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ON A SET OF GENERALIZED JANOWSKI-TYPE STARLIKE FUNCTIONS CONNECTED WITH
MATHIEU-TYPE SERIES AND OPOOLA DIFFERENTIAL OPERATOR

EZEKIEL ABIODUN OYEKAN1,∗, AYOTUNDE OLAJIDE LASODE2, AND TIMILEHIN GIDEON SHABA3

ABSTRACT. The study carried out in this paper is on a set of analytic-univalent functions whose definition is
connected with the applications of the normalized Mathieu-type series, Opoola differential operator, Oyekan-
Swamy-Opoola operator and Janowski-type starlike functions. More so, the techniques of convolution and sub-
ordination are embraced in the definition of our set of functions. Some of our investigations include the coefficient
inequality, radii problems, growth, distortion, closure and inclusion properties.

1. INTRODUCTION AND PRELIMINARIES

This investigation is on a set of normalized analytic functions herein denoted by A and defined in the
unit disk: |z| < 1. Further, let S be a subset of Awhich consists of analytic and univalent functions defined
such that f is expressed in series form

(1.1) f(z) = z +

∞∑
k=2

akz
k (|z| < 1)

and normalized such that f(0) = f ′(0)− 1 = 0. Recall that the Hadamard product of

(1.2) f in (1.1) and F (z) = z +

∞∑
k=2

ckz
k

is defined by (f ? F )(z) = z +
∞∑
k=2

(ak × ck)z
k = (F ? f)(z) (|z| < 1). Likewise, f is subordinate to F

(symbolized as f ≺ F ) if f = F ◦ s := F (s(z)) for the analytic function

(1.3) s(z) = s1z + s2z
2 + s3z

3 + · · · (s(0) = 0 and |s(z)| < 1).

If by peradventure F is univalent for |z| < 1, then

f ≺ F if and only if f(0) = F (0) and f(|z| < 1) ⊂ F (|z| < 1).
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An astounding application of subordination in Geometric Function Theory (GFT) is the peculiar way it is
used to define some subsets of S. For instance, the set S? of starlike functions consist of functions that fulfill
the condition

zf ′/f ≺ ℘0(z) =
1 + z

1− z
where ℘0(z), known as the Möbius function, serves as the extremal function for all function-type

y(z) = 1 + y1z + y2z
2 + · · · ∈ Y (<y(z) > 0, |z| < 1).

In 1973, Janowski [6] generalized functions in Y where the author introduced the sets

Y (A,B) =

{
y ∈ Y : y(z) ≺ 1 +Az

1 +Bz
and − 1 5 B < A 5 1, |z| < 1

}
and

S?(A,B) =

{
f ∈ S :

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz
and − 1 5 B < A 5 1, |z| < 1

}
.

1.1. Certain Operators and Series. Let

M(r; z) =
(1 + r2)2

2

∞∑
k=1

2k

(k2 + r2)2
zk(1.4)

= z +

∞∑
k=2

k(1 + r2)2

(k2 + r2)2
zk (r > 0, |z| < 1)

be the normalized form of the Mathieu-type series introduced by Bansal and Sokól [3]. The Mathieu-type

seriesM(r) =
∞∑
k=1

2k
(k2+r2)2 was introduced by Mathieu [13] and it was dedicated to the study of elasticity

of solid bodies. In fact, the bounds for the series M(r) were applied in the solution of boundary value
problems for the biharmonic equations in a 2D rectangular domain. Also, let

Dm,µτ,σ f(z) = z +

∞∑
k=2

[1 + (k + µ− σ − 1)τ ]makz
k(1.5)

(τ, σ = 0; 0 5 µ 5 σ, m ∈ N ∪ {0} := N0, and |z| < 1)(1.6)

be the Opoola differential operator introduced in [14]. This differential operator is well-known to generalize
the Sǎlǎgean [28] and Al-Oboudi [1] differential operators, see [7,8,17–19,22,24,29,30] for more information.
In 2021, Oyekan et al. [25] studied the operator

(1.7) Jm,α,βf(z) = z +

∞∑
k=2

(
α+ kβ

α+ β

)m
akz

k (α ∈ R, β = 0, α+ β > 0).

