(
log rn

log n
n+1rn

)µlog(f)

.

Set

E2 =

+∞⋃
n=n1

[
n

n+ 1
rn, rn

]
.

Then from (2.1), we obtain

lim
r→+∞
r∈E2

T (r, f)

(log r)µlog(f)
= lim
rn→+∞

T (rn, f)

(log rn)µlog(f)
= τ log(f),

so for any given ε > 0 and all sufficiently large r ∈ E2, we get

T (r, f) <
(
τ log(f) + ε

)
(log r)

µlog(f)
,

where lm (E2) =
∫
E2

dr
r =

+∞∑
n=n1

rn∫
n

n+1 rn

dt
t =

+∞∑
n=n1

log
(
1 + 1

n

)
= +∞. �

Lemma 2.4 ( [3]). Let η1, η2 be two arbitrary complex numbers such that η1 6= η2 and let f be a finite logarithmic
order meromorphic function. Let ρ be the logarithmic order of f . Then for each ε > 0, we have

m

(
r,
f (z + η1)

f (z + η2)

)
= O

(
(log r)

ρ−1+ε
)
.



Pan-Amer. J. Math. 2 (2023), 14 6

3. PROOF OF THEOREM 1.9

Let f be a meromorphic solution of (1.2). If f has infinite logarithmic order, then the result holds. Now, we
suppose that ρlog(f) <∞. We divide (1.2) by f(z + cl) to get

−Al0(z) =

n∑
i=0,i6=l,a

m∑
j=0

Aij
f (j)(z + ci)

f(z + ci)

f(z + ci)

f(z + cl)

+

m∑
j=0,j 6=b

Aaj
f (j)(z + ca)

f(z + ca)

f(z + ca)

f(z + cl)
+

m∑
j=1

Alj
f (j)(z + cl)

f(z + cl)

(3.1) +Aab
f (b)(z + ca)

f(z + ca)

f(z + ca)

f(z + cl)
− F (z)

f(z + cl)
.

By (3.1) and Remark 2.1, for sufficiently large r, we have

T (r,Al0) = m(r,Al0) +N(r,Al0) ≤
n∑

i=0,i6=l,a

m∑
j=0

m(r,Aij) +m(r,Aab)

+

m∑
j=1

m(r,Alj) +

m∑
j=0,j 6=b

m(r,Aaj) +

n∑
i=0,i6=l,a

m∑
j=0

m

(
r,
f (j)(z + ci)

f(z + ci)

)

+

n∑
i=0,i6=l,a

m

(
r,
f(z + ci)

f(z + cl)

)
+

m∑
j=1

m

(
r,
f (j)(z + ca)

f(z + ca)

)
+ 2m

(
r,
f(z + ca)

f(z + cl)

)

+

m∑
j=1

m

(
r,
f (j)(z + cl)

f(z + cl)

)
+m (r, F ) +m

(
r,

1

f(z + cl)

)
+N(r,Al0) +O(1)

≤
n∑

i=0,i6=l,a

m∑
j=0

T (r,Aij) + T (r,Aab) +

m∑
j=1

T (r,Alj) +

m∑
j=0,j 6=b

T (r,Aaj)

+

n∑
i=0,i6=l,a

m∑
j=1

m

(
r,
f (j)(z + ci)

f(z + ci)

)
+

n∑
i=0,i6=l,a

m

(
r,
f(z + ci)

f(z + cl)

)

+

m∑
j=1

m

(
r,
f (j)(z + ca)

f(z + ca)

)
+ 2m

(
r,
f(z + ca)

f(z + cl)

)

(3.2) +

m∑
j=1

m

(
r,
f (j)(z + cl)

f(z + cl)

)
+ T (r, F ) + 2T (2r, f) +N(r,Al0) +O(1).

From Lemma 2.1, for sufficiently large r, we obtain

(3.3) m

(
r,
f (j)(z + ci)

f(z + ci)

)
≤ 2j log+ T (2r, f) , (i = 0, 1, ..., n, j = 1, ...,m).

