
ISSN: 2832-4293
Pan-American Journal of Mathematics 2 (2023), 7
https://doi.org/10.28919/cpr-pajm/2-7
© 2023 by the authors

SOME RESULTS ON A RATIONAL RECURSIVE SEQUENCES

ABDUALRAZAQ SANBO∗ AND ELSAYED M. ELSAYED

ABSTRACT. In this paper, we study some results on the following rational recursive sequences:

(0.1) xn+1 =
xn−9

±1± xn−1xn−3xn−5xn−7xn−9
, n = 0, 1, · · · ,

where the initial conditions are arbitrary real numbers.

1. INTRODUCTION

Our aim in this article is to propose some results concerning the behavior of the following rational recur-
sive sequences:

(1) xn+1 =
xn−9

±1± xn−1xn−3xn−5xn−7xn−9
, n = 0, 1, · · · ,

where the initial conditions are arbitrary real numbers.
The study of Difference Equations has been growing continuously for the last decade. This is largely

due to the fact that difference equations manifest themselves as mathematical models describing real life
situations in probability theory, queuing theory, statistical problems, stochastic time series, combinatorial
analysis, number theory, geometry, electrical network, quanta in radiation, genetics in biology, economics,
psychology, sociology, etc. In fact, now it occupies a central position in applicable analysis and will no
doubt continue to play an important role in mathematics as a whole

Recently there has been a great interest in studying the qualitative properties of rational difference equa-
tions. For the systematical studies of rational and non-rational difference equations, one can refer to the
papers [1-44] and references therein. The study of rational difference equations of order greater than one
is quite challenging and rewarding because some prototypes for the development of the basic theory of
the global behavior of non-linear difference equations of order greater than one come from the results for
rational difference equations. However, there have not been any effective general methods to deal with the
global behavior of rational difference equations of order greater than one so far. Therefore, the study of
rational difference equations of order greater than one is worth further consideration.
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Aloqeili [5] has obtained the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Cinar [80]-[10] investigated the solutions of the following difference equations

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1
−1 + axnxn−1

, xn+1 =
axn−1

1 + bxnxn−1

Elabbasy et al. [11] gave the solution of the following difference equations

xn+1 =
xn−7

±1± xn−3xn−7

Elabbasy et al. [12] investigated the global stability, periodicity character and gave the solution of special
case of the following recursive sequences

xn+1 = axn −
bxn

cxn − dxn−1

Karatas et al. [24] got the form of the solution of the difference equation

xn+1 =
xn−5

1 + xn−2xn−5

Simsek et al. [34] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1

Elsayed [17] proposed the solutions of the following recursive sequences

xn+1 =
xn−7

±1± xn−1xn−3xn−5xn−7
, n = 0, 1, ...,

where the initial conditions are arbitrary real numbers.

Here, we recall some notations and results which will be useful in our investigation.
Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions

x−k, x−k+1, x−k+2, ..., x0 ∈ I,

the difference equation

(2) xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ...,

has a unique solution {xn}∞n=−k.

Definition 1. (Equilibrium Point) A point x̄ ∈ I is called an equilibrium point of Eq. (2) if

x̄ = f(x̄, x̄, ..., x̄).

That is, xn = x̄ for n ≥ 0, is a solution of Eq. (2), or equivalently, x̄ is a fixed point of f .

Definition 2. (Stability)
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• The equilibrium point x̄ of Eq. (2) is locally stable if for every ε > 0, there exists δ > 0 such that for
all x−k, x−k+1, x−k+2, ..., x0 ∈ I, with

|x−k − x̄|+ |x−k+1 − x̄|+ |x−k+2 − x̄|+ ...+ |x0 − x̄| < δ,

we have

|xn − x̄| < ε, for all n ≥ −k

• The equilibrium point x̄ of Eq. (2) is locally asymptotically stable if x̄ is locally stable solution of Eq.
(2) and there exists γ > 0, such that for all x−k, x−k+1, x−k+2, ..., x0 ∈ I, with

|x−k − x̄|+ |x−k+1 − x̄|+ |x−k+2 − x̄|+ ...+ |x0 − x̄| < δ,

we have

lim
n→∞

xn = x̄.

