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ON NUMERICAL RANGES AND SPECTRA OF NORM ATTAINING OPERATORS IN
C*-ALGEBRAS

SABASI OMAORO, BENARD OKELO∗, AND OMOLO ONGATI

ABSTRACT. In this paper, we study norm attaining operators in C∗-algebras. We characterize their numerical
ranges and spectra. In particular, we show that if a norm-attaining operator S is self-adjoint, then its spectrum
lies in the interval [−‖S‖, ‖S‖].

1. INTRODUCTION

The theory of norm-attaining operators was influenced by the classical Bishop-Phelps Theorem [2] which
states that the set of norm attaining functionals for a Banach space is dense in the dual space and the ques-
tion on whether there was a possible extension of their result for operators was raised. This is the question
Lindenstrauss [7] sought to answer when he initiated that systematic study which gave the first counter
example and obtained several positive results. Acosta, Aguirre and Paya in [1] used a Banach space which
had been considered by ( [3]- [17] and the references therein) to improve some results on norm attaining
operators. They managed to show that the norm attaining operators from this space to a strictly convex
Banach space are of finite rank [8]. The same Banach space was also used to get a new example of a space
which does not satisfy the denseness of the numerical radius attaining operators. This new counterexample
improved and simplified the one previously obtained by [13] when he answered that open question asked
by [5] followed by [14]. Acosta, Aguirre and Paya [1] proved that in A∞(BX;X), the set of norm attaining
elements contains numerical radius attaining elements and also when X is a finite-dimensional space they
coincide. It was shown by [4] that the norm attaining paranormal operators have a non-trivial invariant
space and the norm attaining quadratically hyponormal weighted shift is subnormal. It was proved [7] that
the norm attaining operators mapping L1[0, 1] to strictly convex Banach space are dense in the space of all
linear operators from L1[0, 1] to the convex Banach space. The authors in [5] managed to show examples
of compact linear operators between Banach spaces which cannot be approximated by norm attaining op-
erators. This was a negative answer to an open question posed in the 1970’s. Any strictly convex Banach
space failing the approximation property serves as the range space. Similarly there are examples in which
the domain space has a Schauder basis. In [10] they constructed a compact metric space S and it was shown
that there is a bounded linear operator T : L1[0, 1] → C(S) which could not be approximated by a norm
attaining operator. Also it was established that there does not exist a retract of L∞[0, 1] onto its unit ball
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which is simultaneously weak∗ continuous and norm continuous. The work of [1] proved that if a strictly
convex Banach space Y contains either a symmetric basic sequence which is not equivalent to the l1 basis or
a normalized sequence with an upper p-estimate, then there is a Banach space X such that the set of norm
attaining operators is not dense in the Banach space of all bounded linear operators from X into Y . He
deduced that no infinite-dimensional uniformly convex Banach space has Lindenstrauss property B. They
also gave a new sufficient condition for a Banach space Y to satisfy Lindenstrauss’s property B, namely
the set of norm attining operators from any other Banach space X into Y is dense. Even in the finite-
dimensional case, the result gave new examples of Banach spaces with property B. In [16] the research
proved that every Banach space is isometric to a space with the property that the norm attaining operators
are dense in the space of all operators into it, for any given domain space. Similarly, a super-reflexive space
is arbitrarily nearly isometric to a space with this property. In this regard therefore, this study characterizes
norm-attaining operators in-terms of their numerical ranges and spectra.

2. PRELIMINARIES

We provide some definitions and some known preliminary results which are useful in the sequel.

Definition 2.1. ( [14], Definition 5) LetH be a complex Hilbert space andB(H) be the algebra of all bounded
linear operators on H. An operator T ∈ B(H) that satisfies the norm-attainability condition, that is, if there
exists a unit vector h ∈ H such that ‖Th‖ = ‖T‖ is called a norm-attainable operator. We denote the class
of all norm-attaining operators by NA(H).

Definition 2.2. ( [6], Definition 2.7) Let B be a Banach algebra. Then B is called a C∗-algebra if it has an
involution ∗ such that for all b ∈ B, ‖bb∗‖ = ‖b‖2.

Definition 2.3. ( [1]) Let S be a linear operator. Then the set W (S) = {〈Sξ, ξ〉 : ξ ∈ H, ‖ξ‖ = 1} in the
complex plane is called the numerical range of S.