By Lemma 2.4, for any given ε > 0 and all sufficiently large r, we have

(3.4) m

(
r,
f(z + ci)

f(z + cl)

)
= O

(
(log r)ρlog(f)−1+ε

)
, (i = 0, 1, ..., n, i 6= l).

From the definition of λlog

(
1
Al0

)
, for any given ε > 0 with sufficiently large r, we have

(3.5) N(r,Al0) ≤ (log r)
λlog

(
1

Al0

)
+1+ε

.

By using the assumptions (3.3)-(3.5), we may rewrite (3.2) as

T (r,Al0) ≤
n∑

i=0,i6=l,a

m∑
j=0

T (r,Aij) + T (r,Aab)
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+

m∑
j=1

T (r,Alj) +

m∑
j=0,j 6=b

T (r,Aaj) +O
(
log+ T (2r, f)

)

(3.6) +O
(

(log r)ρlog(f)−1+ε
)

+ T (r, F ) + 2T (2r, f) + (log r)
λlog

(
1

Al0

)
+1+ε

.

This proof is also divided into four cases:
Case (i): If max{µlog(Aab), ρlog(S)} < µlog(Al0), then by the definitions of µlog(Al0) and ρlog(S) for any
given ε > 0 and all sufficiently large r, we have

(3.7) T (r,Al0) ≥ (log r)µlog(Al0)−ε,

(3.8) T (r, g) ≤ (log r)ρlog(S)+ε, g ∈ S.

By the definition of µlog(Aab) and Lemma 2.2, there exists a subset E1 ⊂ (1,+∞) of infinite logarithmic
measure such that for any given ε > 0 and for all sufficiently large r ∈ E1, we have

(3.9) T (r,Aab) ≤ (log r)µlog(Aab)+ε.

We set ρ = max{µlog(Aab), ρlog(S)}, then from (3.8) and (3.9), it follows

(3.10) max {T (r,Aab), T (r, g)} ≤ (log r)ρ+ε.

Also, from the definition of ρlog(f) for any given ε > 0 and all sufficiently large r, we have

(3.11) T (r, f) ≤ (log r)
ρlog(f)+ε

.

By substituting (3.7), (3.10) and (3.11) into (3.6), for any given ε > 0 and all sufficiently large r ∈ E1, we get

(log r)µlog(Al0)−ε ≤ O
(
(log r)ρ+ε

)
+O (log (log r)) +O

(
(log r)ρlog(f)−1+ε

)

(3.12) +O
(

(log r)
ρlog(f)+ε

)
+ (log r)

λlog

(
1

Al0

)
+1+ε

.

Now, we choose sufficiently small ε satisfying

0 < 3ε < min

{
µlog(Al0)− ρ, µlog(Al0)− λlog

(
1

Al0

)
− 1

}
,

for all sufficiently large r ∈ E1, it follows from (3.12) that

(log r)µlog(Al0)−2ε ≤ (log r)
ρlog(f)+ε

,

that means, µlog(Al0)− 3ε ≤ ρlog(f) and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0).

Similarly, for the homogeneous case, by (1.1) and (3.3)-(3.5), we obtain

T (r,Al0) ≤
n∑

i=0,i6=l,a

m∑
j=0

T (r,Aij) + T (r,Aab) +

m∑
j=1

T (r,Alj) +

m∑
j=0,j 6=b

T (r,Aaj)

(3.13) +O (log (log r)) +O
(

(log r)ρlog(f)−1+ε
)

+ (log r)
λlog

(
1

Al0

)
+1+ε

.

Then, by substituting (3.7) and (3.10) into (3.13), for all sufficiently large r ∈ E1, we have

(log r)µlog(Al0)−ε ≤ O
(
(log r)ρ+ε

)
+O (log (log r))

(3.14) +O
(

(log r)ρlog(f)−1+ε
)

+ (log r)
λlog

(
1

Al0

)
+1+ε

.
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For sufficiently small ε satisfying

0 < 3ε < min

{
µlog(Al0)− ρ, µlog(Al0)− λlog

(
1

Al0

)
− 1

}
,

and all sufficiently large r ∈ E1, we deduce from (3.14) that

(log r)µlog(Al0)−2ε ≤ log r)ρlog(f)−1+ε,

that is, µlog(Al0)− 3ε ≤ ρlog(f)− 1 and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0) + 1.