• The equilibrium point x̄ of Eq. (2) is global attractor if for all x−k, x−k+1, ..., x0 ∈ I we have

lim
n→∞

xn = x̄.

• The equilibrium point x̄ of Eq. (2) is globally asymptotically stable if x̄ is locally stable, and x̄ is also
a global attractor of Eq. (2).

• The equilibrium point x̄ of Eq. (2) is unstable if x̄ is not locally stable.

The linearised equation of Eq. (2) about the equilibrium x̄ is the linear difference equation

yn+1 =

k∑
i=0

∂f(x̄, x̄, ..., x̄)

∂xn−i
yn−i

Theorem 1. Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

|p|+ |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ....

Remark 1. The theorem can be easily extended to a general linear equations of the form

(3) xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ...,

where p1, p2, ..., pk ∈ R and k ∈ {0, 1, 2, ...}. Then Eq. (3) is asymptotically stable provided that

k∑
i=0

|pi| < 1.

Definition 3. (Periodicity) A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all
n ≥ −k.
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2. FIRST CASE : xn+1 =
xn−9

1 + xn−1xn−3xn−5xn−7xn−9

A specific form is proposed for the solutions of the following rational recursive sequences:

(4) xn+1 =
xn−9

1 + xn−1xn−3xn−5xn−7xn−9
, n = 0, 1, ...,

where the initial conditions are arbitrary real numbers.
Theorem 2. Let {xn}∞n=−9 be a solution of equations (4). Then for n = 0, 1, ...,

x10n−9 =

t

n−1∏
i=0

(1 + 5ibdfht)

n−1∏
i=0

(1 + (5i+ 1)bdfht)

, x10n−4 =

e

n−1∏
i=0

(1 + (5i+ 2)acegr)

n−1∏
i=0

(1 + (5i+ 3)acegr)

,

x10n−8 =

r

n−1∏
i=0

(1 + 5iacegr)

n−1∏
i=0

(1 + (5i+ 1)acegr)

, x10n−3 =

d

n−1∏
i=0

(1 + (5i+ 3)bdfht)

n−1∏
i=0

(1 + (5i+ 4)bdfht)

,

x10n−7 =

h

n−1∏
i=0

(1 + (5i+ 1)bdfht)

n−1∏
i=0

(1 + (5i+ 2)bdfht)

, x10n−2 =

c

n−1∏
i=0

(1 + (5i+ 3)acegr)

n−1∏
i=0

(1 + (5i+ 4)acegr)

,

x10n−6 =

g

n−1∏
i=0

(1 + (5i+ 1)acegr)

n−1∏
i=0

(1 + (5i+ 2)acegr)

, x10n−1 =

b

n−1∏
i=0

(1 + (5i+ 4)bdfht)

n−1∏
i=0

(1 + (5i+ 5)bdfht)

,

x10n−5 =

f

n−1∏
i=0

(1 + (5i+ 2)bdfht)

n−1∏
i=0

(1 + (5i+ 3)bdfht)

, x10n =

a

n−1∏
i=0

(1 + (5i+ 4)acegr)

n−1∏
i=0

(1 + (5i+ 5)acegr)

,

where x−9 = t, x−8 = r, x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a and
−1∏
i=0

Ai = 1.

Proof: We use an inductive proof for this rational recursive sequences. It is easy to see that for n = 0, the
result holds. Suppose that n > 0 and that the assumption is satisfied for n− 1. That is;

x10n−19 =

t

n−2∏
i=0

(1 + 5ibdfht)

n−2∏
i=0

(1 + (5i+ 1)bdfht)

, x10n−14 =

e

n−2∏
i=0

(1 + (5i+ 2)acegr)

n−2∏
i=0

(1 + (5i+ 3)acegr)

,

x10n−18 =

r

n−2∏
i=0

(1 + 5iacegr)

n−2∏
i=0

(1 + (5i+ 1)acegr)

, x10n−13 =

d

n−2∏
i=0

(1 + (5i+ 3)bdfht)

n−2∏
i=0

(1 + (5i+ 4)bdfht)

,
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x10n−17 =

h

n−2∏
i=0

(1 + (5i+ 1)bdfht)

n−2∏
i=0

(1 + (5i+ 2)bdfht)