Definition 2.4. ( [6]) Let S be an operator. The spectrum of S is denoted and given by σ(S) = {λ ∈ C :

(S − λI)does not have an inverse}

Remark 2.5. Let S ∈ B(H). Then the numerical range of S is convex. This is a known fact in [16], Theorem
4.1

Remark 2.6. [15, Corollary 4.23] Given a normed vector space A and a linear subspace B of A, a∗ ∈ A∗\{0}
is equivalent to B not being dense in A ∀b ∈ B.

3. MAIN RESULTS

In this section, results on the numerical ranges and spectra of norm-attaining operators are given. The set
of all norm-attaining operators is denoted by NA(H) unless otherwise stated. We begin with the following
proposition on elements of the numerical range.

Proposition 3.1. Let So ∈ NA(H) then W (So) is nonempty and 0 ∈W (So) if So is compact.

Proof. Suppose So is compact. Then there exists a sequence {ςn} ∈ H of unit vectors and ς ∈ H with ‖ς‖ = 1

for which {Soςn} → ς and ‖Soς‖ = ‖So‖. Let λ ∈W (So), then λ = 〈Soςn, ςn〉. This gives

|λ| = |〈Soςn, ςn〉|

≤ ‖Soςn‖.‖ςn‖

≤ ‖So‖.‖ςn‖.‖ςn‖

≤ ‖So‖
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implying that limn→∞〈Soςn, ςn〉 = ‖So‖ and therefore {〈Soςn, ςn〉}∞n=1 is bounded. Now,

〈Soςn − ‖So‖ςn, Soςn − ‖So‖ςn〉 = 〈Soςn, Soςn〉 − 〈Soςn, ‖So‖ςn〉

− 〈‖So‖ςn, Soςn〉+ 〈‖So‖ςn, ‖So‖ςn〉

= ‖Soςn‖2 − ‖So‖(〈Soςn, ςn〉+ 〈Soςn, ςn〉) + ‖So‖2‖ςn‖2

≤ ‖So‖2‖ςn‖2 − 2‖So‖|〈Soςn, ςn〉|+ ‖So‖2‖ςn‖2

= 2‖So‖2‖ςn‖2 − 2‖So‖〈Soςn, ςn〉

= 2‖So‖2‖ςn‖2 − 2‖So‖2‖ςn‖2

= 0.

This means {ςn}∞n=1 → 0 weakly in H and therefore ‖So‖ is an eigenvalue of So. Since each eigenvalue
of So is contained in W (So) then W (So) is nonempty. Let So = S∗o (since by Hahn Banach Theorem, if So
attains the norm S∗o also does) and particularly let λ = 0 and ς be a unit vector with the aim that Soς = 0

but S∗o ς 6= 0. Let f =
S∗
o ς

‖S∗
o ς‖

. As 〈ς, S∗o ς〉 = 〈Soς, ς〉 = 〈0, ς〉 = 0, it means ς, f is orthonormal and hence
spans any subspace M which is two-dimensional. This therefore is an implication that the numerical range
of So when restricted to M is contained in W (So) that is, W (So|M ) ⊂ W (So). Therefore showing that 0 is

in int(W (So|M )) is all what is needed in this case. Using orthonormal basis ς, f for M ,

(
0 c

0 ∗

)
is the

way the matrix of So|M appears where c = 〈So|Mf, ς〉. It should be shown now that c 6= 0 so that W (So|M )

is confirmed not to be a degenerate disk which is elliptical in form with a focus found at the origin. We
have, c = 〈So|Mf, ς〉 = 〈Sof, ς〉 = 〈f, S∗o ς〉. But f =

S∗
o ς

‖S∗
o ς‖

which implies that 〈S
∗
o ς,S

∗
o ς〉

‖S∗
o ς‖

= ‖S∗o ς‖ 6= 0 as
required. �

Proposition 3.2. Suppose S ∈ NA(H) and [NA(H)]1 is the open unit disc of NA(H) with center at the origin.
Then W (S) = [NA(H)]1 if S is a backward unilateral shift.