The operator in (1.7) generalized the well-known Ruscheweyh operator in [26]. Using the Hadamard prod-
uct in connection with (1.4), (1.5) and (1.7), we therefore define a novel multiplier operatorXm,α,βσ,µ,t : A −→ A
as follows.

Definition 1.1. Let

(1.8) Xm,α,β,µτ,σ,r f(z) =M(r; z) ?Dm,µτ,σ f(z) ? Jm,α,β,µτ,σ f(z)

= z +

∞∑
k=2

k(1 + r2)2

(k2 + r2)2

(
α+ kβ

α+ β

)m
[1 + (k + µ− σ − 1)τ ]makz

k
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or for instance we may write

(1.9) Xm,α,β,µτ,σ,r f(z) = z +

∞∑
k=2

$m
r (k, α, β, σ, τ, µ)akz

k

where

$m
r (k, α, β, σ, τ, µ) =

k(1 + r2)2

(k2 + r2)2

(
α+ kβ

α+ β

)m
[1 + (k + µ− σ − 1)τ ]m.

2. MAIN RESULTS

Definition 2.1. From now on, let τ, σ = 0, 0 5 µ 5 σ, m ∈ N0, r > 0, and −1 5 B < A 5 1, then a function
f of the form (1.1) is an element of the set Sm,α,β,µτ,σ,r (A,B) if it fulfills the condition

(2.1)
z(Xm,α,β,µτ,σ,r f(z))′

Xm,α,β,µτ,σ,r f(z)
≺ 1 +Az

1 +Bz
(|z| < 1)

for Xm,α,β,µτ,σ,r f(z) defined in (1.8).

Suppose m = 0, then set Sm,α,β,µτ,σ,r (A,B) = Sr(A,B), where Sr(A,B) is the set studied by Liu et al. [12].
Geometric function theorists have studied several geometric properties of many subsets of analytic func-

tions defined by devise number of operators, for instance see [7–9]. In this investigation, many geometric
properties of functions that fulfill condition (2.1) are presented. Some of the investigated properties are the
coefficient inequality, radii problems and subordinating factor sequence. Others are distortion, growth, cov-
ering, closure, inclusion and some integral operators that are preserved in the new class. Some contextual
work relevant to this properties are cited in [8, 10, 14–16, 19–21, 23].

Theorem 2.2. A function f ∈ A belongs to the set Sm,α,β,µτ,σ,r (A,B) if it fulfills the inequality

(2.2)
∞∑
k=2

fmr (k, α, β, σ, τ, µ)|ak| 5 A−B

where

fmr (k, α, β, σ, τ, µ) =
k(1 + r2)2

(k2 + r2)2

(
α+ kβ

α+ β

)m
[1 + (k + µ− σ − 1)τ ]m[k − 1 + |Bk −A|].

Proof. Assume condition (2.2) is fulfilled, then by subordination technique, (2.1) can be written as

z(Xm,α,β,µτ,σ,r f(z))′

Xm,α,β,µτ,σ,r f(z)
=

1 +As(z)

1 +Bs(z)

which by equivalence shows that∣∣∣∣∣ z(Xm,α,β,µτ,σ,r f(z))′ −Xm,α,β,µτ,σ,r f(z)

AXm,α,β,µτ,σ,r f(z)− zB(Xm,α,β,µτ,σ,r f(z))′

∣∣∣∣∣ = |s(z)| < 1

for s(z) in (1.3). The application of (1.8) and further simplification shows that∣∣∣∣∣∣∣∣
∞∑
k=2

k(1+r2)2

(k2+r2)2

(
α+kβ
α+β

)m
[1 + (k + µ− σ − 1)τ ]m(k − 1)akz

k−1

(A−B)−
∞∑
k=2

k(1+r2)2

(k2+r2)2

(
α+kβ
α+β

)m
[1 + (k + µ− σ − 1)τ ]m(Bk −A)akzk−1

∣∣∣∣∣∣∣∣
=

∞∑
k=2

k(1+r2)2

(k2+r2)2

(
α+kβ
α+β

)m
[1 + (k + µ− σ − 1)τ ]m(k − 1)|ak|

(A−B)−
∞∑
k=2

k(1+r2)2

(k2+r2)2

(
α+kβ
α+β

)m
[1 + (k + µ− σ − 1)τ ]m|Bk −A||ak|

5 1.
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Clearly, the LHS is bounded above by 1 if