Case (ii): If β = ρlog(S) < µlog(Al0) = µlog(Aab) and τ log(Al0) > τ log(Aab), then by the definition of
τ log(Al0), for any given ε > 0 and all sufficiently large r, we have

(3.15) T (r,Al0) ≥ (τ log(Al0)− ε)(log r)µlog(Al0).

Also from the definition of τ log(Aab) and Lemma 2.3 there exists a subset E2 ⊂ (1,+∞) of infinite logarith-
mic measure such that for any given ε > 0 and for all sufficiently large r ∈ E2, we obtain

(3.16) T (r,Aab) ≤ (τ log(Aab) + ε)(log r)µlog(Aab) = (τ log(Aab) + ε)(log r)µlog(Al0).

By substituting (3.8), (3.11), (3.15) and (3.16) into (3.6), for all sufficiently large r ∈ E2, we get

(τ log(Al0)− ε)(log r)µlog(Al0) ≤ O
(
(log r)β+ε

)
+(τ log(Aab) + ε)(log r)µlog(Al0) +O (log (log r)) +O

(
(log r)ρlog(f)−1+ε

)

(3.17) +O
(

(log r)
ρlog(f)+ε

)
+ (log r)

λlog

(
1

Al0

)
+1+ε

.

Now, we choose sufficiently small ε satisfying

0 < 2ε < min

{
µlog(Al0)− β, µlog(Al0)− λlog

(
1

Al0

)
− 1, τ log(Al0)− τ log(Aab)

}
,

for all sufficiently large r ∈ E2, it follows from (3.17) that

(τ log(Al0)− τ log(Aab)− 2ε)(log r)µlog(Al0)−ε ≤ (log r)
ρlog(f)+ε

,

this means, µlog(Al0)− 2ε ≤ ρlog(f) and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0).

Next, for the homogeneous case, by substituting (3.8), (3.15) and (3.16) into (3.13), for all sufficiently large
r ∈ E2, we have

(τ log(Al0)− ε)(log r)µlog(Al0) ≤ O
(
(log r)β+ε

)
+ (τ log(Aab) + ε)(log r)µlog(Al0)

(3.18) +O (log (log r)) +O
(

(log r)ρlog(f)−1+ε
)

+ (log r)
λlog

(
1

Al0

)
+1+ε

.

Now, we choose sufficiently small ε satisfying

0 < 2ε < min

{
µlog(Al0)− β, µlog(Al0)− λlog

(
1

Al0

)
− 1, τ log(Al0)− τ log(Aab)

}
,

for all sufficiently large r ∈ E2, we deduce from (3.18) that

(τ log(Al0)− τ log(Aab)− 2ε)(log r)µlog(Al0)−ε ≤ (log r)ρlog(f)−1+ε,

that is, µlog(Al0)− 2ε ≤ ρlog(f)− 1 and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0) + 1.

Case (iii): When µlog(Aab) < µlog(Al0) = ρlog(S) and

τ1 =
∑

ρlog(Aij)=µlog(Al0),(i,j)6=(l,0),(a,b)

τlog(Aij) + τlog(F )
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= τ + τlog(F ) < τ log(Al0), τ =
∑

ρlog(Aij)=µlog(Al0),(i,j)6=(l,0),(a,b)

τlog(Aij).

Then, there exists a subset J ⊆ {0, 1, . . . , n} × {0, 1, . . . ,m} \ {(l, 0), (a, b)} such that for all (i, j) ∈ J, when
ρlog(Aij) = µlog (Al0) , we have

∑
(i,j)∈J

τlog (Aij) < τ log (Al0) − τlog(F ), and for (i, j) ∈ Π = {0, 1, . . . , n} ×

{0, 1, . . . ,m} \ (J ∪ { (l, 0), (a, b)}) we have ρlog (Aij) < µlog (Al0) . Hence, for any given ε > 0 and all
sufficiently large r, we get

(3.19) T (r,Aij) ≤

{
(τlog(Aij) + ε) (log r)

µlog(Al0)
, if (i, j) ∈ J,

(log r)
ρlog(Aij)+ε ≤ (log r)

µlog(Al0)−ε
, if (i, j) ∈ Π

and

(3.20) T (r, F ) ≤

{
(τlog(F ) + ε) (log r)

µlog(Al0)
, if ρlog(F ) = µlog(Al0),

(log r)
ρlog(F )+ε ≤ (log r)

µlog(Al0)−ε
, if ρlog(F ) < µlog(Al0).