Proof. Since [NA(H)]1 is open, then for some λ ∈ C, λ ∈ [NA(H)]1 implies that |λ| < 1. As S is norm-
attaining, there must be a vector ξ ∈ H with ‖ξ‖ = 1 so that ‖Sξ‖ = ‖S‖. If λ is in W (S), then |λ| =

|〈Sξ, ξ〉| ≤ ‖Sξ‖‖ξ‖ ≤ 1 with equality satisfied whenever Sξ and ξ are expressible as multiples of each other
where ‖Sξ‖ = 1. Therefore this means that Sξ = λξ where |λ| = 1. Let un be an orthonormal basis. Then
Su1 = 0 and Sun = un−1 ∀n ≥ 2. If ξ = Σ

n≥1
cnun, then Sξ = λξ implies that λcn = cn+1 ∀n ∈ N which is

impossible since 1 = ‖ξ‖2 = Σ
n≥1
|cn|2. Hence W (S) ⊂ [NA(H)]1. Now let λ ∈ [NA(H)]1. This implies that

|λ| < 1 and letting ξ0 = Σ
n≥1

λnun ∈ H means Sξ0 = λξ0 and therefore λ is an eigenvalue for S. Since W (S)

contains all the eigenvalues of S, then λ ∈W (S) which means [NA(H)]1 is a subset of W (S) implying that
W (S) = [NA(H)]1. �

The relationship between the convex and infinity convex hulls of a set of complex numbers is shown in the
proposition which follows.

Lemma 3.3. Let α = βn be any set of numbers which is countable. If βn ∈ C, then co∞(α) = co(α).

Proof. Since co(α) ⊂ co∞(α) with co∞(α) being convex, then we have to show that any q ∈ co∞(α) is a
convex combination of α’s points. Since

co(kα+ d) = k co(α) + d,∀k, d ∈ C(3.1)

then it is the same for co∞(α) and therefore α can be replaced by α− q taking q to be equal to 0.
Assume 0 /∈ co(α). Then there is a line between 0 and co(α) and therefore α, co(α) and co∞(α) are assumed
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to belong to the closed upper half of the complex-plane through using Equation 4.2.1 to have a rotation
about the origin.

It is assumed that there exist infinitely many non-zero numbers kn between 0 and 1 such that 0 =
∞
Σ
n=0

knβn,

otherwise trivially 0 ∈ co(α). Now, 0 =
∞
Σ
n=0

knIm(βn) and since Imβn ≥ 0; ∀n, then there must be real βn
for every non-zero kn. Hence there is some βn ∈ R < 0 and another βm ∈ R > 0. This therefore makes the
origin to lie on this line between βm and βn and therefore is in α’s convex hull. This is a contradiction since
0 was assumed not to belong to co(α). �

The result which follow relates a norm-attaining unitarily diagonalizable operator’s numerical range to its
eigenvalues’ convex hull.

Theorem 3.4. Let S ∈ NA(H) and co(S)ev be a convex hull of S’s eigenvalues. Then W (S) = co(S)ev if S is
unitarily diagonalizable.

Proof. Let S be unitarily diagonalizable. Then we have a basis {ej} which is orthonormal for H together
with a sequence {λj} of complex numbers giving Sej = λjej for each integer j ≥ 0. Hence

W (S) = {〈Sς, ς〉 : ς ∈ H, ‖ς‖ = 1}

= {
∞
Σ
j=0
〈S〈ς, ej〉ej , ς〉}

= {
∞
Σ
j=0
〈ς, ej〉〈Sej , ς〉}

= {
∞
Σ
j=0
〈ς, ej〉〈λjej , ς〉}

= {
∞
Σ
j=0

λj〈ς, ej〉〈ς, ej〉

= {
∞
Σ
j=0

λj |〈ς, ej〉|2 : ς ∈ H, ‖ς‖ = 1}

= {
∞
Σ
j=0

λjbj : 0 ≤ bj ≤ 1,
∞
Σ
j=0

bj = 1}

= co(S)ev

where (S)ev is the collection of eigenvalues of S and by Lemma 3.3 the proof is complete. �

The result which follows shows that boundary points of a numerical range of a norm-attaining operator are
its eigenvalues if the boundary’s curvature is infinite.

Proposition 3.5. Let S ∈ NA(H) and λ be a point on ∂W (S) at the part where its curvature is infinite. Then if S
is reflexive, λ is its eigenvalue.

