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THE SOLUTION OF A SYSTEM OF HIGHER-ORDER DIFFERENCE EQUATIONS IN TERMS OF
BALANCING NUMBERS

AHMED GHEZAL∗ AND IMANE ZEMMOURI

ABSTRACT. In this paper, we are interested in the closed-form solution of the following system of nonlinear
difference equations of higher order,

un+1 =
1

34− vn−m
, vn+1 =

1

34− un−m
, n,m ∈ N0,

and the initial values u−j and v−j , j ∈ {0, 1, ...,m} are real numbers do not equal 34. We show that the solutions
of this system are associated with Balancing numbers. As consequence, these solutions are also associated with
Pell numbers, Pell-Lucas numbers, and Lucas-Balancing numbers. It is shown that the global stability of positive
solutions of this system holds. Our results are illustrated via numerical examples.

1. INTRODUCTION

Many researchers have interested in different types of difference equations, and we mention but are not
limited to the homogeneous linear difference equation of the 2nd-order,

un+1 = αun + βun−1, n ≥ 1,

where α, β ∈R or C such that β 6= 0, in particular, we give information about Balancing (resp. Pell) sequence
that establishes a significant part of our study, defined as follows

Bn+1 = 6Bn −Bn−1, (resp. Pn+1 = 2Pn + Pn−1), n ≥ 1,

with initial conditions B0 = P0 = 0 and B1 = P1 = 1. The following Binet formula of the Balancing (resp.
Pell) numbers gives,

Bn =
an − bn

a− b
, Pn = 2B2n, (see., [11])

where a = 3 + 2
√

2 and b = 3 − 2
√

2. The search for solutions in the closed form of difference equations
or systems has attracted the attention of many mathematicians (see., [1]- [26]). So, in this paper, we seek
to provide a class of system of nonlinear difference equations which can be solved in explicit form, but the
solutions are expressed by Balancing numbers, is the following system of difference equations,

(1.0) un+1 =
1

34− vn−m
, vn+1 =

1

34− un−m
, n,m ∈ N0,

and the initial values u−m, ..., u0, v−m, ..., v0 are real numbers do not equal 34.
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2. MAIN RESULTS

To solve system (2.3) we require to utilize the following lemmas.

Lemma 2.1. Consider the homogeneous linear difference equation with constant coefficients

(2.0) ωn+1 − 34ωn + ωn−1 = 0, n ≥ 0,

with initial conditions ω0, ω−1 ∈ R. Then,

∀n ≥ 0, ωn =
ω0

4
B2n+2 −

ω−1
4
B2n =

ω0

8
P4(n+1) −

ω−1
8
P4n,

where (Bn, n ≥ 0) is the Balancing sequence and (Pn, n ≥ 0) is the Pell sequence.

Proof. Difference equation (2.0) is ordinarily solved by using the following characteristic polynomial, λ2 −
34λ+ 1 = 0, roots of this equation are

λ1 = 17 + 12
√

2 = a2, λ2 = 17− 12
√

2 = b2.

These roots are linked to the roots of the Balancing number sequence. Then the closed form of the general
solution of the equation (2.0) is

∀n ≥ −1, ωn = c1a
2n + c2b

2n,

where ω0, ω−1 are initial values such that {
ω0 = c1 + c2

ω−1 =
c1
a2

+
c2
b2

,

and we have

c1 =
a2ω0 − ω−1

24
√

2
, c2 =

−b2ω0 + ω−1

24
√

2
,

after some calculations, we get

ωn =
a2ω0 − ω−1

24
√

2
a2n +

−b2ω0 + ω−1

24
√

2
b2n

=
ω0

4

(
a2(n+1) − b2(n+1)

a− b

)
− ω−1

4

(
a2n − b2n

a− b

)
.

The lemma is proved. �

Lemma 2.2. Consider the homogeneous linear difference equation with constant coefficients

(2.1) θn+1 + 34θn + θn−1 = 0, n ≥ 0,

with initial conditions θ0, θ−1 ∈ R. Then,

∀n ≥ 0, θn = (−1)
n

(
θ0
4
B2n+2 +

θ−1
4
B2n

)
= (−1)

n

(
θ0
8
P4(n+1) +

θ−1
8
P4n

)
,

where (Bn, n ≥ 0) is the Balancing sequence and (Pn, n ≥ 0) is the Pell sequence.

Proof. The difference equation (2.1) is ordinarily solved by using the following characteristic polynomial,
λ2 + 34λ+ 1 = 0, roots of this equation are

λ1 = −
(

17 + 12
√

2
)

= −a2, λ2 = −
(

17− 12
√

2
)

= −b2.