∞∑
k=2

k(1 + r2)2

(k2 + r2)2

(
α+ kβ

α+ β

)m
[1 + (k + µ− σ − 1)τ ]m(k − 1)|ak|

5 (A−B)−
∞∑
k=2

k(1 + r2)2

(k2 + r2)2

(
α+ kβ

α+ β

)m
[1 + (k + µ− σ − 1)τ ]m|Bk −A||ak|.

while some rearrangement and simplification show that (2.2). �

Corollary 2.3. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then

|ak| 5
A−B

fmr (k, α, β, σ, τ, µ)
(k = 2, 3, 4, . . .)

and inequality (2.2) is sharp for the function

(2.3) fk(z) = z +
A−B

fmr (k, α, β, σ, τ, µ)
zk (k = 2, 3, 4, . . . , |z| < 1).

Remark 2.4. Setting m = 0 shows that f ∈ Sm,α,β,µτ,σ,r (A,B) if
∞∑
k=2

k(1 + r2)2

(k2 + r2)2
[(k − 1) + |Bk −A|]|ak| 5 A−B.

This is the result of Liu et al. [12].

2.1. Growth Theorem.

Theorem 2.5. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then

(2.4) |z| − |z|
2$m

r (2, α, β, σ, τ, µ)(A−B)

fmr (2, α, β, σ, τ, µ)
5 |Xm,α,β,µτ,σ,r f(z)| 5 |z| + |z|

2$m
r (2, α, β, σ, τ, µ)(A−B)

fmr (2, α, β, σ, τ, µ)
.

The result is sharp for the function

(2.5) f2(z) = z +
A−B

fmr (2, α, β, σ, τ, µ)
z2 (|z| < 1).

Proof. From (2.2) we get

fmr (2, α, β, σ, τ, µ)

∞∑
k=2

|ak| 5
∞∑
k=2

fmr (k, α, β, σ, τ, µ)|ak| 5 A−B

so

(2.6)
∞∑
k=2

|ak| 5
A−B

fmr (2, α, β, σ, τ, µ)
.

Clearly, |z|k < |z| < 1 so that from (1.9) we get

(2.7) |Xm,α,β,µτ,σ,r f(z)| =

∣∣∣∣z +

∞∑
k=2

$m
r (k, α, β, σ, τ, µ)akz

k

∣∣∣∣ 5 |z| + |z|2$m
r (2, α, β, σ, τ, µ)

∞∑
k=2

|ak|

and putting (2.6) into (2.7) shows that

|Xm,α,β,µτ,σ,r f(z)| 5 |z|+ |z|
2$m

r (2, α, β, σ, τ, µ)(A−B)

fmr (2, α, β, σ, τ, µ)
.

Equally,

|Xm,α,β,µτ,σ,r f(z)| = |z| − |z|
2$m

r (2, α, β, σ, τ, µ)(A−B)

fmr (2, α, β, σ, τ, µ)

which completes the proof. �
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2.2. Distortion Theorem.

Theorem 2.6. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then

1 − 2|z|$m
r (2, α, β, σ, τ, µ)(A−B)

fmr (2, α, β, σ, τ, µ)
5 |(Xm,α,β,µτ,σ,r f(z))′| 5 1 +

2|z|$m
r (2, α, β, σ, τ, µ)(A−B)

fmr (2, α, β, σ, τ, µ)
.

The inequality is sharp for the extremal function in (2.5).