, x10n−12 =

c

n−2∏
i=0

(1 + (5i+ 3)acegr)

n−2∏
i=0

(1 + (5i+ 4)acegr)

,

x10n−16 =

g

n−2∏
i=0

(1 + (5i+ 1)acegr)

n−2∏
i=0

(1 + (5i+ 2)acegr)

, x10n−11 =

b

n−2∏
i=0

(1 + (5i+ 4)bdfht)

n−2∏
i=0

(1 + (5i+ 5)bdfht)

,

x10n−15 =

f

n−2∏
i=0

(1 + (5i+ 2)bdfht)

n−2∏
i=0

(1 + (5i+ 3)bdfht)

, x10n−10 =

a

n−2∏
i=0

(1 + (5i+ 4)acegr)

n−2∏
i=0

(1 + (5i+ 5)acegr)

.

Now, using the main Eq. (4), one has

x10n−9 =
x10n−19

1 + x10n−11x10n−13x10n−15x10n−17x10n−19

=

t

n−2∏
i=0

(1 + 5ibdfht)

n−2∏
i=0

(1 + (5i + 1)bdfht)

1 +

b

n−2∏
i=0

(1 + (5i + 4)bdfht)

n−2∏
i=0

(1 + (5i + 5)bdfht)

d

n−2∏
i=0

(1 + (5i + 3)bdfht)

n−2∏
i=0

(1 + (5i + 4)bdfht)

f

n−2∏
i=0

(1 + (5i + 2)bdfht)

n−2∏
i=0

(1 + (5i + 3)bdfht)

h

n−2∏
i=0

(1 + (5i + 1)bdfht)

n−2∏
i=0

(1 + (5i + 2)bdfht)

t

n−2∏
i=0

(1 + 5ibdfht)

n−2∏
i=0

(1 + (5i + 1)bdfht)

=

t

n−2∏
i=0

(1 + 5ibdfht)

n−2∏
i=0

(1 + (5i+ 1)bdfht)


1

1 +
bdfht

n−2∏
i=0

(1 + (5i+ 5)bdfht)

n−2∏
i=0

(1 + 5ibdfht)



=

t

n−2∏
i=0

(1 + 5ibdfht)

n−2∏
i=0

(1 + (5i+ 1)bdfht)

 1

1 +
bdfht

(1 + (5n− 5)bdfht)



=

t

n−2∏
i=0

(1 + 5ibdfht)

n−2∏
i=0

(1 + (5i+ 1)bdfht)

(
(1 + (5n− 5)bdfht)

(1 + (5n− 5)bdfht+ bdfht)

)

=

t

n−2∏
i=0

(1 + 5ibdfht)

n−2∏
i=0

(1 + (5i+ 1)bdfht)

(1 + (5n− 5)bdfht)

(1 + (5n− 4)bdfht)
.

Hence, we have
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x10n−9 =

t

n−2∏
i=0

(1 + 5ibdfht)

n−2∏
i=0

(1 + (5i+ 1)bdfht)

1 + (5n− 5)bdfht

1 + (5n− 4)bdfht
=

t

n−1∏
i=0

(1 + 5ibdfht)

n−1∏
i=0

(1 + (5i+ 1)bdfht)

.

Similarly, using the main Eq. (4), one has

x10n−8 =
x10n−18

1 + x10n−10x10n−12x10n−14x10n−16x10n−18

=

r

n−2∏
i=0

(1 + 5iacegr)

n−2∏
i=0

(1 + (5i + 1)acegr)

1 +

r

n−2∏
i=0

(1 + (5i + 4)acegr)

n−2∏
i=0

(1 + (5i + 5)acegr)

g

n−2∏
i=0

(1 + (5i + 3)acegr)

n−2∏
i=0

(1 + (5i + 4)acegr)

e

n−2∏
i=0

(1 + (5i + 2)acegr)

n−2∏
i=0

(1 + (5i + 3)acegr)

c

n−2∏
i=0

(1 + (5i + 1)acegr)

n−2∏
i=0

(1 + (5i + 2)acegr)

a

n−2∏
i=0

(1 + 5iacegr)

n−2∏
i=0

(1 + (5i + 1)acegr)