By substituting (3.9), (3.11), (3.15), (3.19) and (3.20) into (3.6), for all sufficiently large r ∈ E1, we get(
τ log(Al0)− ε

)
(log r)

µlog(Al0) ≤
∑

(i,j)∈J

(τlog (Aij) + ε) (log r)
µlog(Al0)

+
∑

(i,j)∈Π

(log r)
µlog(Al0)−ε

+ (log r)µlog(Aab)+ε +O (log (log r)) +O
(

(log r)ρlog(f)−1+ε
)

+ (τlog(F ) + ε) (log r)
µlog(Al0)

+O
(

(log r)
ρlog(f)+ε

)
+ (log r)

λlog

(
1

Al0

)
+1+ε

≤ (τ1 + (mn+m+ n) ε) (log r)
µlog(Al0)

+O (log r)
µlog(Al0)−ε

+(log r)µlog(Aab)+ε +O (log (log r)) +O
(

(log r)ρlog(f)−1+ε
)

(3.21) +O
(

(log r)
ρlog(f)+ε

)
+ (log r)

λlog

(
1

Al0

)
+1+ε

.

We may choose sufficiently small ε satisfying

0 < 2ε < min

{
µlog(Al0)− µlog(Aab), µlog(Al0)− λlog

(
1

Al0

)
− 1,

τ log(Al0)− τ1
mn+m+ n+ 1

}
,

for all sufficiently large r ∈ E1, by (3.21) we have

(τ log(Al0)− τ1 − (mn+m+ n+ 1) ε)(log r)µlog(Al0)−ε ≤ (log r)
ρlog(f)+ε

,

this means, µlog(Al0)− 2ε ≤ ρlog(f) and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0).

Further, for the homogeneous case, by substituting (3.9), (3.15), (3.19) and (3.20) into (3.13), for all suffi-
ciently large r ∈ E1, we get

(τ log(Al0)− τ − (nm+m+ n) ε)(log r)µlog(Al0) ≤ O
(

(log r)µlog(Al0)−ε
)

(3.22) +(log r)µlog(Aab)+ε +O (log (log r)) +O
(

(log r)
ρlog(f)−1+ε

)
+ (log r)

λlog

(
1

Al0

)
+1+ε

.

We may choose sufficiently small ε satisfying

0 < 2ε < min

{
µlog(Al0)− µlog(Aab), µlog(Al0)− λlog

(
1

Al0

)
− 1,

τ log(Al0)− τ
nm+m+ n

}
,

for all sufficiently large r ∈ E1, by (3.22) we have

(τ log(Al0)− τ − (nm+m+ n) ε)(log r)µlog(Al0)−ε ≤ (log r)
ρlog(f)−1+ε

,

that is, µlog(Al0)− 2ε ≤ ρlog(f)− 1 and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0) + 1.
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Case (iv): When µlog(Al0) = µlog(Aab) = ρlog(S) and

τ3 =
∑

ρlog(Aij)=µlog(Al0),(i,j)6=(l,0),(a,b)

τlog(Aij) + τlog(F ) + τ log(Aab)

= τ2 + τlog(F ) < τ log(Al0),

τ2 =
∑

ρlog(Aij)=µlog(Al0),(i,j)6=(l,0),(a,b)

τlog(Aij) + τ log(Aab).