Proof. Clearly, |z|k < |z| < 1 so that from (1.9) we have

(2.8)
∣∣(Xm,α,β,µτ,σ,r f(z))′

∣∣ =

∣∣∣∣1 +

∞∑
k=2

$m
r (k, α, β, σ, τ, µ)kakz

k−1
∣∣∣∣ 5 1 + 2|z|$m

r (2, α, β, σ, τ, µ)

∞∑
k=2

|ak|

and putting (2.6) into (2.8) gives∣∣(Xm,α,β,µτ,σ,r f(z))′
∣∣ 5 1 +

2|z|$m
r (2, α, β, σ, τ, µ)(A−B)

fmr (2, α, β, σ, τ, µ)
.

Equally, ∣∣(Xm,α,β,µτ,σ,r f(z))′
∣∣ = 1− 2|z|$m

r (2, α, β, σ, τ, µ)(A−B)

fmr (2, α, β, σ, τ, µ)

which completes the proof. �

2.3. Covering Theorem.

Theorem 2.7. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then Xm,α,β,µτ,σ,r f(z) maps |z| < 1 onto a domain that contains the disk

|Xm,α,β,µτ,σ,r f(z)| < 1− $m
r (2, α, β, σ, τ, µ)(A−B)

fmr (2, α, β, σ, τ, µ)

The inequality is sharp for the extremal function in (2.5).

Proof. Letting |z| −→ 1− in (2.4) completes the proof. �

2.4. Radii Problems.

Theorem 2.8. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then f is close-to-convex of order λ (0 5 λ < 1) in the disk

|z| < inf
k=2

{
fmr (k, α, β, σ, τ, µ)(1− λ)

k(A−B)

} 1
k−1

.

The inequality is sharp for the function in (2.3).

Proof. It is sufficient to show that

|f ′ − 1| < 1− λ.

Using (1.1) shows that

(2.9)
∞∑
k=2

(
k

1− λ

)
|ak||z|k−1 < 1.

Evidently, inequalities (2.2) and (2.9) is only valid if

k

1− λ
|z|k−1 < fmr (k, α, β, σ, τ, µ)

A−B

while isolating |z|k−1 completes the proof. �
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Theorem 2.9. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then f is starlike of order λ (0 5 λ < 1) in the disk

|z| < inf
k=2

{
fmr (k, α, β, σ, τ, µ)(1− λ)

(k − λ)(A−B)

} 1
k−1

.

The inequality is sharp for the extremal function in (2.3).

Proof. It is sufficient to show that ∣∣∣∣ zf ′(z)− f(z)
zf ′(z) + (1− 2λ)f(z)

∣∣∣∣ < 1.

Using (1.1) shows that

(2.10)
∞∑
k=2

(
k − λ
1− λ

)
|ak||z|k−1 < 1.

Evidently, inequalities (2.2) and (2.10) is valid if

k − λ
1− λ

|z|k−1 < fmr (k, α, β, σ, τ, µ)

A−B
where some rearrangements complete the proof. �

Theorem 2.10. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then f is convex of order λ (0 5 λ < 1) in the disk

|z| < inf
k=2

{
fmr (k, α, β, σ, τ, µ)(1− λ)

k(k − λ)(A−B)

} 1
k−1

.

The inequality is sharp for the extremal function in (2.3).

Proof. It is sufficient to show that ∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ < 1− λ.

Using (1.1) gives

(2.11)
∞∑
k=2

(
k(k − λ)
1− λ

)
|ak||z|k−1 < 1.

Evidently, inequalities (2.2) and (2.11) is only valid if

k(k − λ)
1− λ

|z|k−1 < fmr (k, α, β, σ, τ, µ)

(A−B)

where some rearrangements complete the proof. �

2.5. Integral Preserving Theorem.

Definition 2.11 ( [4]). Let f ∈ A. Then Iκ : A −→ A (κ > −1) defined by

(2.12) Iκf(z) =
1 + κ
zκ

∫ z

0

ζκ−1f(ζ)dζ = z +

∞∑
k=2

1 + κ
k + κ

akz
k (|z| < 1).

is the well-known Bernardi integral operator.