These roots are linked to the roots of the Balancing number sequence. Then the closed form of the general
solution of the equation (2.1) is

∀n ≥ −1, θn = (−1)
n (
c̃1a

2n + c̃2b
2n
)
,
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where θ0, θ−1 are initial values such that  θ0 = c̃1 + c̃2

θ−1 = − c̃1
a2
− c̃2
b2

,

and we have

c̃1 =
a2θ0 + θ−1

24
√

2
, c̃2 =

−b2θ0 − θ−1
24
√

2
,

after some calculations, we get

θn = (−1)
n

(
a2θ0 + θ−1

24
√

2
a2n +

−b2θ0 − θ−1
24
√

2
b2n
)

= (−1)
n

(
θ0
4

(
a2(n+1) − b2(n+1)

a− b

)
+
θ−1
4

(
a2n − b2n

a− b

))
.

The lemma is proved. �

Lemma 2.3. Consider the following system of rational difference equations

(2.3)

{
xn+1 = 34yn − xn−1
yn+1 = 34xn − yn−1

, n ≥ 0,

with initial conditions x0, x1, y0, y1 ∈ R. Then,

x2n = x0

4 B4n+2 − y−1

4 B4n = x0

8 P8n+4 − y−1

8 P8n,

y2n = y0
4 B4n+2 − x−1

4 B4n = y0
4 P8n+4 − x−1

4 P8n,

x2n+1 = y0
4 B4n+4 − x−1

4 B4n+2 = y0
4 P8n+8 − x−1

4 P8n+4,

y2n+1 = x0

4 B4n+4 − y−1

4 B4n+2 = x0

4 P8n+8 − y−1

4 P8n+4.

Proof. From system (2.3), we get the following system

(2.4)

{
xn+1 + yn+1 = 34 (xn + yn)− (xn−1 + yn−1)

xn+1 − yn+1 = −34 (xn − yn)− (xn−1 − yn−1)
, n ≥ 0,

Using the change of variables ωn = xn + yn and θn = xn − yn, we can write (2.4) as{
ωn+1 = 34ωn − ωn−1
θn+1 = −34θn − θn−1

, n ≥ 0,

by Lemmas 2.1− 2.2, we have

∀n ≥ 0, ωn =
ω0

4
B2n+2 −

ω−1
4
B2n =

ω0

8
P4(n+1) −

ω−1
8
P4n,

∀n ≥ 0, θn = (−1)
n

(
θ0
4
B2n+2 +

θ−1
4
B2n

)
= (−1)

n

(
θ0
8
P4(n+1) +

θ−1
8
P4n

)
,

hence, the closed form of general solution of the system (2.3) is (xn, yn) =
(
ωn+θn

2 , ωn−θn
2

)
, n ≥ 0. The

lemma is proved. �

2.1. On the system (2.3). In this subsection, we consider the following system of difference equations of
1st-order,

(2.3) un+1 =
1

34− vn
, vn+1 =

1

34− un
, n ∈ N0.

To find the closed form of the solutions of the system (2.3) we consider the following change variables

un =
yn−1
xn

, vn =
xn−1
yn

,
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then the system (2.3) becomes {
xn+1 = 34yn − xn−1
yn+1 = −34xn − yn−1

, n ≥ 0.

By Lemma 2.3, the closed form of general solution of the equation (2.3) is easily obtained, in the following
Theorem

Theorem 2.1. Let {un, vn, n ≥ 0} be a solution of equation (2.3). Then,

u2n =
B4n+2 − v0B4n

B4n+4 − v0B4n+2
=

P8n+4 − v0P8n

P8n+8 − v0P8n+4
,

u2n+1 =
B4n+4 − u0B4n+2

B4n+6 − u0B4n+4
=

P8n+8 − u0P8n+4

P8n+12 − u0P8n+8
,

v2n =
B4n+2 − u0B4n

B4n+4 − u0B4n+2
=

P8n+4 − u0P8n

P8n+8 − u0P8n+4
,

v2n+1 =
B4n+4 − v0B4n+2

B4n+6 − v0B4n+4
=

P8n+8 − v0P8n+4

P8n+12 − v0P8n+8
,

where (Bn, n ≥ 0) is the Balancing sequence and (Pn, n ≥ 0) is the Pell sequence.