Proof. Let S be reflexive. Then we have λ = 〈Sξ, ξ〉 with ‖ξ‖ = 1. Suppose y is orthogonal to ξ where
‖y‖ = 1. Consider a subspace V whose span is ξ and y. From Theorem ?? the compression SV of S to V has
its numerical range being a ellipse which is degenerate with W (S) having λ in its boundary. Since W (SV)

is contained in W (S) which has no closed disc having λ, it means it does not contain a closed elliptical disc
containing λ. This implies that W (SV) is a line segment whose endpoint is λ which is then an eigenvalue
of SV and therefore of S also. �

At this point, results on spectra for norm-attaining operators are given here starting with the following

Definition 3.6. The spectrum of an operator T denoted by σ(T ) is the set of complex numbers λ such that
(T − λI) is not invertible.



Pan-Amer. J. Math. 2 (2023), 10 5

Theorem 3.7. Let A ∈ NA(H), then
co(σ(A)) =

⋂
{W (TAT−1) : T is invertible on NA(H)}.

Proof. Suppose λ is not in the convex hull of the spectrum of A. We need to show that there is an invertible
operator T ∈ NA(H) such that λ is not in W (T−1AT ). Since convσ(A) is compact, it implies that there is
an open disc Θ that contains it but whose closure does not contain λ. Assume that Θ is the open unit disc,
particularly that r(A) < 1. Then for A ∈ NA(H), r(A) = inf{‖TAT−1‖ : T is invertible on H} implying
that there is an invertible operator T ∈ NA(H) such that ‖T−1AT‖ ≤ (1+r(A))

2 < 1 and W (T−1AT ) ⊂ Θ.
Hence λ ∈W (T−1AT ). �

Proposition 3.8. Let S ∈ NA(H). Then the statements which follow are similar:

(i). σ(S) ⊂ H+.
(ii). An invertible norm-attaining operator B exists such that W (B−1SB) ⊂ H+.

(iii). An invertible norm-attaining operator C which is positive exists in order for W (C−1SC) ⊂ H+.
(iv). An invertible norm-attaining operator C which is positive exists in order for W (SC) ⊂ H+.

Proof. (i) ⇒ (ii). Follows since σ(S) is in the interior of a subset of an open set which is convex and
W (B−1SB) is in the set. (iii) ⇒ (ii) is trivial. By polar decomposition, let B = PoUo with Po being
invertible and positive and Uo being unitary. This gives W (P−1o SPo) = W (UT

o P
T
o SPoUo) = W (B−1SB)

which is, under unitary transformations, invariant. (iii) ⇒ (iv) follows due to the identity 〈SP 2
o y, y〉 =

〈(P−1o SPo), (Poy)〉 showing that, for some δ > 0, W (SP 2
o ) ⊂ {z : Re z ≥ δ

‖P−1
o ‖2
} whenever W (P−1o SPo) ⊂

{z : Re z ≥ δ}. (iv) ⇒ (i). To show this, we apply [??, Theorem 1] to have σ(S) = σ(SPoP 1
o ) ⊂ W (SPo)

W (Po)

and W (SPo)

W (Po)
⊂ H+ which together with the fact that the positive real axis contains W (Po) implies σ(S) ⊂

H+. �

If an operator is equivalent to a norm-attaining operator then the convex hull of the operator’s spectrum is
the same as the closure of its numerical range as established in the result which follows:

Proposition 3.9. Let S ∈ NA(H). Then co(σ(S)) =
⋂
{W (TST−1) :

T is invertible on H}.

Proof. Suppose λ 6∈ co(σ(S)). We need to show that T ∈ NA(H) which is invertible exists such that λ 6∈
W (T−1ST ). Since co(σ(S)) is compact, then an open disc Θ containing this exists with λ not in its closure.
With the existence of Θ, particularly that r(S) < 1, Corollary ?? implies the existence of T ∈ NA(H)

which is invertible giving ‖T−1ST‖ ≤ (1+r(S))
2 < 1 which means that W (T−1ST ) ⊂ Θ and hence λ 6∈

W (T−1ST ). �

For a closed norm-attaining operator, the residual spectrum and the point spectrum being equal implies
that the operators’s spectrum is equal to its adjoint’s spectrum under certain conditions established in the
result which follows.

Proposition 3.10. Let S ∈ NA(H) be closed on H . Then σr(S) = σp(S
∗) iff σ(S) = σ(S∗) and R(λo, S)∗ =

R(λo, S
∗) for all λo in ρ(S).