Definition 2.12 ( [2, 9]). Let f ∈ A. Then Inq : A −→ A defined by

I0q f(z) = f(z)

I1q f(z) =
1

qz(q−1−1)

∫ z

0

ζ(q
−1−2)f(ζ)dζ = Iqf(z) (q > 0)

I2q f(z) = Iq(I1q f(z))
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which in general shows that

Inq f(z) = Iq(In−1q f(z))

and in particular

(2.13) Inq f(z) = z +

∞∑
k=2

1

(1 + (k − 1)q)n
akz

k (q = 0, n = 0, 1, 2, . . . , |z| < 1)

is the Al-Oboudi-Al-Qahtani integral operator.

Theorem 2.13. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then Iκf(z) ∈ Sm,α,β,µτ,σ,r (A,B).

Proof. Let f ∈ Sm,α,β,µτ,σ,r (A,B) and from (2.12), it is clear that

1 + κ
k + κ

|ak| < |ak| (∀ k = {2, 3, 4, . . .})

so that from (2.2) we get
∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B
1 + κ
k + κ

|ak| <
∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B
|ak| 5 1

which completes the proof. �

Theorem 2.14. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then Inq f(z) ∈ Sm,α,β,µτ,σ,r (A,B).

Proof. Let f ∈ Sm,α,β,µτ,σ,r (A,B), then the application of Theorem 2.13 completes the proof. �

Remark 2.15. Since the Al-Oboudi-Al-Qahtani integral operator Inq (see [2, 9]) generalized the well-known
Sǎlǎgean integral operator In (see [28]), then the following Corollary holds.

Corollary 2.16. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then Inf(z) ∈ Sm,α,β,µτ,σ,r (A,B).

Lemma 2.17 ( [11]). Let f, F ∈ A where f ≺ F . Then∫ 2π

0

|f(z)|ydϑ 6
∫ 2π

0

|F (z)|ydϑ

for z = reiϑ, ϑ > 0 and 0 < r < 1.

Theorem 2.18. Let f ∈ Sm,α,β,µτ,σ,r (A,B) and

F (z) = z +
(A−B)

fmr (2, α, β, σ, τ, µ)
zk (k = 2, 3, . . .)

from (2.3). Then for ϑ > 0 and z = reiϑ, 0 < r < 1,

(2.14)
∫ 2π

0

|f(z)|ydϑ 5
∫ 2π

0

|F (z)|ydϑ.

Proof. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then by Lemma 2.17, we get from (2.14) that∫ 2π

0

∣∣∣∣∣1 +
∞∑
k=2

akz
k−1

∣∣∣∣∣
y

dϑ 5
∫ 2π

0

∣∣∣∣1 + A−B
fmr (k, α, β, σ, τ, µ)

zk−1
∣∣∣∣y dϑ.

so it suffices by Lemma 2.17 to proof that

1 +

∞∑
k=2

akz
k−1 ≺ 1 +

A−B
fmr (k, α, β, σ, τ, µ)

zk−1
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which by implication means that

1 +

∞∑
k=2

akz
k−1 = 1 +

A−B
fmr (k, α, β, σ, τ, µ)

[s(z)]k−1

for |s(z)| in (1.3). Simple simplification shows that

[s(z)]k−1 =

∞∑
k=2

fmr (k, α, β, σ, τ, µ)

(1− β)
akz

k−1

and

|s(z)|k−1 =

∣∣∣∣∣
∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B
akz

k−1

∣∣∣∣∣ 5
∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B
|ak| < 1

which completes the proof. �

2.6. Closure Properties.

Theorem 2.19. From (1.2), let f, F ∈ Sm,α,β,µτ,σ,r (A,B). Then

(2.15) Gn(z) = (1 − n)f(z) + nF (z) = z +

∞∑
k=2

{
(1 − n)ak + nck

}
zk ∈ Sm,α,β,µτ,σ,r (A,B)

for n ∈ [0, 1].