Proof. Straightforward and hence omitted. �

2.2. On the system (1.0). In this paper, we study the System (1.0), which is an extension of System (2.3).

Therefore, the System (1.0) can be written as follows

u(m+1)(n+1)−t =
1

34− v(m+1)n−t
, v(m+1)(n+1)−t =

1

34− u(m+1)n−t
,

for t ∈ {0, 1, ...,m} and n ∈ N. Now, using the following notation,

un,t = u(m+1)n−t, vn,t = v(m+1)n−t, t ∈ {0, 1, ...,m} ,

we can get (m+ 1)−systems similar to System (2.3),

un+1,t =
1

34− vn,t
, vn+1,t =

1

34− vn,t
, n ∈ N0,

for t ∈ {0, 1, ...,m} . Through the above discussion, we can introduce the following Theorem

Theorem 2.2. Let {un, vn, n ≥ −m} be a solution of equation (1.0). Then, for t ∈ {0, 1, ...,m} ,

u2(m+1)n−t =
B4n+2 − v−tB4n

B4n+4 − v−tB4n+2
=

P8n+4 − v−tP8n

P8n+8 − v−tP8n+4
,

u(m+1)(2n+1)−t =
B4n+4 − u−tB4n+2

B4n+6 − u−tB4n+4
=

P8n+8 − u−tP8n+4

P8n+12 − u−tP8n+8
,

v2(m+1)n−t =
B4n+2 − u−tB4n

B4n+4 − u−tB4n+2
=

P8n+4 − u−tP8n

P8n+8 − u−tP8n+4
,

v(m+1)(2n+1)−t =
B4n+4 − v−tB4n+2

B4n+6 − v−tB4n+4
=

P8n+8 − v−tP8n+4

P8n+12 − v−tP8n+8
,

where (Bn, n ≥ 0) is the Balancing sequence and (Pn, n ≥ 0) is the Pell sequence.

Proof. The proof of Theorem 2.2 is based on Theorem 2.1 for (m+ 1)−systems (1.0). �

Corollary 2.1. Let {un, vn, n ≥ −m} be a solution of equation (1.0). Then, for t ∈ {0, 1, ...,m} ,

u2(m+1)n−t =
P4n+2Q4n+2 − v−tP4nQ4n

P4n+4Q4n+4 − v−tP4n+2Q4n+2
,

u(m+1)(2n+1)−t =
P4n+4Q4n+4 − u−tP4n+2Q4n+2

P4n+6Q4n+6 − u−tP4n+4Q4n+4
,
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v2(m+1)n−t =
P4n+2Q4n+2 − u−tP4nQ4n

P4n+4Q4n+4 − u−tP4n+2Q4n+2
,

v(m+1)(2n+1)−t =
P4n+4Q4n+4 − v−tP4n+2Q4n+2

P4n+6Q4n+6 − v−tP4n+4Q4n+4
,

where (Pn, n ≥ 0) is the Pell sequence and (Qn, n ≥ 0) is the Pell-Lucas sequence.

Proof. We see that it suffices to remark

Bn =
an1 − bn1
a1 − b1

an1 + bn1
a1 + b1

=
1

2
PnQn (see., [11]).

�

Corollary 2.2. Let {un, vn, n ≥ −m} be a solution of equation (1.0). Then, for t ∈ {0, 1, ...,m} ,

u2(m+1)n−t =
C4n+3 − C4n+1 − v−t (C4n+1 − C4n−1)

C4n+5 − C4n+3 − v−t (C4n+3 − C4n+1)B4n+2
,

u(m+1)(2n+1)−t =
C4n+5 − C4n+3 − u−t (C4n+3 − C4n+1)

C4n+7 − C4n+5 − u−t (C4n+5 − C4n+3)
,

v2(m+1)n−t =
C4n+3 − C4n+1 − u−t (C4n+1 − C4n−1)

C4n+5 − C4n+3 − u−t (C4n+3 − C4n+1)B4n+2
,

v(m+1)(2n+1)−t =
C4n+5 − C4n+3 − v−t (C4n+3 − C4n+1)

C4n+7 − C4n+5 − v−t (C4n+5 − C4n+3)
,

where (Cn, n ≥ 0) is the Lucas-Balancing sequence.

Proof. We see that it suffices to remark 16Bn = Cn+1 − Cn−1 (see., [11]). �

Remark 2.1. There are many systems whose solutions can be expressed by Pell, Balancing and Lucas-Balancing
numbers, which are

un+1 =
1

δk − vn−m
, vn+1 =

1

δk − un−m
, n,m ∈ N0, k ≥ 1,

where δk = ak + bk ∈ {6; 34; 198; 1154; 6726; ...} , k ≥ 1. Using the results of Theorem 2.2, we get

u2(m+1)n−t =
B(2n+1)k − v−tB2kn

B2k(n+1) − v−tBk(2n+1)
,

u(m+1)(2n+1)−t =
B2k(n+1) − u−tB(2n+1)k

B(2n+3)k − u−tB2k(n+1)
,

v2(m+1)n−t =
B(2n+1)k − u−tB2kn

B2k(n+1) − u−tB(2n+1)k
,

v(m+1)(2n+1)−t =
B2k(n+1) − v−tB(2n+1)k

B(2n+3)k − v−tB2k(n+1)
, k ≥ 1.

3. GLOBAL STABILITY OF POSITIVE SOLUTIONS OF (1.0)

In the following, we will study the global stability character of the solutions of system (1.0). Obviously, the
positive equilibriums of system (1.0) are

U1 = (u1, v1) = a2 (1, 1) and U2 = (u2, v2) = b2 (1, 1) .