Then, by substituting (3.11), (3.15), (3.16), (3.19) and (3.20) into (3.6), for all sufficiently large r ∈ E1, we
have

(τ log(Al0)− τ3 − (mn+m+ n+ 2) ε)(log r)µlog(Al0) ≤ O
(

(log r)µlog(Al0)−ε
)

+O (log (log r)) +O
(

(log r)
ρlog(f)−1+ε

)

(3.23) +O
(

(log r)
ρlog(f)+ε

)
+ (log r)

λlog

(
1

Al0

)
+1+ε

.

Now, we may choose sufficiently small ε satisfying

0 < 2ε < min

{
µlog(Al0)− λlog

(
1

Al0

)
− 1,

τ log(Al0)− τ3
mn+m+ n+ 2

}
,

for all sufficiently large r ∈ E1, we deduce from (3.23) that

(τ log(Al0)− τ3 − (mn+m+ n+ 2) ε)(log r)µlog(Al0)−ε ≤ (log r)
ρlog(f)+ε

,

this means, µlog(Al0)− 2ε ≤ ρlog(f) and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0).

Further, for the homogeneous case, by substituting (3.15), (3.16), (3.19) and (3.20) into (3.13), for all suffi-
ciently large r ∈ E1, we get

(τ log(Al0)− τ2 − (mn+m+ n+ 1) ε)(log r)µlog(Al0) ≤ O
(

(log r)µlog(Al0)−ε
)

(3.24) +O (log (log r)) +O
(

(log r)
ρlog(f)−1+ε

)
+ (log r)

λlog

(
1

Al0

)
+1+ε

.

Therefore, for ε satisfying

0 < 2ε < min

{
µlog(Al0)− λlog

(
1

Al0

)
− 1,

τ log(Al0)− τ2
mn+m+ n+ 1

}
and for all sufficiently large r ∈ E1, by (3.24) we have

(τ log(Al0)− τ2 − (mn+m+ n+ 1) ε)(log r)µlog(Al0)−ε ≤ (log r)
ρlog(f)−1+ε

,

that is, µlog(Al0) − 2ε ≤ ρlog(f) − 1 and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0) + 1. The proof of
Theorem 1.9 is complete.

4. PROOF OF THEOREM 1.10

Let f be a meromorphic solution of (1.2). If f has infinite logarithmic order, then the result holds. Now, we
suppose that ρlog(f) <∞. By (3.1) and Remark 2.1, for sufficiently large r, we have

m(r,Al0) ≤
n∑

i=0,i6=l,a

m∑
j=0

m(r,Aij) +m(r,Aab)

+

m∑
j=1

m(r,Alj) +

m∑
j=0,j 6=b

m(r,Aaj) +

n∑
i=0,i6=l,a

m∑
j=0

m

(
r,
f (j)(z + ci)

f(z + ci)

)
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+

n∑
i=0,i6=l,a

m

(
r,
f(z + ci)

f(z + cl)

)
+

m∑
j=1

m

(
r,
f (j)(z + ca)

f(z + ca)

)
+ 2m

(
r,
f(z + ca)

f(z + cl)

)

+

m∑
j=1

m

(
r,
f (j)(z + ca)

f(z + ca)

)
+m

(
r,

F (z)

f(z + cl)

)
+O(1)

≤
n∑

i=0,i6=l,a

m∑
j=0

T (r,Aij) + T (r,Aab) +

m∑
j=1

T (r,Alj)

+

m∑
j=0,j 6=b

T (r,Aaj) +

n∑
i=0,i6=l,a

m∑
j=0

m

(
r,
f (j)(z + ci)

f(z + ci)

)

+

n∑
i=0,i6=l,a

m

(
r,
f(z + ci)

f(z + cl)

)
+

m∑
j=1

m

(
r,
f (j)(z + ca)

f(z + ca)

)
+ 2m

(
r,
f(z + ca)

f(z + cl)

)

(4.1) +

m∑
j=1

m

(
r,
f (j)(z + ca)

f(z + ca)

)
+ T (r, F ) + 2T (2r, f) +O(1).