Proof. Using (1.2) in (2.15) and (2.2) shows that
∞∑
k=2

fmr (k, α, β, σ, τ, µ)
∣∣{(1− n)ak + nck}

∣∣
5
∞∑
k=2

fmr (k, α, β, σ, τ, µ){(1− n)|ak|+ n|ck|}

= (1− n)
∞∑
k=2

fmr (k, α, β, σ, τ, µ)|ak|+ n

∞∑
k=2

fmr (k, α, β, σ, τ, µ)|ck|

5 (1− n){(A−B)}+ n{(A−B)} = (A−B).

Hence Gn ∈ Sm,α,β,µτ,σ,r (A,B). �

Theorem 2.20. Let n = 1, 2, 3, . . . , x and

(2.16) fn(z) = z +

∞∑
k=2

ak,nz
k ∈ Sm,α,β,µτ,σ,r (A,B).

Then for
x∑
n=1

ηn = 1, the function

(2.17) g(z) =

x∑
n=1

ηnfn(z) ∈ Sm,α,β,µτ,σ,r (A,B) (|z| < 1).

Proof. Note that for function fn(z) in (2.16)

(2.18)
∞∑
k=2

fmr (k, α, β, σ, τ, µ)

(A−B)
|ak,n| 5 1

and (2.17) can be written as

(2.19) g(z) =

x∑
n=1

ηn

(
z +

∞∑
k=2

ak,nz
k

)
= z +

x∑
n=1

∞∑
k=2

ηnak,nz
k = z +

∞∑
k=2

(
x∑
n=1

ηnak,n

)
zk.



Pan-Amer. J. Math. 2 (2023), 11 9

Putting (2.19) into (2.18) shows that
∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B

∣∣∣∣∣
x∑
n=1

ηnak,n

∣∣∣∣∣ =
∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B
|ak,n| 5 1.

Hence, g ∈ Sm,α,β,µτ,σ,r (A,B). �

Theorem 2.21. Let n = 1, 2, 3, . . . , x for the functions

fn(z) = z +

∞∑
k=2

ak,nz
k ∈ Sm,α,β,µτ,σ,r (A,B).

Then the arithmetic mean m(z) of functions fn(z) defined by

(2.20) m(z) =
1

x

x∑
n=1

fn(z) (|z| < 1)

is in Sm,α,β,µτ,σ,r (A,B).

Proof. From (2.20) we get

(2.21) m(z) =
1

x

x∑
n=1

(
z +

∞∑
k=2

ak,nz
k

)
= z +

∞∑
k=2

(
1

x

x∑
n=1

ak,n

)
zk.

Since fn ∈ Sm,α,β,µτ,σ,r (A,B) for all n = 1, 2, 3, . . . , x, then putting (2.21) into (2.2) shows that

∞∑
k=2

fmr (k, α, β, σ, τ, µ)

(A−B)

∣∣∣∣∣ 1x
x∑
n=1

ak,n

∣∣∣∣∣ =
1

x

x∑
n=1

{ ∞∑
k=2

fmr (k, α, β, σ, τ, µ)

(A−B)
|ak,n|

}
5

1

x

x∑
n=1

(1) = 1

which implies that m ∈ Sm,α,β,µτ,σ,r (A,B). �

Theorem 2.22. From (1.2), let f, F ∈ Sm,α,β,µτ,σ,r (A,B). Then the weighted mean wn of functions f and F defined by

(2.22) wn(z) =
(1− n)f(z) + (1 + n)F (z)

2
(n = 1, 2, . . . , |z| < 1)

is also in Sm,α,β,µτ,σ,r (A,B).

Proof. Using (1.2) in (2.22) shows that

wn(z) = z +

∞∑
k=2

(1− n)ak + (1 + n)ck
2

zk.(2.23)

To show that wn is in Sm,α,β,µτ,σ,r (A,B) is to show that
∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B

∣∣∣∣ (1− n)ak + (1 + n)ck
2

∣∣∣∣ 5 1.