Let the functions f1, f2 : (0,+∞)
2(m+1) → (0,+∞) defined by

f1

(
x′0:m, y

′
0:m

)
=

1

34− yn−m
, f2

(
x′0:m, y

′
0:m

)
=

1

34− xn−m
,

where z0:m = (z0, z1, ..., zm)
′
. Now, it is usually useful to linearized system (1.0) around the equilibrium

point U2 in order to facilitate its study. For this purpose, introducing the vectors X ′n :=
(
X ′n, Y

′
n

)
where
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X ′n = (xn, xn−1, ..., xn−m) and Y ′n = (yn, yn−1, ..., yn−m) . With these notations, we obtain the following
representation

(3.1) Xn+1 = FmXn,

where

Fm =


O′(m−1) 0 O′(m−1) b4

I(m−1) O(m−1) O(m−1) O(m−1)
O′(m−1) b4 O(m−1) 0

O(m−1) O(m−1) I(m−1) O(m−1)

 ,

withO(k,l) denotes the matrix of order k× l whose entries are zeros, for simplicity, we setO(k) := O(k,k) and
O(k) := O(k,1) and I(m) is the m ×m identity matrix. We summarize the above discussion in the following
theorem

Theorem 3.1. The positive equilibrium point U2 is locally asymptotically stable.

Proof. After some preliminary calculations, the characteristic polynomial of Fm is

PFm
(λ) = det

(
Fm − λI(2(m+1))

)
= Λ1 (λ)− Λ2 (λ) ,

where Λ1 (λ) = λ2(m+1) and Λ2 (λ) = b8, then |Λ2 (λ)| < |Λ1 (λ)| ,∀λ : |λ| = 1. So, according to Rouche’s
Theorem, all zeros of Λ1 (λ)−Λ2 (λ) = 0 lie in the unit disc |λ| < 1. Thus, the positive equilibrium point U2

is locally asymptotically stable. �

Corollary 3.1. For every well defined solution of system (1.0), we have limun = lim vn = b2.

Proof. From Theorem 2.2, we have

limu2(m+1)n−t = lim
B4n+2 − v−tB4n

B4n+4 − v−tB4n+2

= lim
1− v−t B4n

B4n+2

B4n+4

B4n+2
− v−t

=
1− v−tb2

a2 − v−t
= b2,

limu(m+1)(2n+1)−t = lim
B4n+4 − u−tB4n+2

B4n+6 − u−tB4n+4

= lim
1− u−t B4n+2

B4n+4

B4n+6

B4n+4
− u−t

=
1− u−tb2

a2 − u−t
= b2.

Rest of the proof of lim vn is similar to the proof of limun, which completes the proof of Corollary 3.1. �

The following result is an immediate consequence of Theorem 3.1 and Corollary 3.1.

Corollary 3.2. The unique positive equilibrium point U2 is globally asymptotically stable.
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4. NUMERICAL EXAMPLES

In order to clarify and shore theoretical results of the previous section, we consider some interesting nu-
merical examples in this section.

Example 4.1. We consider interesting numerical example for the difference equations system (1.0) whenm = 1 with
the initial conditions u−1 = 2/3, u0 = 4, v−1 = 0.4 and v0 = −2/3. The plot of the solutions is shown in Figure 1.

0 5 10 15 20 25 30 35 40

n

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
u n,v

n

u
n

v
n

Figure1.The plot of the solutions of system (1.0),when m = 1 and we put the initial

conditions u−1 = 2/3, u0 = 4, v−1 = 0.4 and v0 = −2/3.

Example 4.2. We consider interesting numerical example for the difference equations system (1.0) whenm = 2 with
the initial conditions

i 0 1 2

u−i 0 4 −1.32

v−i 2 5 0.16

Table 1. The initial conditions.

The plot of the solutions is shown in Figure 2.

0 5 10 15 20 25 30 35 40 45

n

-2

-1

0

1

2

3

4

5

u n,v
n

u
n

v
n

Figure 2. The plot of the solutions of system (1.0); when we put the initial conditions in
Table 1.

Example 4.3. We consider interesting numerical example for the difference equations system (1.0) whenm = 3 with
the initial conditions
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i 0 1 2 3

u−i 3 4 2 0.2

v−i 0.4 2/3 −1 3.9

Table 2. The initial conditions.
The plot of the solutions is shown in Figure 3.
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n

-1

-0.5

0
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1.5
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2.5

3

3.5

4

u n,v
n

u
n

v
n

Figure 3. The plot of the solutions of system (1.0); when we put the initial conditions in
Table 2.

In these examples, we show that the solutions of the system (1.0) for some cases are globally asymptotically
stable.
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