By substituting (3.3) and (3.4) into (4.1), for any given ε > 0 and all sufficiently large r, we obtain

m(r,Al0) ≤
n∑

i=0,i6=l,a

m∑
j=0

T (r,Aij) + T (r,Aab) +

m∑
j=1

T (r,Alj) +

m∑
j=0,j 6=b

T (r,Aaj)

(4.2) +O
(
log+ T (2r, f)

)
+O

(
(log r)ρlog(f)−1+ε

)
+ T (r, F ) + 2T (2r, f).

Let us set

(4.3) δ = δ(∞, Al0) > 0.

Now, we divide this proof into four cases:
Case (i): If max{µlog(Aab), ρlog(S)} < µlog(Al0), then by the definition of µlog(Al0) and (4.3), for any given
ε > 0 and all sufficiently large r, we have

(4.4) m(r,Al0) ≥ δ

2
T (r,Al0) ≥ δ

2
(log r)µlog(Al0)− ε

2 ≥ (log r)µlog(Al0)−ε.

By substituting (3.10), (3.11) and (4.4) into (4.2), for all sufficiently large r, we get

(log r)µlog(Al0)−ε ≤ O
(
(log r)ρ+ε

)
+O(log (log r))

(4.5) +O
(

(log r)ρlog(f)−1+ε
)

+O
(

(log r)ρlog(f)+ε
)
.

Now, we choose sufficiently small ε satisfying 0 < 3ε < µlog(Al0) − ρ, for all sufficiently large r, it follows
from (3.10) that

(log r)µlog(Al0)−2ε ≤ (log r)ρlog(f)+ε,

this means, µlog(Al0)− 3ε ≤ ρlog(f) and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0).

Similarly, for the homogeneous case, by (1.1) and (3.3) and (3.4), we obtain

m(r,Al0) ≤
n∑

i=0,i6=l,a

m∑
j=0

T (r,Aij) + T (r,Aab) +

m∑
j=1

T (r,Alj) +

m∑
j=0,j 6=b

T (r,Aaj)

(4.6) +O(log (log r)) +O
(

(log r)ρlog(f)−1+ε
)
.
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Then, by substituting (3.10) and (4.4) into (4.6), for all sufficiently large r, we have

(4.7) (log r)µlog(Al0)−ε ≤ O
(
(log r)ρ+ε

)
+O(log (log r)) +O

(
(log r)ρlog(f)−1+ε

)
.

For the above ε and all sufficiently large r, we deduce from (4.7) that

(log r)µlog(Al0)−2ε ≤ (log r)ρlog(f)−1+ε,

that is, µlog(Al0)− 3ε ≤ ρlog(f)− 1 and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0) + 1.

Case (ii): If β = ρlog(S) < µlog(Al0) = µlog(Aab) and δτ log(Al0) > τ log(Aab), then by the definition of
τ log(Al0) and (4.3), for any given ε > 0 and all sufficiently large r, we have

m(r,Al0) ≥ (δ − ε)T (r,Al0) ≥ (δ − ε)(τ log(Al0)− ε)(log r)µlog(Al0)

≥
(
δτ log(Al0)− (τ log(Al0) + δ)ε+ ε2

)
(log r)µlog(Al0)

(4.8) ≥
(
δτ log(Al0)− (τ log(Al0) + δ)ε

)
(log r)µlog(Al0).

By substituting (3.8), (3.11), (3.16) and (4.8) into (4.2), for all sufficiently large r ∈ E2, we get(
δτ log(Al0)− τ log (Aab)− (τ log(Al0) + δ + 1)ε

)
(log r)µlog(Al0) ≤ O

(
(log r)β+ε

)

(4.9) +O(log (log r)) +O
(

(log r)ρlog(f)−1+ε
)

+O
(

(log r)ρlog(f)+ε
)
.

Now, we choose sufficiently small ε satisfying

0 < 2ε < min

{
µlog(Al0)− β,

δτ log(Al0)− τ log(Aab)

τ log(Al0) + δ + 1

}
,

for all sufficiently large r ∈ E2, by (4.9), we obtain(
δτ log(Al0)− τ log (Aab)− (τ log(Al0) + δ + 1)ε

)
(log r)µlog(Al0)−ε

≤ (log r)ρlog(f)+ε,

this means, µlog(Al0)− 2ε ≤ ρlog(f) and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0).