=

r

n−2∏
i=0

(1 + 5iacegr)

n−2∏
i=0

(1 + (5i+ 1)acegr)


1

1 +
acegr

n−2∏
i=0

(1 + (5i+ 5)acegr)

n−2∏
i=0

(1 + 5iacegr)



=

r

n−2∏
i=0

(1 + 5iacegr)

n−2∏
i=0

(1 + (5i+ 1)acegr)

 1

1 +
acegr

(1 + (5n− 5)acegr)



=

r

n−2∏
i=0

(1 + 5iacegr)

n−2∏
i=0

(1 + (5i+ 1)acegr)

(
(1 + (5n− 5)acegr)

(1 + (5n− 5)acegr + acegr)

)

=

r

n−2∏
i=0

(1 + 5iacegr)

n−2∏
i=0

(1 + (5i+ 1)acegr)

(1 + (5n− 5)acegr)

(1 + (5n− 4)acegr)
.

Hence, we have

x10n−8 =

r

n−2∏
i=0

(1 + 5iacegr)

n−2∏
i=0

(1 + (5i+ 1)acegr)

1 + (5n− 5)acegr

1 + (5n− 4)acegr
=

r

n−1∏
i=0

(1 + 5iacegr)

n−1∏
i=0

(1 + (5i+ 1)acegr)

.

Similarly, one can easily obtain the other relations. Thus, the proof is completed.
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Theorem 3. Eq. (4) has a unique equilibrium point which is the number zero and this equilibrium point is
not locally asymptotically stable.

Proof: For the equilibrium points of Eq. (4), we can write

x̄ =
x̄

1 + x̄5

Then x̄+ x̄6 = x̄ or also x̄6 = 0.
Thus the equilibrium point of Eq. (4) is x̄ = 0.
Let f : (0,∞)5 → (0,∞) be a function defined by

f(u, v, w, y, z) =
u

1 + uvwyz
.

Therefore it follows that

fu(u, v, w, y, z) =
1

(1 + uvwyz)2
, fv(u, v, w, y, z) =

−u2wyz
(1 + uvwyz)2

,

fw(u, v, w, y, z) =
−u2vyz

(1 + uvwyz)2
, fy(u, v, w, y, z) =

−u2vwz
(1 + uvwyz)2

,

fz(u, v, w, y, z) =
−u2vwy

(1 + uvwyz)2
.

We see that

fu(x̄, x̄, x̄, x̄, x̄) = 1, fv(x̄, x̄, x̄, x̄, x̄) = 0, fw(x̄, x̄, x̄, x̄, x̄) = 0, fy(x̄, x̄, x̄, x̄, x̄) = 0, fz(x̄, x̄, x̄, x̄, x̄) = 0.

The proof follows by using Theorem 1.

Theorem 4. Every positive solution of Eq. (4) is bounded and

lim
n→∞

xn = 0.

Proof: It follows from Eq. (4) that

xn+1 =
xn−9

1 + xn−1xn−3xn−5xn−7xn−9
≤ xn−9

Then the sub-sequences {x10n−9}∞n=0, {x10n−8}∞n=0, {x10n−7}∞n=0, {x10n−6}∞n=0, {x10n−5}∞n=0,

{x10n−4}∞n=0, {x10n−3}∞n=0, {x10n−2}∞n=0, {x10n−1}∞n=0, {x10n}∞n=0, are decreasing and so are bounded from
above by M = max{x−9, x−8, x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0}.

In order to perform the results of this section, we consider numerical examples which represent different
types of solutions to Eq. (4).

Example 1: Suppose for Eq. (4) that x−9 = −17, x−8 = 20, x−7 = 40, x−6 = 20, x−5 = −4, x−4 = 0.6, x−3 =

−2/84, x−2 = −1/6, x−1 = 7, x0 = −19. See Figure 1.
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FIGURE 1

Example 2: See Figure 2 since we put for Eq. (4), x−9 = 7, x−8 = 6, x−7 = 5, x−6 = 4, x−5 = 3, x−4 =

2, x−3 = 2, x−2 = 1, x−1 = 7, x0 = 9.
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x(n+1)=x(n−9)/(1+x(n−1) x(n−3) x(n−5) x(n−7) x(n−9))

n

x(
n)

FIGURE 2

3. SECOND CASE : xn+1 =
xn−9

1− xn−1xn−3xn−5xn−7xn−9
Consider the following rational recursive sequences :

(5) xn+1 =
xn−9

1− xn−1xn−3xn−5xn−7xn−9
, n = 0, 1, ..., .

where the initial conditions are arbitrary real numbers.