Proof. By Corollary 2.6 the set (λoI − S)D(S) cannot be dense in H if some vector y∗ ∈ H∗ \ {0} exists so
that we have, for each x ∈ D(S), 〈(λoI − S)x, y∗〉 = 0, which is similar to 〈Sx, y∗〉 = 〈x, λoy∗〉. This means
that y∗ is in D(S∗) \ {0} and S∗y∗ = λoy

∗, hence λo ∈ σp(S∗).
Conversely, let λo ∈ ρ(S) and take y ∈ D(S), x∗ ∈ H∗ and set y∗ = R(λo, S)∗x∗. Then 〈(λoI − S)x, y∗〉 =

〈R(λo, S)(λoI − S)x, x∗〉 = 〈x, x∗〉. Thus, y∗ ∈ D(S∗) with x∗ = (λoI − S)∗y∗ = (λoI − S∗)y∗ which implies
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that λoI − S∗ is surjective. Now taking x∗ ∈ D(S∗) for x ∈ H and using the fact that R(λo, S)y ∈ D(S) we
have

〈y,R(λo, S)∗(λoI − S∗)x∗〉 = 〈R(λo, S)x, (λoI − S∗)x∗〉

= 〈(λoI − S)R(λo, S)x, x∗〉

= 〈y∗, y〉.

This means that R(λo, S)∗(λoI − S∗)x∗ = x∗ and hence λoI − S∗ is injective. Therefore there exists
R(λo, S

∗) = R(λo, S)∗.
Similarly, let λo ∈ ρ∗(S) and take x ∈ D(S) so that given each x∗ ∈ H∗, it follows that

〈(λoI − S)x,R(λo, S
∗)x∗〉 = 〈x, (λoI − S∗)R(λo, S

∗)x∗〉

= 〈x, x∗〉.

By Corollary 2.6, 〈x, y∗〉 = ‖y‖ whenever y∗ is a unit vector giving ‖y‖ = 〈(λoI − S)x,R(λo, S
∗)y∗〉 ≤

‖R(λo, S
∗)‖‖λox− Sx‖which implies that λo 6∈ σap(S) and λo 6∈ σp(S∗) = σr(S), hence λo 6∈ σ(S). �

The spectrum of a norm-attaining operator is bounded under certain conditions as established in the fol-
lowing.

Theorem 3.11. Let S ∈ NA(H) and ‖S‖ < |λ|. Then σ(S) is bounded.

Proof. Define Rλ,j ∈ NA(H) by Rλ,j = − 1
λ

j

Σ
n=0

Sn

λn . Since ‖S‖|λ| < 1, then
∞
Σ
n=0

‖S‖n
|λ|n is a convergent geometric

series. Therefore Rλ,j is Cauchy and converges to some Aλ ∈ NA(H). So

‖Aλ(S − λI)− I‖ ≤ ‖Aλ(S − λI)−Rλ,j(S − λI)‖+ ‖Rλ,j(S − λI)− I‖

≤ ‖Aλ −Rλ,j‖‖S − λI‖+ ‖ − S

λ

j

Σ
n=0

Sn

λn
+

j

Σ
n=0

Sn

λn
− I‖

= ‖Aλ −Rλ,j‖‖S − λI‖+ ‖S
j+1

λj+1
‖

≤ ‖Aλ −Rλ,j‖‖S − λI‖+ (
‖S‖
|λ|

)j+1,

which tends to 0 as j →∞. Hence, Aλ(S − λI) = I and

‖(S − λI)Aλ − I‖ ≤ ‖(S − λI)Aλ − (S − λI)Rλ,j‖+ ‖(S − λI)− I‖

≤ ‖S − λI‖‖Aλ −Rλ,j‖+ ‖‖S‖
|λ|
‖j+1

where (S − λI)Aλ = I implying that Aλ = (S − λI)−1. Thus if ‖S‖ < |λ|, then λ ∈ ρ(S) and therefore σ(S)

is in the disc |λ| ≤ ‖S‖which means it is bounded as required. �

Given a norm-attaining operator, its spectrum is a set which is closed in the complex plane as proved in
this result:

Proposition 3.12. Let S ∈ NA(H). Then σ(S) ∈ C is closed.

Proof. Suppose λ ∈ ρ(S) and (κ− λ) < ‖Rλ‖−1. Let Rκ,j ∈ NA(H) be defined by Rκ,j = Rλ
j

Σ
n=0

(κ− λ)nRnλ .