This follows by using (2.2) to give
∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B

{
(1− n)|ak|+ (1 + n)|ck|

2

}

=
(1− n)

2

∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B
|ak|+

(1 + n)

2

∞∑
k=2

fmr (k, α, β, σ, τ, µ)

A−B
|ck|

5
(1− n)

2
+

(1 + n)

2
= 1

so wn ∈ Sm,α,β,µτ,σ,r (A,B). �
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2.7. Inclusion Property.

Definition 2.23. The δ-neighbourhood of f ∈ A is defined by the set

(2.24) Nδ(f) =

{
F : F (z) = z +

∞∑
k=2

ckz
k ∈ A and

∞∑
k=2

k|ak − ck| 5 δ, δ = 0

}
and for the function h(z) = z ∈ A, the δ-neighbourhood is defined by the set

(2.25) Nδ(h) =

{
F : F (z) = z +

∞∑
k=2

ckz
k ∈ A and

∞∑
k=2

k|ck| 5 δ, δ = 0

}
.

The concept of neighbourhood of analytic functions was initiated by Goodman [5] where it was proved that
N1(h) ⊂ S?. In 1981, Ruscheweyh [27] presented the sets in (2.24) and (2.25) which was an extension of
Goodman’s idea.

Definition 2.24. Let f ∈ Sm,α,β,µτ,σ,r (A,B). Then there is a function

F ∈ Sm,α,β,µτ,σ,r,γ (U, V ) (−1 5 V < U 5 1)

such that ∣∣∣∣ f(z)F (z)
− 1

∣∣∣∣ 5 1− γ (|z| < 1, 0 5 γ < 1).

Theorem 2.25. Let

F (z) = z +

∞∑
k=2

ckz
k ∈ Sm,α,β,µτ,σ,r,γ (U, V ) (−1 5 V < U 5 1, |z| < 1)

and

γ := 1− δfmr (2, α, β, σ, τ, µ)

2[fmr (2, α, β, σ, τ, µ)− (U − V )]
,

then Nδ(f) ⊂ Sm,α,β,µτ,σ,r,γ (U, V ).

Proof. Suppose f ∈ Nδ(f), then from (2.24),

(2.26)
∞∑
k=2

k|ak − ck| 5 δ =⇒
∞∑
k=2

|ak − ck| 5
δ

2
.

Also, since F (z) = z +
∞∑
k=2

ckz
k ∈ Sm,α,β,µτ,σ,r,γ (U, V ), then from (2.2)

(2.27)
∞∑
k=2

|ck| 5
(U − V )

fmr (2, α, β, σ, τ, µ)
(−1 6 V < U 5 1).

Definition 2.24 implies that

(2.28)
∣∣∣∣ f(z)F (z)

− 1

∣∣∣∣ =
∣∣∣∣∣∣∣∣
∞∑
k=2

(ak − ck)zk−1

1 +
∞∑
k=2

ckzk−1

∣∣∣∣∣∣∣∣ 5
∞∑
k=2

|ak − ck|

1−
∞∑
k=2

|ck|
.

Putting (2.26) and (2.27) into (2.28) shows that∣∣∣∣ f(z)F (z)
− 1

∣∣∣∣ 5 δfmr (2, α, β, σ, τ, µ)

2[fmr (2, α, β, σ, τ, µ)− (U − V )]
= 1− γ

which completes the proof. �
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2.8. Subordinating Factor Sequence.

Definition 2.26 ( [31]). The sequence
{
ck
}∞
k=1

of complex numbers is called a subordinating factor sequence if
whenever

g(z) =

∞∑
k=1

bkz
k (b1 = 1, |z| < 1)

is analytic and univalently convex in |z| < 1,
∞∑
k=1

ckbk ≺ g(z).

Lemma 2.27 ( [31]). The sequence
{
ck
}∞
k=1

is called a subordinating factor sequence if and only if

<
(
1 + 2

∞∑
k=1

ckz
k

)
> 0 (|z| < 1).