A specific form concerning the solutions of equations (5) will be proposed in the following theorem



Pan-Amer. J. Math. 2 (2023), 7 9

Theorem 5. Let {xn}∞n=−9 be a solution of equations (5). Then for n = 0, 1, ...,

x10n−9 =

t

n−1∏
i=0

(1− 5ibdfht)

n−1∏
i=0

(1− (5i+ 1)bdfht)

, x10n−4 =

e

n−1∏
i=0

(1− (5i+ 2)acegr)

n−1∏
i=0

(1− (5i+ 3)acegr)

,

x10n−8 =

r

n−1∏
i=0

(1− 5iacegr)

n−1∏
i=0

(1− (5i+ 1)acegr)

, x10n−3 =

d

n−1∏
i=0

(1− (5i+ 3)bdfht)

n−1∏
i=0

(1− (5i+ 4)bdfht)

,

x10n−7 =

h

n−1∏
i=0

(1− (5i+ 1)bdfht)

n−1∏
i=0

(1− (5i+ 2)bdfht)

, x10n−2 =

c

n−1∏
i=0

(1− (5i+ 3)acegr)

n−1∏
i=0

(1− (5i+ 4)acegr)

,

x10n−6 =

g

n−1∏
i=0

(1− (5i+ 1)acegr)

n−1∏
i=0

(1− (5i+ 2)acegr)

, x10n−1 =

b

n−1∏
i=0

(1− (5i+ 4)bdfht)

n−1∏
i=0

(1− (5i+ 5)bdfht)

,

x10n−5 =

f

n−1∏
i=0

(1− (5i+ 2)bdfht)

n−1∏
i=0

(1− (5i+ 3)bdfht)

, x10n =

a

n−1∏
i=0

(1− (5i+ 4)acegr)

n−1∏
i=0

(1− (5i+ 5)acegr)

,

where j bdfht 6= 1, j acegr 6= 1 for j = 1, 2, 3, ... .

Proof: It is similar to the proof of Theorem 2 and will be omitted.

Theorem 6. Eq. (5) has a unique equilibrium point which is the number zero and this equilibrium point is
not locally asymptotically stable.

Example 3: For Eq. (5), consider x−9 = −17, x−8 = 20, x−7 = 40, x−6 = 20, x−5 = −4, x−4 = 0.6, x−3 =

−2/84, x−2 = −1/6, x−1 = 7, x0 = −19. See Figure 3.
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FIGURE 3

Example 4: By choosing x−9 = 7, x−8 = 6, x−7 = 5, x−6 = 4, x−5 = 3, x−4 = 2, x−3 = 2, x−2 = 1, x−1 =

7, x0 = 9 for Eq. (5). See Figure 4.
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4. THIRD CASE : xn+1 =
xn−9

−1 + xn−1xn−3xn−5xn−7xn−9

Now by consider the following rational recursive sequences, a specific form for the solutions will be
given in Theorem 7.

(6) xn+1 =
xn−9

−1 + xn−1xn−3xn−5xn−7xn−9
, n = 0, 1, ...,

where the initial conditions are arbitrary real numbers such that

x−9x−7x−5x−3x−1 6= 1, x−8x−6x−4x−2x0 6= 1.
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Theorem 7. Let {xn}∞n=−9 be a solution of equations (6). Then Eq. (6) has unbounded solutions and for
n = 0, 1, ... , .

x10n−9 =
t

(−1 + bdfht)n
, x10n−4 =

e

(−1 + acegr)n
,

x10n−8 =
r

(−1 + acegr)n
, x10n−3 = d(−1 + bdfht)n,

x10n−7 = h(−1 + bdfht)n, x10n−2 = c(−1 + acegr)n,

x10n−6 = g(−1 + acegr)n, x10n−1 =
b

(−1 + bdfht)n
,

x10n−5 =
f

(−1 + bdfht)n
, x10n =

a

(−1 + acegr)n
.