Next, for the homogeneous case, by substituting (3.8), (3.16) and (4.8) into (4.6), for all sufficiently large
r ∈ E2, we have(

δτ log(Al0)− τ log (Aab)− (τ log(Al0) + δ + 1)ε
)

(log r)µlog(Al0) ≤ O
(
(log r)β+ε

)

(4.10) +O(log (log r)) +O
(

(log r)ρlog(f)−1+ε
)
.

For the above ε and all sufficiently large r ∈ E2, from (4.10), we obtain(
δτ log(Al0)− τ log (Aab)− (τ log(Al0) + δ + 1)ε

)
(log r)µlog(Al0)−ε

≤ (log r)ρlog(f)−1+ε,

that is, µlog(Al0)− 2ε ≤ ρlog(f)− 1 and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0) + 1.

Case (iii): When µlog(Aab) < µlog(Al0) = ρlog(S) and

τ1 =
∑

ρlog(Aij)=µlog(Al0),(i,j)6=(l,0),(a,b)

τlog(Aij) + τlog(F ) < δτ log(Al0).

Then, by substituting (3.9), (3.11), (3.19), (3.20) and (4.8) into (4.2), for all sufficiently large r ∈ E1, we get

(δτ log(Al0)− τ1 −
(
τ log(Al0) + δ +mn+m+ n+ 1

)
ε)(log r)µlog(Al0)
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≤ O
(

(log r)µlog(Al0)−ε
)

+ (log r)µlog(Aab)+ε +O(log (log r))

(4.11) +O
(

(log r)ρlog(f)−1+ε
)

+O
(

(log r)ρlog(f)+ε
)
.

We may choose sufficiently small ε satisfying

0 < 2ε < min

{
µlog(Al0)− µlog(Aab),

τ log(Al0)− τ1
τ log(Al0) + δ +mn+m+ n+ 1

}
,

for all sufficiently large r ∈ E1, by (4.11), we obtain

(δτ log(Al0)− τ1 −
(
τ log(Al0) + δ +mn+m+ n+ 1

)
ε)(log r)µlog(Al0)−ε

≤ (log r)ρlog(f)+ε,

this means, µlog(Al0)− 2ε ≤ ρlog(f) and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0).

Further, for the homogeneous case, by substituting (3.9), (3.19), (3.20) and (4.8) into (4.6), for all sufficiently
large r ∈ E1, we get

(δτ log(Al0)− τ −
(
τ log(Al0) + δ + nm+m+ n

)
ε)(log r)µlog(Al0)

(4.12) ≤ O
(

(log r)µlog(Al0)−ε
)

+ (log r)µlog(Aab)+ε +O(log (log r)) +O
(

(log r)ρlog(f)−1+ε
)
.

For ε sufficiently small satisfying

0 < 2ε < min

{
µlog(Al0)− µlog(Aab),

τ log(Al0)− τ
τ log(Al0) + δ + nm+m+ n

}
,

and for all sufficiently large r ∈ E1, from (4.12) we conclude

(δτ log(Al0)− τ −
(
τ log(Al0) + δ + nm+m+ n

)
ε)(log r)µlog(Al0) ≤ (log r)ρlog(f)−1+ε,

that is, µlog(Al0)− 2ε ≤ ρlog(f)− 1 and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0) + 1.

Case (iv): When µlog(Al0) = µlog(Aab) = ρlog(S) and

τ3 =
∑

ρlog(Aij)=µlog(Al0),(i,j) 6=(l,0),(a,b)

τlog(Aij) + τlog(F ) + τ log(Aab) < τ log(Al0).

Then, by substituting (3.9), (3.11), (3.19), (3.20) and (4.8) into (4.2), for all sufficiently large r ∈ E1, we get

(δτ log(Al0)− τ3 −
(
τ log(Al0) + δ +mn+m+ n+ 2

)
ε)(log r)µlog(Al0)

(4.13) ≤ O
(

(log r)µlog(Al0)−ε
)

+O(log (log r)) +O
(

(log r)ρlog(f)−1+ε
)

+O
(

(log r)ρlog(f)+ε
)
.