Since |(κ − λ)| < ‖Rλ‖−1, then Rλ,κ is Cauchy converging to some Aκ ∈ NA(H). Therefore, since Rλ =
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(S − λI)−1 we get

‖Aκ(S − κI)− I‖ ≤ ‖Aκ(S − κI)−Rκ,j(S − κI)‖+ ‖Rκ,j(S − κI + λI − λI)− I‖

≤ ‖Aκ −Rκ,j‖‖S − κI‖+ ‖
j

Σ
n=0

(κ− λ)nRnλ

−(κ− λ)Rλ
j

Σ
n=0

(κ− λ)nRnλ − I‖

= ‖Aκ −Rκ,j‖‖S − κI‖+ ‖ − (κ− λ)j+1Rj+1
λ ‖

= ‖Aκ −Rκ,j‖‖S − κI‖+ |κ− λ|j+1Rj+1
λ

and this tends to zero as j →∞. Thus Aκ(S − κI) = I .
Similarly (S − κI)Aκ = I which implies that (S − κI)−1 = Aκ. Therefore, κ ∈ ρ(S) meaning ρ(S) is open.
Hence, σ(S) is closed. �

If a norm-attaining operator S is self-adjoint, then its spectrum lies in the interval [−‖S‖, ‖S‖] as shown in
the proposition below.

Proposition 3.13. Let S ∈ NA(H) and S = S∗. Then σ(S) ∈ R and σ(S) ∈ [−‖S‖, ‖S‖].

Proof. Since r(S) ≤ ‖S‖, then we need only to show that σ(S) ∈ R. Suppose λo = β + iθ ∈ C β, θ ∈ R with
θ 6= 0. Then given π ∈ H we get

‖(S − λoI)π‖2 = 〈(S − λoI)π, (S − λoI)π〉

= 〈(S − βI)π, (S − βI)π〉+ 〈(−iθ)π, (−iθ)y〉

+〈Sπ, (−iθ)π〉+ 〈(−iθ)y, Sπ〉

= ‖(S − βI)π‖2 + θ2‖π‖2

≥ θ2‖π‖2.

This estimate implies that S − λoI is a one-to-one operator whose range is closed. Now suppose range(S −
λI) 6= H , then λo is in the residual spectrum of S such that λo = β − iθ is an eigenvalue of S implying
that S has an eigenvalue which is not a real number hence contradicting the property that eigenvalues of
bounded self-adjoint operators are real. Therefore λo is in ρ(S) since it is not real. �

Proposition 3.14. Let S ∈ NA(H) and p1(λ) = β0 + β1λ + ... + βnλ
n be a polynomial. If p2(S) = β0 + β1ς +

...+ βnς
n, then σ(p2(S)) = p1(σ(S)) = {p1(λ) : λ ∈ σ(S)}.

Proof. Since n = 0 is obvious, we let n ≥ 1 and take λ0 ∈ σ(S) such that λ0 − S is not invertible. Then
p1(λ0)− p2(S) is not invertible since

p1(λ0)− p2(S) =
n

Σ
k=0

βk(λk0 − Sk)

=
n

Σ
k=1

βk(λk0 − Sk)

= (λ0 − S)
n

Σ
k=1

βk
k−1
Σ
i=1

λk−i0 Si−1

with λ0 − S and
n

Σ
k=1

βk
k−1
Σ
i=1

λk−i0 Si−1 commuting. This implies that p1(σ(S)) ⊂ σ(p2(S)). Also, if µ /∈ {p1(λ) :

λ ∈ σ(S)} and λ1, λ2, ..., λn are solutions to the polynomial µ−p1(λ) then λ1, λ2, ..., λn /∈ σ(S). Additionally,
µ− p1(λ) = ξ(λ1 − λ)m1(λ2 − λ)m2 ...(λn − λ)mn where m1,m2, ...mn ∈ N and ξ 6= 0 which means that
µ− p2(S) = ξ(λ1 − S)m1(λ2 − S)m2 ...(λn − S)mn .
Hence µ − P2(S) is invertible(being a product of invertible operators) and therefore µ /∈ σ(P (S)). This
shows that p1(σ(S)) ⊃ σ(p2(S)) as required. �
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4. CONCLUSION

In conclusion, we have studied norm attaining operators in C∗-algebras. We have characterized their
numerical ranges and spectra.
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