Proof: For n = 0, the result holds. Now suppose that n > 0 and that our assumption holds for n − 1. That
is;

x10n−19 =
t

(−1 + bdfht)n−1
, x10n−14 =

e

(−1 + acegr)n−1
,

x10n−18 =
r

(−1 + acegr)n−1
, x10n−13 = d(−1 + bdfht)n−1,

x10n−17 = h(−1 + bdfht)n−1, x10n−12 = c(−1 + acegr)n−1,

x10n−16 = g(−1 + acegr)n−1, x10n−11 =
b

(−1 + bdfht)n−1

x10n−15 =
f

(−1 + bdfht)n−1
, x10n−10 =

a

(−1 + acegr)n−1
.

Now, it follows from Eq. (6) that

x10n−9 =
x10n−19

−1 + x10n−11x10n−13x10n−15x10n−17x10n−19

=

t

(−1 + bdfht)n−1

−1 +
b

(−1 + bdfht)n−1
d(−1 + bdfht)n−1

f

(−1 + bdfht)n−1
h(−1 + bdfht)n−1

t

(−1 + bdfht)n−1

=

t

(−1 + bdfht)n−1

−1 + bdfht
.

Hence, we have

x10n−9 =
t

(−1 + bdfht)n
.

Similary, it follows from Eq. (6) that

x10n−8 =
x10n−18

−1 + x10n−10x10n−12x10n−14x10n−16x10n−18

=

r

(−1 + acegr)n−1

−1 +
a

(−1 + acegr)n−1
c(−1 + acegr)n−1

g

(−1 + acegr)n−1
e(−1 + acegr)n−1

r

(−1 + acegr)n−1

=

r

(−1 + acegr)n−1

−1 + acegr

Hence, we have
x10n−8 =

r

(−1 + acegr)n

Similarly, one can easily obtain the other relations. Thus, the proof is completed.
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Theorem 8. Eq. (6) has three equilibrium points which are 0,± 5
√

2 and these equilibrium points are not
locally asymptotically stable.

Proof: It is similar to the proof of Theorem 2 and will be omitted.

Theorem 9. Eq. (6) has a periodic solutions of period ten iff acegr = bdfht = 2 and will take the form
{t, r, h, g, f, e, d, c, b, a, t, r, h, g, f, e, d, c, b, a, ....}.

Proof: First suppose that there exists a prime period ten solution

t, r, h, g, f, e, d, c, b, a, t, r, h, g, f, e, d, c, b, a, ....

of Eq. (6), we see from Eq. (6) that

t =
t

(−1 + bdfht)n
, e =

e

(−1 + acegr)n

r =
r

(−1 + acegr)n
, d = d(−1 + bdfht)n

h = h(−1 + bdfht)n, c = c(−1 + acegr)n

g = g(−1 + acegr)n, b =
b

(−1 + bdfht)n

f =
f

(−1 + bdfht)n
, a =

a

(−1 + acegr)n

or

(−1 + bdfht)n = 1, (−1 + acegr)n = 1.

Then

bdfht = 2, acegr = 2.

Second suppose bdfht = acegr = 2. Then we see from Eq. (6) that x10n = a, x10n−1 = b, x10n−2 =

c, x10n−3 = d, x10n−4 = e, x10n−5 = f, x10n−6 = g, x10n−7 = h, x10n−8 = r, x10n−9 = t. Thus we have a
period ten solution and the proof is complete.

Example 5: For Eq. (6), consider x−9 = −17, x−8 = 20, x−7 = 40, x−6 = 20, x−5 = −4, x−4 = 0.6, x−3 =

−2/84, x−2 = −1/6, x−1 = 7, x0 = −19. See Figure 5.
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Example 6: By choosing x−9 =
2

x−7x−5x−3x−1
and x−8 =

2

x−6x−4x−2x0
where x−7 = 5, x−6 = 4, x−5 =

3, x−4 = 2, x−3 = 2, x−2 = 1, x−1 = 7, x0 = 9 for Eq. (6). See Figure 6.
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5. FORTH CASE : xn+1 =
xn−9

−1− xn−1xn−3xn−5xn−7xn−9
The last case that we consider here is given by:

(7) xn+1 =
xn−9

−1− xn−1xn−3xn−5xn−7xn−9
, n = 0, 1, ...,

where the initial conditions are arbitrary real numbers satisfying
x−9x−7x−5x−3x−1 6= −1, and x−8x−6x−4x−2x0 6= −1.
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A specific form concerning the solutions is given in Theorem 10.