Now, we may choose sufficiently small ε satisfying 0 < 2ε <
δτ log(Al0)−τ3

τ log(Al0)+δ+mn+m+n+2 , for all sufficiently large
r ∈ E1, we deduce from (4.13) that

(δτ log(Al0)− τ3 −
(
τ log(Al0) + δ +mn+m+ n+ 2

)
ε)(log r)µlog(Al0)−ε

≤ (log r)ρlog(f)+ε,

this means, µlog(Al0)− 2ε ≤ ρlog(f) and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0).

Also for the homogeneous case, by substituting (3.9), (3.19), (3.20) and (4.8) into (4.6), for all sufficiently
large r ∈ E1, we have

(δτ log(Al0)− τ2 −
(
τ log(Al0) + δ +mn+m+ n+ 1)

)
ε)(log r)µlog(Al0)
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(4.14) ≤ O
(

(log r)µlog(Al0)−ε
)

+O(log (log r)) +O
(

(log r)ρlog(f)−1+ε
)
.

Thus, for sufficiently small ε satisfying 0 < 2ε <
δτ log(Al0)−τ2

τ log(Al0)+δ+mn+m+n+1 , for all sufficiently large r ∈ E1,
from (4.14) we obtain

(δτ log(Al0)− τ2 −
(
τ log(Al0) + δ +mn+m+ n+ 1

)
ε)(log r)µlog(Al0)−ε

≤ (log r)ρlog(f)−1+ε,

that is, µlog(Al0)−2ε ≤ ρlog(f)−1 and since ε > 0 is arbitrary, then ρlog(f) ≥ µlog(Al0) + 1 which completes
the proof of Theorem 1.10.

5. EXAMPLE

The following example is for illustrating the sharpness of some assertions in Theorem 1.10.

Example 5.1. For Theorem 1.10, we consider the meromorphic function

(5.1) f(z) =
1

z5

which is a solution to the delay-differential equation

A20(z)f(z − 2i) +A11(z)f ′(z + i) +A10(z)f(z + i)

(5.2) +A01(z)f ′(z) +A00(z)f(z) = F (z),

where A20(z) = 2
3 (z − 2i)4, A11(z) = 2e, A10(z) = 10e

z+i , A01(z) = i
2 , A00(z) = 5i

2z and F (z) = 2
3(z−2i) .

Obviously, Aij(z) (i = 0, 1, 2, j = 0, 1) and F (z) satisfy the conditions in Case (iii) of Theorem 1.10 such
that

δ(∞, A20) = 1 > 0,

µlog(A11) = 0 < max{ρlog(F ), ρlog(Aij), (i, j) 6= (1, 1), (2, 0)} = µlog(A20) = 1

and ∑
ρlog(Aij)=µlog(A20),(i,j)6=(1,1),(2,0)

τlog(Aij) + τlog(F ) = 3 < δτ log(A20) = 4.

We see that f satisfies
µlog(f) = 1 = ρlog(A20).

The meromorphic function f(z) = 1
z5 is a solution of equation (5.2) for the coefficients A20(z) = 3(z −

2i)7, A11(z) = 1
z−i , A10(z) = 5

z2+1 , A01(z) = i
2 , A00(z) = 5i

2z and F (z) = 3(z − 2i)2. Clearly, Aij(z)
(i = 0, 1, 2, j = 0, 1) and F (z) satisfy the conditions in Case (iv) of Theorem 1.10 such that

δ(∞, A20) = 1 > 0,

µlog(A11) = max{ρlog(F ), ρlog(Aij), (i, j) 6= (1, 1), (2, 0)} = µlog(A20) = 1

and ∑
ρlog(Aij)=µlog(A20),(i,j)6=(1,1),(2,0)

τlog(Aij) + τlog(F ) + τ log(A11) = 6 < δτ log(A20) = 7.

We see that f satisfies ρlog(f) = 1 = µlog(A20).

Author’s contributions: The study was carried out in collaboration of all authors. All authors read and
approved the final manuscript.
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