Theorem 2.28. Let f ∈ Sm,α,β,µτ,σ,r (A,B) and g(z) be a convex function, then

(2.29)
fmr (2, α, β, σ, τ, µ)

2[(A−B) + fmr (2, α, β, σ, τ, µ)]
(f ? g)(z) ≺ g(z)

for

(2.30) <f > − (A−B) + fmr (2, α, β, σ, τ, µ)

fmr (2, α, β, σ, τ, µ)
.

Note that the constant factor

(2.31)
fmr (2, α, β, σ, τ, µ)

2[(A−B) + fmr (2, α, β, σ, τ, µ)]

cannot be replaced by a bigger value.

Proof. Let f ∈ Sm,α,β,µτ,σ,r (A,B) and suppose g(z) = z +
∞∑
k=2

bkz
k is a convex function, then from (2.29),

fmr (2, α, β, σ, τ, µ)

2[(A−B) + fmr (2, α, β, σ, τ, µ)]
(f ? g)(z)

=
fmr (2, α, β, σ, τ, µ)

2[(A−B) + fmr (2, α, β, σ, τ, µ)]

(
z +

∞∑
k=2

akbkz
k

)

=

∞∑
k=1

fmr (2, α, β, σ, τ, µ)

2[(A−B) + fmr (2, α, β, σ, τ, µ)]
akbkz

k.

Clearly by Definition 2.26, the subordination result (2.29) holds if{
fmr (2, α, β, σ, τ, µ)

2[(A−B) + fmr (2, α, β, σ, τ, µ)]
ak

}∞
k=1

is a subordinating factor sequence for a1 = 1. Application of Lemma 2.27 shows that an equivalence inequality

(2.32) <

(
1 +

∞∑
k=1

fmr (2, α, β, σ, τ, µ)

(A−B) + fmr (2, α, β, σ, τ, µ)
akz

k

)
> 0.

Observe that fmr (k, α, β, σ, τ, µ) is an increasing function for k = 2, so

fmr (2, α, β, σ, τ, µ) 5 fmr (k, α, β, σ, τ, µ) ∀k = 2
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hence, it follows by |z| = r < 1, triangle inequality and inequality (2.2) that

<

(
1+

∞∑
k=1

fmr (2, α, β, σ, τ, µ)

(A−B) + fmr (2, α, β, σ, τ, µ)
akz

k

)

= <

(
1 +

fmr (2, α, β, σ, τ, µ)

(A−B) + fmr (2, α, β, σ, τ, µ)

∞∑
k=1

akz
k

)

= 1− fmr (2, α, β, σ, τ, µ)

(A−B)(1− λ) + fmr (2, α, β, σ, τ, µ)
r −

∞∑
k=2

fmr (k, α, β, σ, τ, µ)|ak|

(A−B)(1− λ) + fmr (2, α, β, σ, τ, µ)
rk

> 1− fmr (2, α, β, σ, τ, µ)

(A−B)(1− λ) + fmr (2, α, β, σ, τ, µ)
r − (A−B)(1− λ)

(A−B) + fmr (2, α, β, σ, τ, µ)
r

= 1− r > 0.

This evidently proves the inequality (2.32) and as well as the subordination result (2.29). Also, the inequality
(2.30) follows from (2.29) by taking the convex function

g0(z) =
z

1− z
= z +

∞∑
k=2

zk.

To prove the sharpness of the constant (2.31), consider the function

f2(z) = z +
(A−B)

fmr (2, α, β, σ, τ, µ)
z2 ∈ Sm,α,β,µτ,σ,r (A,B)

so that by using (2.29) we get

(2.33)
fmr (2, α, β, σ, τ, µ)

2[(A−B) + fmr (2, α, β, σ, τ, µ)]
f2(z) ≺ g0(z) =

z

1− z
.

It can easily be verified for f2(z) that

min
|z|5r

{
<
(

fmr (2, α, β, σ, τ, µ)

2[(A−B) + fmr (2, α, β, σ, τ, µ)]
f2(z)

)}
= −1

2
(|z| < 1)

which shows that the constant fm
r (2,α,β,σ,τ,µ)

2[(A−B)+fm
r (2,α,β,σ,τ,µ)] cannot be replaced by any bigger value. �
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