Theorem 10. Let {xn}∞n=−9 be a solution of equations (7). Then Eq. (7) has unbounded solutions and for
n = 0, 1, ..., .

x10n−9 =
t(−1)n

(1 + bdfht)n
, x10n−4 =

e(−1)n

(1 + acegr)n
,

x10n−8 =
r(−1)n

(1 + acegr)n
, x10n−3 = d(−1)n(1 + bdfht)n,

x10n−7 = h(−1)n(1 + bdfht)n, x10n−2 = c(−1)n(1 + acegr)n,

x10n−6 = g(−1)n(1 + acegr)n, x10n−1 =
b(−1)n

(1 + bdfht)n
,

x10n−5 =
f(−1)n

(1 + bdfht)n
, x10n =

a(−1)n

(1 + acegr)n
.

Theorem 11. Eq. (7) has two equilibrium points which are zero and − 5
√

2 . These equilibrium points are
not locally asymptotically stable.

Theorem 12. Eq. (7) has a periodic solutions of period ten iff acegr = bdfht = −2 and will take the form
{t, r, h, g, f, e, d, c, b, a, t, r, h, g, f, e, d, c, b, a, ....}.

Example 7: For Eq. (7), consider x−9 = −17, x−8 = 20, x−7 = 40, x−6 = 20, x−5 = −4, x−4 = 0.6, x−3 =

−2/84, x−2 = −1/6, x−1 = 7, x0 = −19. See Figure 7.
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Example 8: By choosing x−9 =
−2

x−7x−5x−3x−1
and x−8 =

−2

x−6x−4x−2x0
where x−7 = 5, x−6 = 4, x−5 =

3, x−4 = 2, x−3 = 2, x−2 = 1, x−1 = 7, x0 = 9 for Eq. (7). See Figure 8.
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[8] C. Cinar, On the positive solutions of the difference equation xn+1 =
xn−1

1 + axnxn−1
, Appl. Math. Comp. 158 (2004), 809-812.

[9] C. Cinar, On the solutions of the difference equation xn+1 =
xn−1

−1 + axnxn−1
, Appl. Math. Comp., 158 (2004), 793-797.

[10] C. Cinar, On the positive solutions of the difference equation xn+1 =
axn−1

1 + bxnxn−1
, Appl. Math. Comp. 156 (2004), 587-590.

[11] E. M. Elabbasy and E. M. Elsayed, On the solutions of a class of difference equations of higher order, Int. J. Math. Stat. 6 (2010),
57-68.

[12] E. M. Elabbasy and E. M. Elsayed, Dynamics of a rational difference equation, Chinese Ann. Math. Ser. B, 30 (2009), 187-198.

[13] M. M. El-Dessoky, On the difference equation xn+1 = axn−1 + bxn−k +
cxn−s

dxn−s − e
, Math. Meth. Appl. Sci. 40 (2017), 535-545.

[14] H. El-Metwally and E. M. Elsayed, Form of solutions and periodicity for systems of difference equations, J. Comp. Anal. Appl.
15 (2013), 852-857.

[15] E. M. Elsayed, Qualitative behavior of difference equation of order three, Acta Sci. Math. (Szeged), 75 (2009), 113-129.
[16] E. M. Elsayed, Dynamics of a rational recursive sequence, Int. J. Diff. Equ. 4 (2009), 185-200.
[17] E. M. Elsayed, On the Global attractivity and the solution of recursive sequence, Stud. Sci. Math. Hung. 47 (2010), 401-418.
[18] E. M. Elsayed, Behavior of a rational recursive sequences, Stud. Univ. Babeş-Bolyai Math. LVI (2011), 27-42.
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